
Cinderella Animations
Wolfgang Förstner, Bonn, 2024

Pedal Curve (p. 3) Weighted Mean (p. 5) Bayes Estimation (p. 5) ML Estimation (p. 6)

Point on Line (p. 7) Uncertain Plane (p. 8) Uncertain Circle (p. 10) Gauge and Loop-Closing (p. 11)

Gauge and Point Cloud (p. 11) CovM Comparison (p. 12) Classi�cation Boundary (p. 14) P4P Precision (p. 18)

P4P Correlation (p. 18) Epipolar Geometry (p. 20) Depth of Field (p. 20) Trifocal Contraint (p. 22)

Crossratio (p. 24) Recti�cation (p. 24) Motion as Rotation (p. 27) Double Re�ection (p. 28)

Complex Multiplication (p. 29) Four Bearings (p. 30) Moving a Piano (p. 30)

https://www.ipb.uni-bonn.de/html/staff/WolfgangFoerstner/collectednotes_v2/Cinderella/pedal_curve_ellipse-with-text.html
https://www.ipb.uni-bonn.de/html/staff/WolfgangFoerstner/collectednotes_v2/Cinderella/weighted-mean-of-points-with-text.html
https://www.ipb.uni-bonn.de/html/staff/WolfgangFoerstner/collectednotes_v2/Cinderella/bayes-2-modes-outliers-with-text.html
https://www.ipb.uni-bonn.de/html/staff/WolfgangFoerstner/collectednotes_v2/Cinderella/ML_estimate_new-theta-y-with-text.html
https://www.ipb.uni-bonn.de/html/staff/WolfgangFoerstner/collectednotes_v2/Cinderella/point-line-incidence-with-text.html
https://www.ipb.uni-bonn.de/html/staff/WolfgangFoerstner/collectednotes_v2/Cinderella/up_with_centre-with-text.html
https://www.ipb.uni-bonn.de/html/staff/WolfgangFoerstner/collectednotes_v2/Cinderella/uncertain_circle_sampling-with-text.html
https://www.ipb.uni-bonn.de/html/staff/WolfgangFoerstner/collectednotes_v2/Cinderella/gauge_choice_loop_closing_polygon-with-text.html
https://www.ipb.uni-bonn.de/html/staff/WolfgangFoerstner/collectednotes_v2/Cinderella/gauge_choice_triangulation-with-text.html
https://www.ipb.uni-bonn.de/html/staff/WolfgangFoerstner/collectednotes_v2/Cinderella/covariance-comparison-with-text.html
https://www.ipb.uni-bonn.de/html/staff/WolfgangFoerstner/collectednotes_v2/Cinderella/classification-gauss-boundary-with-text.html
https://www.ipb.uni-bonn.de/html/staff/WolfgangFoerstner/collectednotes_v2/Cinderella/srs-precision-with-text.html
https://www.ipb.uni-bonn.de/html/staff/WolfgangFoerstner/collectednotes_v2/Cinderella/srs-correlation-x-phi-with-text.html
https://www.ipb.uni-bonn.de/html/staff/WolfgangFoerstner/collectednotes_v2/Cinderella/epipolar-geometrie-with-text.html
https://www.ipb.uni-bonn.de/html/staff/WolfgangFoerstner/collectednotes_v2/Cinderella/depth_of_field-with-text.html
https://www.ipb.uni-bonn.de/html/staff/WolfgangFoerstner/collectednotes_v2/Cinderella/image-triplet-with-text.html
https://www.ipb.uni-bonn.de/html/staff/WolfgangFoerstner/collectednotes_v2/Cinderella/crossratio-with-text.html
https://www.ipb.uni-bonn.de/html/staff/WolfgangFoerstner/collectednotes_v2/Cinderella/jochens-paperstrip-rt-with-text.html
https://www.ipb.uni-bonn.de/html/staff/WolfgangFoerstner/collectednotes_v2/Cinderella/motion_as_rotation-with-text.html
https://www.ipb.uni-bonn.de/html/staff/WolfgangFoerstner/collectednotes_v2/Cinderella/rotation-as-double-reflection-left-with-text.html
https://www.ipb.uni-bonn.de/html/staff/WolfgangFoerstner/collectednotes_v2/Cinderella/complex-multiplication-movie-with-text.html
https://www.ipb.uni-bonn.de/html/staff/WolfgangFoerstner/collectednotes_v2/Cinderella/four-bearings-Kuikueg-with-text.html
https://www.ipb.uni-bonn.de/html/staff/WolfgangFoerstner/collectednotes_v2/Cinderella/moved_piano-with-text.html


Contents

1 Preface 3

2 Pedal Curve 3

3 Weighted Mean 5

4 Bayes Estimation 5

5 ML Estimation 6

6 Point on Line 7

7 Uncertain Plane 8

7.1 General Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
7.2 Uncertain Plane through three Co-Circular Points . . . . . . . . . . . . . . 9

8 Uncertain Circle 10

9 Gauge and Loop-Closing 11

9.1 The gauge of a point cloud . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
9.2 Loop-Closing in SLAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

10 CovM Comparison 12

11 Classi�cation Boundary 14

11.1 The optimal decision boundary . . . . . . . . . . . . . . . . . . . . . . . . . 14
11.2 The Bayes Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
11.3 The Bhattacharyya distance . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
11.4 Metric properties of the Bhattacharyya distance . . . . . . . . . . . . . . . . 16

11.4.1 The Mahalanobis distance is not metric . . . . . . . . . . . . . . . . 16
11.4.2 The covariance component is a metric . . . . . . . . . . . . . . . . . 17

12 P4P Precision 18

12.1 The con�guration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
12.2 The theoretical precision of the camera pose . . . . . . . . . . . . . . . . . . 18

13 Epipolar Geometry 20

14 Depth of Field 20

15 Image Triplet 22

16 Crossratio 24

16.1 Cross Ratio of Four Collinear Points . . . . . . . . . . . . . . . . . . . . . . 24
16.2 Cross Ratio of Four Concurrent Lines . . . . . . . . . . . . . . . . . . . . . 26
16.3 Image-Recti�cation with the Paper-Strip-Method . . . . . . . . . . . . . . . 27

17 Motion as Rotation 27

18 Double Re�ection 28

19 Complex Multiplication 29

20 Four Bearings 30

21 Moving a Piano 30

2



1 Preface

This collection of animations initially served as illustrations in my lectures. They emerged
since more than two decades. The topics are mainly statistics, estimation theory, and
geometry. They all are constructions enabled by the free software Cinderella which pro-
vides interactive graphics, and html-export. In the original version Cinderella.1 (1998) the
animations needed to be constructed, mainly with compass and ruler. The new version
of Cinderella.2 includes a script language, which allows complex programming, contains
additional plotting routines, and - as a side e�ect - an easy control of font placement
especially of moving elements. These features allowed to enhance the appearance of the
old animations, and an easy generation of new ones.

The animations are of di�erent complexity, some refer to simple geometric relations,
some to more advanced concept of estimation theory. They partly were illustrations of
notes in the accompanying Collected Notes, to which then links are provided.

The animations are not fool proof: In case you get stuck, just restart the animation.
The �rst page provides links to the animations and to some additional explanations

below.
One may download the html-�les of the Cinderella animations and use them locally, if

you copy the Javascript-�le KetCindyPlugin.jar into the same directory.
You also may refer to the repository github to download all Cinderella Animations

together with a version of this �le, which allows you to use the animations locally, i.e.,
without having access to the internet. You then also obtain all source code of the anima-
tions and the explanatory html-text, which you might use freely.

2 Pedal Curve of Standard Ellipse

This animation illustrates the uncertainty of two random variables, say, the coordinates
of a 2D point. The basics are also given in (Förstner and Wrobel, 2016, Sect. 2.4.4.2),
from which the following text is taken:

�If two independent random variables are normally distributed according to

x ∼ N (µx, σ
2
x) y ∼ N (µy, σ

2
y), (1)

their joint density function is

pxy(x, y) = gx(x | µx, σ2
x) gy(y | µy, σ2

y) (2)

=
1

2πσxσy
e

−1

2

((
x− µx
σx

)2

+

(
y − µy
σy

)2
)
. (3)

With the vectors

x =

[
x
y

]
µ =

[
µx
µy

]
(4)

and the 2× 2 matrix,

Σ =

[
σ2
x 0
0 σ2

y

]
, (5)

this can be written as

gxy(x | µ,Σ) =
1

2π
a
|Σ|

e
−
1

2
(x− µ)TΣ−1(x− µ)

. (6)

If the 2× 2 matrix Σ is a general symmetric positive de�nite matrix

Σ =

[
σ2
x σxy

σxy σ2
y

]
, (7)
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the two random variables are dependent. The correlation coe�cient,

ρxy =
σxy
σxσy

∈ [−1, 1], (8)

measures the degree of linear dependency. If ρxy = 0, the two random variables are uncor- uncorrelated,

independent

random variables
related, and if they are normally distributed, they are independent, since then pxy(x, y) =
px(x) py(y). The 2D normal distribution is an elliptic bell-shaped function and can be
visualized by one of its contour lines, cf. Fig. 1. The standard ellipse, sometimes also

standard ellipsecalled standard error ellipse, is de�ned by

(x− µ)TΣ−1(x− µ) = 1 . (9)
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Figure 1: General 2D normal or Gaussian distribution, centred at the origin. Left: density
function. Right: standard ellipse. Actual values: µx = µy = 0, σx = 4.9, σy = 3.2, ρ = 0.7

The standard ellipse allows the visualization of important properties of the uncertain
point:

• The standard ellipse is centred at µx.

• The bounding box has size 2σx × 2σy.

• The semi-axes are the square roots of the eigenvalues λi of the covariance matrix,
namely σmax =

`
λ1 and σmin =

`
λ2, which are the square roots of the eigenvalues

of Σ,

σ2
max,min =

1

2
(σ2
x + σ2

y)±
1

2

b
(σ2
x − σ2

y)
2 + 4σ2

xy . (10)

• If the two coordinates are correlated, the major axis is not parallel to the coordinate
system. The angle α is given by

α =
1

2
atan2 (2σxy, σ

2
x − σ2

y) ∈ (−π/2,+π/2] (11)

using a two-argument version of the arctan function.

The sign of the angle follows the sign of the correlation coe�cient ρxy or the covari-
ance σxy.

• The standard deviation σs of a distance s between the point µx and a �xed point
in an arbitrary direction, indicated here by an arrow, is given by the distance of µx
from the tangent to the standard ellipse perpendicular to that direction. This shows
that the minor and the major axes of the standard ellipse give the minimum and the
maximum of the directional uncertainty of the point.
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In higher dimensions, (9) represents an ellipsoid or a hyper-ellipsoid E . The probability
S = P (x ∈ E) that a random point lies within the standard ellipsoid depends on the
dimension as shown in the �rst line of Table 1, and rapidly diminishes with the dimension.

Instead of showing the standard ellipse or standard ellipsoid, we therefore can show the
con�dence ellipse or con�dence ellipsoid. The con�dence ellipsoid is the k-fold standard con�dence ellipse

ellipsoid, such that the probability P (x ∈ E(k)) that a sample lies within the ellipsoid is
a certain prespeci�ed value S

E(k) : (x− µ)TΣ−1(x− µ) = k2 , P (x ∈ E(k)) = S . (12)

The standard ellipse is identical to the con�dence ellipse for k = 1: E = E(1). For the
dimension d = 1 and a probability P (x ∈ E(k)) = S = 0.9973, we would obtain k = 3.
Here the ellipse reduces to the interval [−kσx,+kσx].

For S = 95%, S = 99% and S = 99.9%, the values k(S) determined from the right
equation in (12) are given in Table 1 for di�erent dimensions.

Table 1: Con�dence regions. First row: Probabilities P (x ∈ E) for di�erent dimensions
d of a random vector x. Other rows: Factor k(S) for the con�dence ellipsoids E(k(S)) for
S = 0.95, 0.99, 0.999 and for di�erent dimensions d.

d 1 2 3 4 5 10 20 50 100

P (x ∈ E) 0.68 0.40 0.20 0.09 3.7 · 10−2 1.7 · 10−4 1.7 · 10−10 1.2 · 10−33 1.8 · 10−80

k(0.95) 1.96 2.45 2.80 3.08 3.33 4.28 5.60 8.22 11.2

k(0.99) 2.58 3.03 3.37 3.64 3.88 4.82 6.13 8.73 11.6

k(0.999) 3.29 3.72 4.03 4.30 4.53 5.44 6.73 9.31 12.2

...�

Go to the beginning.

3 Weighted Mean of two 2D Points with arbitrary Co-
variance Matrix

The animation allows to explore the e�ect of the covariance matrices of two 2D points,
with general covariance matrices, onto the maximum likelihood (ML) estimate of the mean
of the two points and the comparison with the arithmetic mean of the two points including
the loss in accuracy when assuming a wrong covariance matrix. The concept is described in
the note Accuracy of the Mean when using a Wrong Covariance Matrix. Details referring
to the Cinderella animation there are given in Subsection 11.6.

Go to the beginning.

4 Bayes Estimation with multi-model prior and Out-
liers

The animation allows to explore the e�ect of prior information onto the statistically op-
timal estimation of a parameter, and refers to the note Bayes- and Maximum-Likelihood-
Estimation. Details are given in Subsection 5.6.

The prior is a mixture of two Gaussians, having the same standard deviation σ = 0.1.
You interactively may change the two mean values µ1 and µ1 and the probability P1 =
P(µ = µ1) for the mean of the �rst Gaussian. You may simulate a single Gaussian by
either choosing µ1 = µ2, or by setting P1 = 0 or P1 = 1. Observe, in case the red dot for
changing P1 is negative or above 1, the value is set to 0 or 1, respectively.

The likelihood L(θ) = p(y | θ) is a mixture of a Gaussian N (y | x, σ2
y) and a uniform

distribution U(y | 0, 3). The value y has the meaning of the observed value. You may
change the observation y and its standard deviation σy moving the two blue dots. You
also may change the probability Pin that the observation is an inlier. Again, if the blue
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dot controlling Pin = P(y is inlier) is below 0 or above 1, we either do not know where
the observation is between 0 and 3, or we know for sure it is an inlier, respectively.

The posterior density generally shows two local maxima. The global maximum usually
is taken as the best � maximum a posteriori (MAP) � estimate. However, in case the
smaller maximum is still large, it might be adequate, to report both maxima including
the ratio of the posterior density.

In case one allows outliers, it is interesting to observe when the observation has an neg-
ligible e�ect onto the estimate, and how the prior density in�uences the maximum/maxima
of the posterior density.

Go to the beginning.

5 E�ect of the Covariance Matrix of Observations onto
ML-Estimates

The animation allows to explore the e�ect of the covariance matrix of a 2D observation
onto the maximum likelihood (ML) estimate of a single parameter. In the context of
note Pre-calibration and in-situ Self-calibration with Correlated Observations it allows to
visualize Rao's Lemma, cited in Subsection 9.3.2.

The Gauss�Markov model for the animation is given by1

E(y) = xθ , with |x| = 1 and D(y) = Σyy =W
−1
yy . (13)

The model is linear in the parameter. The variance of the estimated parameter is

σ2
pθ
= (xTW yyx)

−1 . (14)

In the animation we provide two cases for the covaraince matrix

1. Isotropic uncertainty with

case I : Σyy = r2I 2 . (15)

The radius r of the (circular) standard ellipse (blue) can be controlled interactively.

2. General uncertainty with

case Σ : Σyy = R(φ)Diag([s1, s2])R
T(φ) . (16)

The semiaxes s1 and s2 and the direction φ of the standard ellipse (red) can be
controlled interactively.

Choosing the principal axes of the standard ellipse parallel or perpendicular to the
vector x, allows to demonstrate Rao's lemma (Rao, 1967).

Choosing the direction of x along the �rst diagonal x = [1, 1]T/
`
2, or equivalently

y2 = y1, allows to mimic the estimation of the mean of the two values y1 and y2, since the
constraint for the �tted observations is py2 − py1 = 0. The optimal estimate for the �tted
observations py | I = xpθ | I 2 is at the point py/2 = [y1/2, y2/2]

T con�rming the classical
arithmetic mean. Changing the red ellipse allows to reach any point on the white line, i.e.,
for any given mean m there always is a covariance matrix, such that the weighted mean
of y1 and y2 is identical to pµ = m.

The next animation demonstrates this for the 2D case.

Go to the beginning.

1In the context of this collection of Cinderella Animations we allow the notation in the animation be

adapted, either (θ,X ,y) or (x,A, l), the design matrices being X = x and A = a respectively.
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6 Checking Point-Line Incidence

The animation shows the e�ect of the geometric relation of an uncertain point and an
uncertain line onto the test statistic for checking the incidence of the point and the line.

The line l is generated by the join of two points A and B :

l = A ∧ B : l = xA × xB . (17)

We assume the following uncertainties:

ΣAA = σ2
AI 2 ΣBB = σ2

B I 2 , (18)

and

ΣCC = R(ψ)

[
a2 0
0 b2

]
R

T(ψ) , (19)

where the parameters xA,xB , σA, σB , a, b, and ψ can be given interactively. The construc-
tion of the standard hyperbola of the joining line is based on the centroid representation
of the line

l : (xO, α, σq, σα) , (20)

see Fig. 2, taken from Förstner and Wrobel (2016, p. 374). All parameters can easily be
derived from the given uncertain points A and B , though we do not need all.

φ
σ

x

.

φ

n

α

.

d

y

x

σ
q

0
m

Oz

σ
d

0

Figure 2: Uncertain 2D line and its representation in the real plane. Centroid x 0, direction
α of the line, direction φ of the normal n, φ = α+π/2, distance d to the origin, foot point zO
of the origin, distance m0 of the centroid from the foot point, standard deviations σα = σφ,
σd, and σq: of the direction α, the distance d and the position of the centroid across the line,
respectively. The standard deviation σφ is visualized as the angle between the (mean) line
and one of the asymptotic lines of the hyperbola, from Förstner and Wrobel (2016, p. 374)

The center xO if the line is given by

xO =
σ2
BxA + σ2

AxB
σ2
A + σ2

B

, (21)

which is the point
x(λ) = (1− λ)xA + λXB (22)

with minimal uncertainty

λ = argminλ (1− λ)2σ2
A + λ2σ2

B . (23)

thus

Σxx(λ) =
σ2
Aσ

2
B

σ2
A + σ2

B

I 2 (24)
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The direction α is given by construction. Its standard deviation results from

σα =

a
σ2
A + σ2

B

|xA − xB |
, (25)

being an approximation, su�cient for small uncertainties. We do not use it in the anima-
tion. The standard deviation σq is given by

σq =
σAσBa
σ2
A + σ2

B

. (26)

The hyperbola is constructed by the four end points of the two standard intervals at A
and B and one endpoint of the standard interval at the midpoint xM = (xA + xB)/2,
which is given by

a
σ2
A + σ2

B /2 across the line (not shown in the animation).
The statistical test z(A ,B ,C ) of the incidence of a point, here C and a line l , which

is constructed by two points, here by A and B thus

ι(A ,B ,C ) := ι(C ,A ∧ B) (27)

depends on the sequence of the three points, when applying variance propagation to de-
termine the uncertainty of l = A ∧ B , due to linearization e�ects for the line, which are
di�erent for z(B ,C ,A) and z(C ,A ,B). This is why we check the incidence by checking
the collinearity of the three points based on the determinant

D = 2A = det([xA,xB ,xC ]) (28)

which is invariant to permutations of the three points (except for the sign). We therefore
obtain the test statistic

z =
D

σD
(29)

with the variance of the determinant

σ2
D = |xC − xB |2σ2

A + |xC − xA|2σ2
B + {(xB − xA)⊥}TΣCC(xB − xA)⊥ , (30)

where the operator ⊥ rotates a vector by 90◦. The sign of z is positive, in case C lies on
the left-hand side of the line AB .

Go to the beginning.

7 Visualization of the Uncertainty of a Plane through
Three Points

The uncertain plane is described in the note 19 in Centroid Form of an Uncertain Plane.
Here we provide a visualization for a simple case.

7.1 General Setup

A plane has three degrees of freedom. The three parameters together with the six param-
eters of the corresponding covariance matrix can be used to represent an uncertain plane
A in a centroid form:

A : {XO,Q, σq, σα, σβ} , (31)

where

1. the centre XO of the uncertain plane is the point where the uncertainty across the
plane is minimum,

2. the rotation matrix Q = [r1, r2,N ] speci�es a local frame, with the �rst two axes
span the plane, and the third axis provides the normal N of the plane, and

3. the standard deviation σq is the uncertainty of the position of X along the normal
and the two standard deviations σα and σβ are the uncertainty of the normal, namely
uncertainty of rotations around r1 and r2.
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Figure 3: Uncertain plane. The mean plane is shown as a circular disc in the middle,
containing the centre point X0 of the standard hyperboloid of two sheets indicating the
uncertainty perpendicular to the plane. At the centre point X0, the uncertainty across the
plane is smallest. The mutually perpendicular 3D lines through X0 with directions q1 and
q2 are the axes of maximal and minimal rotational uncertainty of the plane. Isolines of
uncertainty perpendicular to the plane are ellipses with their large semi-axis in the direction
of q1. Fig. adapted from Förstner and Wrobel (2016, p. 378)

7.2 Uncertain Plane through three Co-Circular Points

For the animation, we assume three uncertain points X 1, X 2, and X 3 lie on a horizontal
circle. They have the same accuracy with a standard deviation of σ in all directions.
Depending on the form of the triangle, the plane through the three points has a di�erent
uncertainty. This is shown by the upper and lower bound of the vertical standard interval
of predicted points on the circle

The three points have the coordinates

Xi = R

 cosαi
sinαi
Zi

 with i = 1, 2, 3, and Zi ∼ N (0, σ2) . (32)

The plane is assumed to be given by

Zi = θ1 + θ2Xi + θ3Yi with i = 1, 2, 3 . (33)

The parameters can be derived from the equation system

Aθ = Z with A =

 1 X1 Y1

1 X2 Y2

1 X3 Y3

 , Z =

 Z1

Z2

Z3

 and θ =

 θ1

θ2

θ3

 (34)

Thus, since
D(Z) = σ2I 3 (35)

The covariance matrix of the parameters is

Σθθ = σ2A
−1
A
−T . (36)

For an arbitrary point [
X
Y

]
(t) = R

[
cos t
sin t

]
(37)

on the circle, its vertical variance therefore is

σ2
Z(t) = [1, R cos t, R sin t]Σθθ

 1
R cos t
R sin t

 , (38)
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which yields the two curves

X(t) = r

 cos t
sin t
±σZ(t)

 (39)

collecting the upper and lower border of the vertical 1D standard intervals of the points
on the circle.

The point where the uncertainty across the plane is minimum is the centroid of the
three points

xO =
3̧

i=1

xi/3 , with xi =

[
Xi

Yi

]
. (40)

The directions in which the plane has its best and worst rotational uncertainty is given
by the principal axes of the central moment matrix.

M =
3̧

i=1

xix
T
i − 3xOx

T
O . (41)

They are indicated by the two mutually perpendicular dashed blue lines.

Go to the beginning.

8 Uncertain Circle through three Points

Given three 2D points xi with isotropic and homogeneous uncertainty of their coordinates,
we visualize uncertainty of the circle through these points.

The circle-constraint

gi(xi;x0, r) = 0 with gi = (xi − x0)
2 + (yi − y0)

2 − r2 (42)

can be written as linear problem in the parameters

θ =

 u
v
w

 =

 x0

y0

x2
0 + y2

0 − r2

 and

 x0

y0

r

 =

 u
v`

u2 + v2 − w

 (43)

The parameters (u, v, w) can be derived from the linear equation system

Mθ =m with M =

 x1 y1 1
x2 y2 1
x3 y3 1

 , and m =

 x2
1 + y2

1

x2
2 + y2

2

x2
3 + y2

3

 . (44)

leading to
θ = M

−1m . (45)

For visualizing the uncertainty, we draw K samples on the standard ellipsoid of the input
data  x1

x2

x3


k

= zk ∼ N (µz, σ
2I 6) with µz =

 x1

x2

x3

 , (46)

and derive the K parameters (x0, r)k. They cover an uncertainty region, as can be seen
in the animation.

Go to the beginning.
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9 E�ect of Gauge Choice onto a Polygon with and with-
out Loop-Closing and a Triangulated Network

Thwo Cinderella animations allows to investigate the e�ect of choosing a certain gauge
for representing the uncertainty of a point cloud, namely a polygon and a triangulated
network.

In addition, the e�ect of loop closing onto the internal precision of the polygon can be
explored.

The description of the underlying estimation model also is used for the animation of
choosing a gauge in a triangulated geodetic network.

9.1 The gauge of a point cloud

Classical coordinate transformations change the coordinates, either due to a possibly scaled
motion of the points or due to a change of the coordinate system.

Often, we estimate the coordinates of a point cloud which is de�ned only up to a
similarity transformation (or another transformation), e.g., when deriving the coordinates
from a set of calibrated cameras using a, what is called free bundle adjustment. Then one
needs to �x the coordinate system in some way, e.g., by �xing a minimal set of parameters
(4 in 2D, 7 in 3D) in order to avoid the normal equation system to become singular. The
�xing parameters de�ne what is called the gauge (or, mostly in German, the datum). The
internal precision of the point cloud only depends on the con�guration of the images and
the observed points, not on the choice of the parameters �xing the coordinate system.
Angles and distance ratios are invariant to this choice. Therefore, one is free in choosing
the gauge, or the datum, why one � in the context of bundle adjustment � also refers to
free bundle adjustment. Changing the �xing parameters changes the uncertainty of the
parameters, but not the uncertainty of angles and distance ratios.

We distinguish these two cases: changing the coordinates is called a K-Transformation,
changing the �xing parameters is called a gauge or S-transformation (S standing for sim-
ilarity).

The basic concepts for handling the gauge or the datum are described in (Förstner
and Wrobel, 2016, Sect. 4.5.1), from which the following �gure is taken. The Cinderella

7

3 5 7

4 86

1

2

2

1

8

5 7

4 86

1

2

6

5

533

K-transformation

2 4

3

S-transformation

7

8

4

1

6

Figure 4: Coordinate or K-transformation and gauge or S-transformation. Left: K-
transformation changes the reference coordinate system of the coordinates. The gauge is
not changed, which here is de�ned by point pair (7,8). Right: S-transformations change the
gauge of a covariance matrix, here from point pair (1,2) to point pair (7,8). The coordinates
are not changed

animation allows to explore the e�ect of choosing a speci�c gauge onto the uncertainty
of the points of a polygon and onto the angles and distance ratios derived from these
coordinates.

The description of the underlying estimation model is given in Gauge Choice and Loop
Closing of Uncertain Polygons and is consistently using complex numbers for coordinates,
scaled rotations and angles and distance ratios.
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9.2 Loop-Closing in SLAM

The increase of the variances with the length of a path, being of third order since it
approximately is a doubly integrated white noise sequence, requires to exploit possibilities
of loop closing, i.e., identifying correspondences with objects seen � possibly long � before.
This may dramatically reduce the uncertainty. In our case of a polygon with observed
angle and length ratios, we assume, that such observations are possible at the starting and
at the end point of a polygon. The e�ect can be observed in the animation.

The animation Gauge in triangulation applies the same idea to a triangulated pla-
nar point cloud, representing a geodetic network, where in each triangle all three scaled
rotations between neighbouring sides are assumed to be observed.

Go to the beginning.

10 Comparing two Covariance Matrices

This Cinderella Animation visualizes the comparison of two covariance matrices.
The comparison of two covariance matrices occurs in the following situations, see Fig.

5:

• A new (version of an) algorithms provide estimates as an old (reference) algorithm
for the same parameter vector together with their covariance matrices, say Σ and C .
We want to know, whether one algorithm yields better results than the other, i.e.,
whether Σ ≤ C .
• A user has speci�ed the minimum uncertainty of parameters, say C which needs to
be achieved by some method. Either the method itself provides a covariance matrix
Σ for the estimated parameters, or we are able to derive the covariance matrix by
some simulation, e.g., by randomly perturbating the observations K times and from
the K resulting parameters derive the empirical covariance matrix. Again we want
to know whether Σ ≤ C .
• We want to know how similar two covariance matrices are, e.g., measured by a
distance d(Σ,C ) between the two covariance matrices.

C

Σ

Σ

C

Figure 5: Comparing a covariance matrix Σ with a criterion matrix C : the standard
ellipsoid of the covariance matrix Σ is required to lie completely in the standard ellipsoid of
the criterion matrix C , as in the left �gure, or is required to be close to C , as in the right
�gure. From (Förstner and Wrobel, 2016, Fig. 4.10)

In all cases we want to compare two covariance matrices, say Σ and C . The comparison
should be invariant w.r.t. to an a�ne transformation, especially w.r.t. to a similarity or
an individual scaling of the parameters. The comparison can be based on the eigenvalues
of ΣC−1. They indicate the ratios of variances σ2

f(θ) of arbitrary functions f(θ), especially
provide the maximum and minimum ratios of the variances.

The Cinderella animation allows to explore the maximum and minimum of the ratio r

rmax,min = σ
(C)
f(θ)/σ

(Σ)
f(θ)

∣∣∣
max,min

=

b
λmax,min(ΣC

−1) (47)

of the standard deviations as a function of the two covariance matrices C and Σ.

The basic concept for such a comparison can be found in (Förstner and Wrobel, 2016,
Sect. 4.6.2.3). We provide this text here and adapted it to our context.
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Acceptability of the Precision

Users may require a certain precision to be achieved by the observation process. We
assume they specify this precision by some reference or criterion matrix C := Σref

pθpθ
. Then

we need to compare the achieved theoretical covariance Σ := Σ
pθpθ with the a priori

speci�ed covariance matrix (Baarda, 1973). We �rst discuss the comparison and then
methods for speci�cation.
The comparison of two covariance matrices is only meaningful if they refer to the same
gauge. Otherwise, they need to be transformed into the same gauge, cf. the Cinderella .
We may require that the achieved precision is consistently better than the reference or
that it is similar to it on average.
Acceptability. The acceptability of the achieved precision may be based on the individual
empirical standard deviations, requiring

σ
pθu
≤ σref

pθu
for a prespeci�ed reference set of u , (48)

where the reference standard deviations are taken from the diagonal elements of C .
Obviously, the mutual dependencies of the parameters are not taken into account in this
comparison.
Following Baarda (1973), we therefore could require any function (value) s(pθ) of the
parameters to be more precise when determined with the covariance matrix Σ than
when determined with the criterion matrix C . This can be formally written as

σ(Σ)
s ≤ σ(C)

s . (49)

This is visualized in Fig. 5, left.
With the Jacobian e = ∂f/∂pθ, this leads to the requirement eTΣe ≤ eTCe or to

r(e) =
eTΣe

eTCe
≤ 1 . (50)

Therefore the maximal eigenvalue λmax of the generalized eigenvalue problem

Σe = λCe (51)

needs to be less than 1,

λmax(C
−1Σ) ≤ 1 . (52)

The analysis can also be performed on a sub-vector of pθ. If the parameters are con-
strained, a regular S-transformation needs to be performed to arrive at two regular
and comparable covariance matrices, see Remarks on the Equivalence of Gauge- or S-
transformations and Reducing Homogeneous Coordinates, Subsection 15.3.2.
Distance of two covariance matrices. We can also determine the average distance of two
U × U covariance matrices using the eigenvalues λu of C−1Σ, which can be interpreted
as the ratios of variances determined from Σ and C , respectively, and averaging their
deviations from 1. By taking logarithms, we arrive at the average deviation of the ratios
of the variances

d2(Σ,C ) =
1

U

U̧

u=1

log2 λu(ΣC
−1) ≥ 0 (53)

from 1.
This can be shown to be a metric between two covariance matrices (Förstner and Moonen,
1999). From this we can determine the average deviation d/2 of the ratio of the standard
deviations from 1, a value of e.g., 0.1 indicating the standard deviations di�er by 10%
on average.
Whereas λmax in (52) tells the worst case, the squared distance d

2 in (53) tells the average
logarithm of the ratio of two variances determined with Σ instead of with C . However,
if the role of Σ and C are exchanged, the maximum eigenvalue will be replaced by the
minimum eigenvalue, but the distance d2 remains invariant.
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Go to the beginning.

11 Classi�cation Boundary of two Gaussians

11.1 The optimal decision boundary

The optimal decision boundary between two Gaussians is a conic in general.
Assume, we have the densities for the vector valued n-dimensional variable x for the

two classes ωi
x | ωi = g(x;µi,Σi) (54)

Then the best decision is given by comparing the posterior densities

P(ω1 | x) > P(ω1 | x) 7→ pω = ω1, else pω = ω2 . (55)

This leads to criterium

p(x | ω1)P(ω1) ≥ p(x | ω2)P(ω2) 7→ pω = ω1, else pω = ω2 . (56)

or using the logarithm of the likelihood functions L(x | ωi) = ln p(x | ωi) to the decision
function

d(x) = L(x | ω1) + P(ω1)− L(x | ω2)− lnP(ω2)
ω1

≶
ω2

0 . (57)

For Gaussians we have the log-likelihood function

L(x | ω1) = −
1

2
(x− µi)TΣ−1

i (x− µi)−
n

2
ln 2π − 1

2
ln |Σi| (58)

Hence, the decision function reads as

d(x) = (x− µ2)
TΣ−1

2 (x− µ2)− (x− µ1)
TΣ−1

1 (x− µ1) + c
ω1

≶
ω2

0 (59)

with the constant

c = ln
P(ω1)

P(ω2)
+ ln

|Σ2|
|Σ1|

, (60)

which is a quadratic function in x, hence a conic. Its form depends on the quadratic part

xT(Σ−1
2 − Σ−1

1 )x (61)

It is a linear decision boundary, in case Σ1 = Σ2.
In the animation we assume

c = 0 or
P(ω2)

P(ω1)
=
|Σ2|
|Σ1|

, (62)

which leads to Gaussians with the same height, such that the standard ellipses represent
contours of the same density. We draw as background-color the posterior probability

P(ω1|x) = σ(d(x)) ≈ 1

2
(1 + erf(d(x)), (63)

see Jordan (1995), large values shown in blue, small values in yellow. Especially, we use a
polynomial approximation

erf(x) ≈ x

|x|

(
1− 1

(1 + 0.278393|x|+ 0.230389x2 + 0.000972|x|3 + 0.078108x4)4

)
(64)
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with a maximum error of 5 10−4, which avoids numerical problems for large x.2 The
decision function are all x where d(x) < 0.1

`
d+ 0.3 with the Mahalanobis distance d of

the two densities from (80). The variable threshold leads to an approximately constant
width of the graph of the decision boundary and avoids a singularity for d = 0.

Remark: The �rst version of the animation geometrically constructed the decision boundary

by taking that conic, which passes through �ve intersection points of corresponding contour lines.

This often lead to a singularity for Σ1 ≈ Σ2 since Cinderella does not provide a conic for strictly

collinear points. �

11.2 The Bayes Error

The Bayes error of a classi�er is the sum of the misclassi�cation errors. Let the function

r(x) = min{P(ω1 | x),P(ω2 | x)} (65)

Then the Bayes error is de�ned

ε = E(r(x)) =

»
r(x)p(dx)dx (66)

= P1

»
R1

p1(x)dx+ P2

»
R2

p2(x)dx (67)

= P1ε1 + P2ε2 (68)

where the Piεi are the probabilities for making an error when deciding for class ωi. Since
the regions Ri are separated by a conic there is not analytical way to determine the Bayes
error. However, there exist upper bounds.

11.3 The Bhattacharyya distance

An upper bound for the Bayes error is the Bhattacharyya distance εu:

ε ≤ εu (69)

with

εu =
a
P1P2

» a
p1(x)p2(x)dx (70)

Observe, the Bhattacharyya distance is no metric, though the name distance suggests this.
In case P1 = P2 and Gaussian densities we obtain

εu = εu,µ + εu,Σ (71)

with the contribution due to the di�erence of the mean values

εu,µ =
1

8
(µ2 − µ1)

T

(
Σ1 + Σ2

2

)−1

(µ2 − µ1) , (72)

which is a quarter of the squared Mahalanobis distance of the mean values.
The contribution due to the di�erence of the covariance matrices is given by

εu,Σ =
1

2
ln

∣∣Σ1+Σ2

2

∣∣a
|Σ1| |Σ2|

(73)

Assume the n-dimensional case

Σ1 = In and Σ2 = Λ = Diag([λj ]) with j = 1, ..., n (74)

This can always be achieved by simultaneous diagonalization of two general covariance
matrices, see Fig. 6. One can show, that if Λ and A are the eigenvalue and eigenvector

2see https://en.wikipedia.org/wiki/Error_function
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Figure 6: Simultaneous Diagonalization, from (Fukunaga, 1990, p. 32). (a) Original
situation with major axes of Σ1in the coordinate system Sx. (b) After whitening Σ1 and
applying the linear transformation to Σ2, this leads Σ1 = I and to Σ2 described in the
coordinate system Sy. (c) Rotating the coordinate system does not change the form of Σ1,
but allows to have the main diagonals of Σ2 parallel to the coordinate system Zz

matrices of Σ−1
1 Σ2 from

Σ−1
1 Σ2A = AΛ (75)

then
A

TΣ1A = I and A
TΣ2A = Λ. (76)

We will use this relation later.
Hence

detΣ1 = 1 , detΣ2 =
¹
j

λj and det((Σ1 + Σ2)/2) =
¹
j

1

2
(1 + λj) (77)

Therefore

εu,Σ =
1

2
ln
¹
j

1

2

(a
λj +

1a
λj

)
≥ 0 (78)

The lower limit only is reached in case all λj = 1. We also can write the covariance related
error as

εu,Σ =
1

2

ņ

j=1

ln
1

2

(a
λj +

1a
λj

)
≥ 0 (79)

11.4 Metric properties of the Bhattacharyya distance

The Bhattacharyya distance is no metric. We check the two components.

11.4.1 The Mahalanobis distance is not metric

The Mahalanobis distance

d(µ1,µ2,Σ1Σ2) =
b
(µ2 − µ1)

T(Σ1 + Σ2)−1(µ2 − µ1) (80)

is no metric.
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A counter example is su�cient. Take the three 1D distributions

p1 = g(x; 0, 1) , p2 = g(x; 1, 1) , and p3 = g(x; 2, a2) . (81)

The Mahalanobis distance specializes to

d(µ1, µ2, σ
2
1 , σ

2
2) =

|µ2 − µ1|a
σ2

1 + σ2
2

. (82)

Then, with σ2
3 = a2 we have the distances

d12 =
1`
2
, d23(a) =

1`
1 + a2

, and d13(a) =
2`

1 + a2
. (83)

The function
f(a) = d12 + d23(a)− d13(a) (84)

should be non-negative for all a in order that the triangle inequality is ful�lled. However,
we have

f(a) =
1`
2
+

1`
1 + a2

− 2`
1 + a2

=

`
1 + a2 +

`
2− 2

`
2`

2
`
1 + a2

=

`
1 + a2 −

`
2`

2
`
1 + a2

(85)

This only is non-negative for a2 ≥ 1. Hence, for all variances σ2
3 = a2 < 1 the triangle

equation is not ful�lled.

11.4.2 The covariance component is a metric

The distance related to the covariance matrices is given by

dB(Σ1,Σ2) =
a
2εu,Σ =

d
ln

∣∣Σ1+Σ2

2

∣∣a
|Σ1| |Σ2|

. (86)

I did not �nd a reference stating whether this function is a metric. However, simulations
with random n×n covariance matrices (n = 2, 4, 10), suggest, that this is a metric between
two covariance matrices.

Alternatively, a Riemann metric measuring the distance of two covariance matrices is
given by

d2
C(Σ1,Σ2) =

ņ

j=1

ln2 λj(Σ1,Σ2) , (87)

see Calvo and Oller (1990, eq. (5)) and Förstner and Moonen (1999).
In case of simultaneously diagonalized covariance matrices the two metrics simplify to

d2
B(I ,Λ) =

ņ

i=1

ln

(
1

2

(a
λj +

1a
λj

))
and d2

C(I ,Λ) =
ņ

j=1

ln2 λj , (88)

We now compare the two functions

f(x) = ln

(
1

2

(`
x+

1`
x

))
and g(x) =

1

8
ln2 x2 (89)

graphically, see Fig. 7 The Taylor expansions at x = 1 up to �fth order are

Tf =
(x− 1)

2

8
− (x− 1)

3

8
+

7 (x− 1)
4

64
− 3 (x− 1)

5

32
(90)

and

Tg =
(x− 1)

2

8
− (x− 1)

3

8
+

11 (x− 1)
4

96
− 5 (x− 1)

5

48
(91)

with the di�erence

Tf − Tg = −
(x− 1)4

192
+

(x− 1)5

96
, (92)

indicating the two functions have the same derivatives at x = 1 up to third order.
Obviously, both metrics, though di�erent, are very similar.

Go to the beginning.
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Figure 7: Distances between two covariance matrices. Red: covariance contribution to
Bhattacharyya distance. Blue: metric distance of covariance matrices

12 Uncertainty of Pose from Four Points

This text refers to two Cinderella Animations exploring the uncertainty of the spatial
resection based on four control points of a horizontal square in normal position, i.e., where
the ground plane and the image plane are parallel, drawn in taking position for an aerial
camera, the Z-axis pointing upwards.

Two aspects of the uncertainty of the pose of the camera are analysed:

• The uncertainty of the reconstructed projection centre is visualized as a function
of the controllable con�guration, especially by the standard ellipse of the horizontal
(X) and vertical (Z) coordinates.

• The correlation between translation and rotation parameters usually is quite high.
This is demonstrated by showing the di�erence of a pure horizontal motion and a
combined rotation and translation, which mutually compensate the in�uence onto
the image coordinates, except for a second order e�ect.

As to be expected, the horizontal uncertainty of the camera pose may be quite large,
however, when reprojecting image points to the surface around the control points, their
horizontal accuracy is not in�uenced by the pose of the camera, since it can be interpreted
as an interpolation between the control points.

12.1 The con�guration

The basic geometry is speci�ed by

1. height H of the camera above ground

2. principal distance c (focal length, and

3. e�ective viewing angle, speci�ed by the image coordinates ±d.

see Fig. 8.

12.2 The theoretical precision of the camera pose

We assume all image coordinates are measured with the same standard deviation σ.

With half the e�ective viewing angle

γ

2
= arctan

d

c
, (93)
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Figure 8: Standard con�guration with four coplanar points. The optical axis L is an
uncertain 3D line. The Z-axis is assumed to point upwards. The line has its centre at XO,
where the uncertainty of points on L across the line is minimum. When arguing in the
XZ-plane, this point is the intersection of the circle through O and the two midpoints X
and Y of the ground square on the X-axis. Here, the camera is shown in viewing position
with the image plane being Z = c with c < 0, whereas in the animation it is shown in taking
position (c > 0)

we have the accuracy of the parameters of the pose O(X,Y, Z) of the camera

σX = σY =

`
2

2

ZO
c

d
1 +

1

sin4 γ
2

σ0 (94)

σZ =
ZO
2d

σ0 (95)

σω = σφ =

`
2

2

c

d2
σ0 (96)

σκ =
1

2d
σ0 . (97)

and the correlation between the horizontal position and the angles

ρXφ = −ρY ω =
1b

1 + sin4 γ
2

, (98)

see Förstner and Wrobel (2016, p. 532).
The viewing axis L is an uncertain line, whose standard hyperboloid, when projected

into the XZ-plane, is shown in the animation.
Due to circular symmetry around the Z-axis, the uncertain optical axis has a single

point XO where its uncertainty across the line is minimum. The distance OXO is identical
with the diameter of the circle through the projection centre O and, say argumenting in
the XZ-plane, the two midpoints X and Y . This is plausible, since rotation the camera
around XO does not change the angle under which these two points are seen by the camera.

This property can be explored with the Cinderella animation on the correlation. There
such a combined motion, an in a �rst order approximation horizontal motion on the circle
while rotating the camera to �x the view to the point XO, can be realized. It shows, that
speci�ed tolerance circles for the image coordinates cohere with a hyperbolic tolerance
region around the viewing line.

The low uncertainty of the projection line in the vicinity of the given control points
indicates, that - given the surface around these control points and an image point, its re-
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projection to the ground is quite precise. This is plausible, as its XY -coordinates actually
are interpolated between the control points, and the � possibly large � uncertainty of the
position of the camera has no e�ect.

Go to the beginning.

13 Epipolar Geometry of the Normal Case

The animation allows to explore the epipolar geometry for the case that the relative
rotation between the two cameras is zero, i.e., the two image planes are parallel.

The con�guration can be interactively controlled, by changing:

1. The principal distance c (focal length), including its sign, hence, allowing to choose
the taking position or the viewing position of the two cameras.

2. The length of the basis BX , related to a world camera coordinate parallel to the
coordinate system of the �rst camera.

3. The heights Z ′ and Z ′′ of the two cameras, together with the control of BX allowing
to realize sideward and forward motion.

4. The 3D position of a scene point P is given by its image points P ′ in the �rst image
and its depth Z.

5. For making the imaging process visually plausible, one may change the size d of the
image.

6. For better visualization the complete 3D con�guration may be viewed by changing
the azimuth and elevation angle of the viewing direction.

The animation shows all elements of the epipolar geometry, especially all geometric ele-
ments sitting on the epipolar plane:

1. the two projection centres O′ and O′′,

2. the scene point P ,

3. its image points P ′ and P ′′,

4. the two projection rays L′ and L′′,

5. the two epipolar lines e′ and e′′, and

6. the two epipoles E′ and E′′.

The variability allows to explore the geometry in detail, but also to choose a perspective
which may be used as a template for a generic but �xed graphic.

Go to the beginning.

14 Depth of Field

The animation allows to explore the depth of �eld of a real camera with a �nite aperture,
which provides insight into the range of distances an object needs to have in order that
its image shows a limited blur.

Though Wikipedia provides a nice description of the geometry, including deriving the
necessary equations, and there exist apps which allow a direct calculation of the depth
of �eld, it might be useful to be able to explore the geometry interactively, though the
animation only working in a limited range of real con�gurations, especially w.r.t. the real
lengths of focal length and distance to object.

If the camera would be a ideal pin hole camera with an in�nitely small pinhole, all
points of the scene could be sharply mapped to some image plane - at the cost of an
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in�nite exposure time and the assumption the scene and the camera would not perform
any motions. Real pinhole cameras have a pinhole with a non-zero diameter which needs
to be very small to achieve sharp images. Real cameras use lens systems to allow for a
larger hole while the same time producing sharp images � under certain conditions, to be
discussed.

The geometry of the optical projection with an ideal lens (without distortions) enforces
the relation of the scene point P and its image point P ′ to follow two constraints:

1. The collinearity of the scene point P , the image point P ′ and the centre O of the
(ideal) lens.

2. Rays parallel to the optical axis converge and intersect in the camera side focal point
F , whose distance to the optical centre O is the focal length, de�ned by the optical
characteristics of the lens.

As a consequence, points P which are not at in�nity map to image points P ′ which
have a larger distance to the optical centre O than the focal point F . Therefore focussing,
manual or automatic, is required when taking real images. Since the mapping is a rigorous
perspective one, planes in the scene are mapped to planes in the camera space. For reasons
of construction, the image plane usually is perpendicular to the optical axis. This is, why
only scene points on a plane, say A, perpendicular to the optical axis can be simultaneously
be mapped to an adequately chosen (by focussing) image plane, say A′.

For a given focussing, i.e., a �xed image plane A′, all scene points outside the corre-
sponding scene plane are not mapped sharply, i.e., show a certain blur. If one allows a
certain, small, blur to be acceptable, e.g., below 0.05 mm, or below 1 pixel, then points in
the vicinity of the scene plane A can be mapped to the image plane within this tolerance.
Hence, there is a near limit and a far limit for scene points which can be mapped with
acceptable blur. The range of distances between near and far limit is called the depth of
�eld.

The depth of �eld, i.e., the range between near and far limit depends on the following
three parameters:

1. the focal length f , usually given in mm or in pixel,

2. the allowable blur σ, again given in mm or in pixel,

3. the diameter of the aperture a, usually given via the f-stop s, being the number by
which the focal length needs to be divided to get a, i.e., we have a = f/s, and

4. the intended distance Z of the scene point to the camera, which practically is con-
trolled by the focussing.

The animation allows to control

1. the focal length f

2. the aperture, via the f-stop,

3. the maximum blur,

4. the horizontal position of the scene point, and in addition, for increasing plausibility
of the drawing,

5. the height Z of the scene point,

6. the size d of the image area, and

7. the position of the camera via shifting F (for constructive reasons changing the
distance to the scene point).

Go to the beginning.
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15 Trifocal Constraint for Image Triplet

The animation addresses the geometry of the image triplet. The following text is taken
from (Förstner and Wrobel, 2016, Sect. 14.1).

�There are several reasons to analyse image triplets:

• Given three images, say 1, 2, and 3, the relative orientation of two pairs of them, say
(1, 2) and (2, 3), does not tell us anything about the mutual scale of the resulting
photogrammetric models.

• The relative orientation of three images gives constraints on all image coordinates
involved. This is in contrast to the relative orientation of an image pair, which only
gives constraints in one direction, in the normal case for the y-coordinates, while the
x-coordinates cannot be checked at all.

• The relative orientation of image triplets can be based on both corresponding points
and corresponding lines, in contrast to image pairs, where corresponding lines give
no constraint for the relative orientation, see Fig. 9. Analogously to the image pair,
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Figure 9: The relative orientation of the image triplet is fully captured in the trifocal tensor.
Left: general con�guration. Right: Collinear projection centres. The trifocal tensor allows
us to establish constraints between corresponding points (x ′, x ′′, x ′′′) and lines (l ′, l ′′, l ′′′)
in three images. It also allows us to predict points and lines from two given points and
lines in all feasible con�gurations without determining the 3D point X or 3D line L . This is
possible also if the epipolar geometry would not be su�cient, namely if the 3D points and
the three projection centres (O′,O′′,O′′′) are coplanar as in the important case of collinear
projection centres as shown in the right �gure

the constraints between corresponding points and lines, respectively are linear in
homogeneous coordinates of the entities. In addition, the constraints are linearly
dependent on 27 parameters, collected in what is called the trifocal tensor T. The
trifocal tensor is a 3× 3× 3 array representing the complete geometry of the image
triplet, in full analogy to the nine parameters of the fundamental matrix F which
captures the complete geometry of the image pair.

• The prediction of points and lines from two images in the third can also be based on
the trifocal tensor. This prediction is linear in its parameters and in the homogeneous
coordinates of the points and lines. Similarly to the determination of the epipolar
line in the case of the image pair, the prediction of a point or line in a third image
can be performed without �rst determining the 3D point or 3D line.

In the important situation of collinear projection centres (Fig. 9, right), the pre-
diction of the point x ′′′ in image 3 based on the points x ′ and x ′′ in the �rst two
images, obtained from the epipolar geometry of image pairs (1, 2) and (1, 3), is not
possible using corresponding epipolar lines, as they are identical in the third image
and do not give a unique prediction. Prediction using the trifocal tensor does not
have this de�ciency, as it implicitly works with the 3D point.
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The Coplanarity Constraints of the Image Triplet

We start with the generic situation where the three projection centres are not collinear.
The three projection centres O ′, O ′′, and O ′′′ then uniquely span the trifocal plane, see trifocal plane

Fig. 10
Let the three projections be given by

x ′ = P ′(X ) : x′ = P1X (99)

x ′′ = P ′′(X ) : x′′ = P2X (100)

x ′′′ = P ′′′(X ) : x′′′ = P3X , (101)

with projection matrices Pt = KtRt[I 3| −Zt] = [At|at], t ∈ {1, 2, 3}.
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Figure 10: Geometry of the image triplet with points. Three projection centres O′, O′′, and
O′′′. Three image points x ′, x ′′, and x ′′′. Six epipoles, e.g., e′3 = P ′(O′′′). Three projection
rays Lx′ , Lx′′ , and Lx′′′ . Six epipolar lines, e.g., l ′(x ′′′) = P ′(Lx′′′). If the 3D point X is
outside the trifocal plane, the two epipolar lines in each image have a unique intersection
point, namely the image point of X . Otherwise, if the 3D point is on the trifocal plane, the
two epipolar lines in each image are identical and do not yield a unique intersection point

Remark: Elements of the three images are denoted either by primes or by numbers. If these

are variables where the order does not matter, we use t = 1, 2, 3. If we refer to pairs or triplets of

indices, where the order is important, we use i, j, k ∈ {1, 2, 3} in order to avoid double indices. �
In the general case, the prediction of points can be based on the epipolar geometry of

two image pairs. We have three fundamental matrices,

Fij = A
−T
i Sbij

A
−1
j (i, j) ∈ {(1, 2), (2, 3), (3, 1)} , (102)

with bij = Zj −Zi.
Let the two points x ′′ and x ′′′ in the second and the third images be given. Then the

intersection of the epipolar lines in the �rst image,

l′(x′′) = F12x
′′ l′(x′′′) = F13x

′′′ , (103)

yields the predicted point x ′ = l ′(x ′′)× l ′(x ′′′), thus

x′ = F12x
′′ × F13x

′′′ . (104)

Similar expressions can be found for predicting image points in the other two images.
This method of prediction only works if the 3D point and the three projection centres

are not coplanar, or � equivalently � if the 3D point is not on the trifocal plane. Then the
two projection lines Lx′′ and Lx′′′ lie in the trifocal plane, the two epipolar lines l ′(x ′′)
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and l ′(x ′′′) are identical, and therefore the intersection point x ′ = l ′(x ′′) ∩ l ′(x ′′′) is not
unique. Practically, even 3D points close to the trifocal plane cause numerical uncertainties
in this type of prediction.

Unfortunately, this unfavourable situation occurs often, especially in image sequences,
where consecutive projection centres are collinear or nearly collinear. If the three projec-
tion centres are collinear, they and the 3D points are always coplanar, so the prediction of
an image point using the epipolar geometry of two pairs of images fails for all 3D points.
This can easily be visualized: Any three projection rays which are coplanar lead to three
3D intersection points, X12 = Lx′ ∩ Lx′′ , X23 and X31. These three points need not be
identical. Thus the epipolar constraints are ful�lled, in spite of the fact that the three
image points are not corresponding. The epipolar constraints thus are only necessary but
not su�cient conditions for the correspondence of three image points.

But a prediction of a point and thus a constraint can be achieved. This can be seen
by �rst determining the 3D point, e.g., X23, by triangulation and then projecting it into
the other image, which results in the constraint x ′ ≡ P ′(X23). ... �

The animation is the basis for Fig. 10 and allows to move the point X in 3D, especially
into the trifocal plane and visually verify the above mentioned geometric relations.

Go to the beginning.

16 Crossratio

Two animations deal with the cross ratio, an invariant of projective mappings, or homo-
graphies.

1. The �rst, on Crossratio, allows to explore the principles of invariants of four colliner
points and four concurrent lines.

2. The second, on recti�cation, is an application using the invariance of the crossratio
for images of planar objects using what is called the paper-strip-method.

The following text on the basics of the cross-ratio is taken from Förstner and Wrobel
(2016), sect. 6.4.3.

"Angles between lines and the ratio of distances between collinear point pairs are not
preserved under collineations. This can be seen in the example of Fig. 11.

However, four collinear points have an invariant under projective transformation: the
cross ratio, which can be transferred to four concurrent lines and also to a pencil of four
concurrent planes. The cross ratio can be used to describe more general con�gurations by
their invariants.

16.1 Cross Ratio of Four Collinear Points

The basic con�guration for the cross ratio is four collinear points.
De�nition 16.1: Cross ratio of four collinear points. The cross ratio CR(x1, x2 , x3 , x4)

of four collinear points with line coordinates (x1, x2, x3, x4) is de�ned as

CR(x1, x2 , x3 , x4) =
x1 − x3

x2 − x3
:
x1 − x4

x2 − x4
(105)

If a point is at in�nity, the rule ∞/∞ = 1 is used. �
We now have the following theorem:
Theorem 16.1: Invariance of cross ratio. The cross ratio CR(x1, x2 , x3 , x4) of

four collinear points is invariant under collineations H . Thus if x ′i = H (xi), i = 1, 2, 3, 4,
then

CR(x ′1 , x ′2 , x ′3 , x ′4 ) = CR(x1, x2 , x3 , x4) . (106)
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Figure 11: Non-invariance of the distance ratio under perspectivity. The three collinear
points u, v , and w on line l having the same distance r = uv = vw are mapped to the
line l ′ via the perspective projection with projection centre z, leading to the points u ′, v ′,
and w ′. Obviously, the distances between the image points are di�erent: u ′v ′ /= v ′w ′. The
midpoint v of uw is not mapped to the midpoint v ′ of u ′w ′. Now, imagine the point v is the
centre of a circle with radius uv lying in the plane through l perpendicular to the drawing
plane. Its image in the plane through l ′, again orthogonal to the drawing plane, will be an
ellipse: Obviously, the centre of an ellipse, which is the image of a circle, is not the image of
the centre of that circle

The proof exploits the fact that each of the four indices appears twice in the cross ratio,
once in the numerator, once in the denominator.

Given four points, there are 24=4! permutations for their sequence. Thus it is possible
to de�ne 24 di�erent cross ratios. However, six of them are distinct generally, but mutually
functionally dependent. If one cross ratio is λ, we have the six di�erent values for cross
ratios of four points:

λ,
1

λ
, 1− λ, 1

1− λ
,

λ

1− λ
,

1− λ
λ

. (107)

Example 16.1: Inferring distances between collinear points. Assume, in Fig. 12,

x’
y’

z’

a
a

bx

t’

Figure 12: Example for the use of the invariance of
the cross ratio. Due to the assumed symmetry � the
distance of the door from its two neighbouring facade
borders is identical to some unknown value a and the
assumed knowledge about the width of the building we
can infer the true width of the door in the scene from
the image points

we have observed the collinear image points x ′, y ′, z ′ and t ′ and know that the door is in the
centre of the facade, which has a width of w = 10 m. Then, using the cross ratio we can determine
the width b of the door and its distance a from the right and left wall from the two equations:

CR(x, y, z, t) =
a+ b

b
:
2a+ b

a+ b
= CR(x′, y′, z′, t′) 2a+ b = 10 [m] (108)

where the cross ratio CR(x′, y′, z′, t′) can be determined from image measurements. �

Mirror symmetric con�gurations in a plane are characterized by (1) the existence of a
symmetry axis and (2) the property that lines through symmetric point pairs are parallel.
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Now, we regard points on such a line: a point x , its mirror point x ′, the mid-point y
of both, which is the point of symmetry, and the point x ∞. Then their cross ratio is
CR(x , x ′, y , x ∞) = −1 and we say the con�guration is harmonic. We therefore use the
de�nition:

De�nition 16.2: Harmonic points. Four points on a line are harmonic if their
cross ratio is −1. �

16.2 Cross Ratio of Four Concurrent Lines

The cross-ratio transfers to a pencil of four rays.

De�nition 16.3: Cross ratio of four concurrent lines. The cross ratio CR(l1, l2 , l3 , l4)
of four concurrent lines with directions (φ1, φ2, φ3, φ4) is de�ned as

CR(l1, l2 , l3 , l4) =
sin(φ1 − φ3)

sin(φ2 − φ3)
:
sin(φ1 − φ4)

sin(φ2 − φ4)
. (109)

�
We can see this from Fig. 13: The coordinate di�erences xi−xj on line m and the sine

of the direction di�erences sin(φi − φj) are related by the area F of the triangle (z xi xj )
with sides si, sj via 2F = h(xi − xj) = sisj sin(φi − φj), which allows us to develop (109)
from (105).
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Figure 13: Cross ratio of points and lines. Left: The collinear points xi, i = 1, 2, 3, 4 and
the concurrent lines li, i = 1, 2, 3, 4, are related by the central point z, having the distance
h from the line m . The set of points and the set of lines have the same cross ratio. Right:
Concurrent lines allow us to transfer the cross ratio from the original points xi, i = 1, 2, 3, 4
to the intersection points of the lines li, i = 1, 2, 3, 4 with the line n or via the lines through
z ′ to the intersection points with the line k

Given a �fth line m not identical to li and not passing through their intersection point,
the cross ratio of the four concurrent lines li can be computed by

CR(l1, l2, l3, l4) =
|m, l1, l2|
|m, l3, l2|

:
|m, l1, l4|
|m, l3, l4|

. (110)

This cross ratio is also the cross ratio CR(x1, x2, x3, l4) of the four intersection points
xi = li ∩ m of the lines li with m .

Proof: Without loss of generality, we can choose the line m = [0, 1, 0] to be the x-axis, and
the intersection point of the lines not to lie on the y-axis, e.g. at x = [0, 1, 1]T. The intersection
points xi = li ∩ m of the lines with the x-axis are assumed to have coordinates xi. Then the
determinants are

|m, li, lj | =

∣∣∣∣∣∣m,S(x)

 xi
0
1

 , S(x)
 xj

0
1

∣∣∣∣∣∣ =
∣∣∣∣∣∣
0 1 1
1 xi xj
0 −xi −xj

∣∣∣∣∣∣ = xj − xi , (111)

which completes the proof. �

26



3
x

2
x

1
x

h

m

l1 l2
l3

z y’ ’ ’

’

’
’

’
’ ’

’

Figure 14: Horizon of a plane with equidistant coplanar lines

Example 16.2: Image of the horizon from the image of three equidistant parallel

lines. Given is an image with three lines l ′i , i = 1, 2, 3, which in 3D are coplanar, parallel, and
equidistant, see Fig. 14. The task is to determine the image h ′ of the line at in�nity of the plane.
We give two solutions, a constructive one and an algebraic one:

1. We �rst determine the intersection point z ′ = l ′1 ∩ l ′2 of two of the image lines, l ′i . z ′ is
the image of the point at in�nity of the set of 3D lines. Then we take an arbitrary line m ′
passing through the three lines l ′i , leading to three intersection points x ′i = m ′ ∩ l ′i . We
now construct a point y ′ ∈ m ′ such that CR(x ′1 , x ′3 , x ′2 , y ′) = −1. Then the sought line is
h ′ = z ′ ∧ y ′.

2. The construction can be used to derive a closed form solution (Scha�alitzky and Zisserman,
2000),

h′ = [m′, l′1, l
′
2]l
′
3 − [m′, l′2, l

′
3]l
′
1 , (112)

where m ′ is an arbitrary line not identical to li and not passing through the intersection
point of the three lines.

�
...�

16.3 Image-Recti�cation with the Paper-Strip-Method

The paper-strip-method aims at transferring a point P , say from an image to a map, based
on four given corresponding points (ABCD) and (A′B′C ′D′), exploiting the invariance
of the cross-ratio of concurrent lines relating the point to the four given points. In the
animation we have the two identities

CR(BA,BD|BC,BP ) = CR(B′A′, B′D′|B′C ′, B′P ′) and (113)

CR(CA,CD|CB,CP ) = CR(C ′A′, C ′D′|C ′B′, C ′P ′) (114)

for the directions of the concurrent lines from B and B', and C and C' repectively. They
are realized by the markers on the paper strip: they are used to transfer the cross-ratios
CR(Ba,Bd|Bc,Bp) and CR(CA,CD|CB,CP ) in the image to the correspoinding corss-
ratios anforcing identities {a, c, d, p} = {a′, c′, d′, p′} and {a, b, d, p} = {a′, b′, d′, p′} of the
markers by placing the paperstrip in the map adequately.

Go to the beginning.

17 2D/3D Motion as Rotation/Screw

Any 2D motion x′ = Rx + t can be represented as a rotation around some point x0. In
both cases the number of degrees of freedom is three, wither the translation (2) and the
rotation (1) or the point of rotation (2) and the rotation (1). The rotation around x0 is
given by

x′ = R(x− x0) + x0 = Rx+ (x0 − RTx0) = Rx+ (I − RT)x0 (115)

which leads to the relations

t = (I − RT)x0 and if R /= I then x0 = (I − RT)−1t . (116)
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Hence for pure translation the centre of rotation is not de�ned.

Similarly, any 3D motion x′ = Rx + t can be represented as a screw motion, which
combines a rotation around a 3D line and a translation by s along this line. In both cases
the number of degrees of freedom is six, either the translation (3) and the rotation (3), or
the 3D line (4) and the rotation angle (1) and the translation along the line (1).

With the normalized rotation axis r, with |r| = 1, following r = Rr, we have the
rotation around the 3d line, speci�ed by (x0, r)

x′ = Rr,θ(x− x0) + x0 + s r = Rr,θx+ (x0 + s r − RTx0) (117)

Hence, we have a constraint for the translation

t = s r + (I − RT)x0 , (118)

which needs to be partitioned into a component tr parallel to r and a component tp
perpendicular to r, which can be achieved using:

t = t‖ + t⊥ , with t‖ = s r s = t · r , and t⊥ = t− tr . (119)

Then the constraint for x0 is
t⊥ = (I − RT)x0 (120)

thus
x0 = (I − RT)−1t⊥ = (I − RT)−1(t− (t · r)r) (121)

Again, for pure translation, the centre of the rotation is not de�ned.
Observe, that x0 is the point on the 3D line closest to the origin, thus only has two

degrees of freedom, and that the rotation axis also only has two degrees of freedom.
Together with the rotation angle θ and the translation s along the 3D line, the degrees of
freedom of the screw motion is six.

The animation can be interpreted in 2D and 3D. In 2D it shows the planar motion of
a rectangle. In 3D, the �gure can be interpreted as a projection along the axis of rotation,
such that the rotation axis passes through point x0 perpendicular to the viewing plane,
the quadrangle can have arbitrary depths along the axis of rotation, and one can imagine
the motion by s along this line.

Go to the beginning.

18 Double Re�ection

The animation illustrates the de�nition of a rotation as a double re�ection at two planes
through the origin. The animation is found in a lecture using quaternions for representing
the rotation, (slides: https://www.ipb.uni-bonn.de/html/teaching/3dcs-wf-2020/

05a-3D-CS-Bsc-Rotations-as-two-Reflections-using-Quaternions.pdf, video https:
//www.youtube.com/watch?v=oSK3VCtr7_w).

The topic is intensely discussed: An easy approach can be found in https://www.

euclideanspace.com/maths/geometry/affine/reflection/quaternion/index.htm. An
animation can be found in https://demonstrations.wolfram.com/RotationAsProductOfTwoReflections/,
however, not discussing the redundancy of the representation. Also the animation, simi-
lar to this one https://www.geogebra.org/m/SpzcdDS6, does not discuss the freedom in
choosing the two planes.

The animation here shows how a 2D or 3D rotation around the origin can be represented
by re�ections at two planes passing the origin and visualizes the ambiguity of choosing a
pair of mirrors.

If the angle between the normals of the two lines (in 2D) or planes (in 3D) is α, then
the rotation angle is θ = 2α and the rotation point/axis is the intersection point/line of
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the two lines/planes. This directly can be seen from the animation: The 2D �gure can
also be interpreted as a projection of a 3D con�guration along the rotation axis, or �
equivalently � onto a plane perpendicular to the rotation axis.

A 2D rotation is de�ned by one parameter, namely the angle, while a 3D rotation is
de�ned by three parameters, namely the direction of the rotation axis (2 parameters) and
the rotation angle (1 parameter).

Specifying two normals for the rotation, hence, appears redundant, since in 2D one
needs two angles for specifying the two normals, while in 3D one needs 4 parameters to
specify the two normals.

However, as can be seen from the animation, a joint common rotation of the two
planes around their intersection line does not in�uence the rotation. This explains the
redundancy of the speci�cation of a rotation with two normals.

Mirroring at planes with normalized normals n and m are

M = I − 2mmT and N = I − 2nnT (122)

Concatenation yields

Q = NM = (I − 2nnT)(I − 2mmT) (123)

= I − 2nnT − 2mmT + 4nnTmmT (124)

If Q is a rotation, then it must ful�l QQT = I . We actually have

QQ
T = (NM)(NM)T = N(MM)N = N(I )N = I . (125)

since the re�ection matrices are symmetric and involutory, thus ful�l M = M
T and M2 =

I .3 The vector c = n×m is invariant:

Qc = (I − 2nnT − 2mmT + 4nnTmmT)(n×m) = n×m (126)

since both vectors n and m are perpendicular to c. Hence c is a point on the rotation
axis, whose normalized direction vector is

r =
n×m
|n×m|

. (127)

Go to the beginning.

19 Scaled Rotation as Complex Multiplication

The animation allows to inspect the relation between the multiplication of two complex
numbers and the scaled rotation as a special motion. The explanation can be found in the
slides : There the 2D similarity transformation x′ = λR(φ)x + t is shown to be a linear
regression z = ax+ b using complex numbers for all entries, e.g., x = [x, y]T ↔ z = x+iy,
identifying the role of the scaled rotation Q = λR(φ) and the polar representation a =
λ exp(iφ).

A more general application can be found in the animation on choosing the gauge of a
planar polygon or in a planar geodetic network, Sect. 9, with details in Gauge Choice and
Loop Closing of Uncertain Polygons, Sect. 16.2 �.

Go to the beginning.

3They are Householder matrices.
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20 Reconstructing the Straight Path of a Vehicle from
Four Bearings

Discussing variations of determining the pose of moving objects I came across the problem
to reconstruct the path of a vehicle moving on a straight line with constant velocity when
at constant time intervals observing the azimuth, via bearings from four varying but known
positions. The solution can be found geometrically and allows an intuitive visualization.

Much later I learned that there exists the 4-bearings method to solve this problem, see
the blog https://www.mathscinotes.com/2015/04/computing-a-ships-course-from-
four-bearings/. I also found a much easier geometric solution, described in https:

//ricojansen.nl/downloads/the_four_bearings_method_v2,Kuikueg.pdf. The doc-
ument also describes geometric method for the case of bearings from a static point where
only three bearings are necessary.

Go to the beginning.

21 Moving a Piano around a Rectangular Corner

Moving a piano around a corner of two corridors requires the corridors to have a minimum
width, depending on the size of the piano. Assuming the piano's ground plan is a rectangle
with known size, and given the width of one corridor then the width of the other corridor
needs to have a minimum width.

The mathematical solution is given in Necessary Width of a Corridor to Transport a
Piano around a Corner. The construction used for the animation is based on the fact
that each planar motion is a rotation around some point. Here, we know that two of the
piano's corners A and B move along the two axes, hence the centre of rotation C is the
intersection of the perpendicular lines through the points, where the piano is touching
the axes. The point D of the other side of the piano closest to the centre C of the circle
provides the minimal width of one corridor given the width of the other corridor.

Go to the beginning.
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