
Goal
The main idea behind this study is to evaluate if a library we have developed at the ipb-lab is
easy to use for people from our community(robotics).

You will be implementing a 3D Surface Reconstruction pipeline employing TSDF, for any
type of sensor data. Sounds complicated, right? Well, the idea is that when using our library,
this should not be.

You must time how long it takes you to perform each of the following 4 steps and
report back to us the timings.  Please determine the timings for the 4 steps separately
(eg: Step1=30s; Step2=10min; Step3=3min; Step4=90s).

Exercise

Before starting
To get started you just need:

● A 64-bit GNU/Linux computer with Python3.8 or newer
● Have a stopwatch ready
● You can pick any 3D dataset of your choice as long as you have good pose

estimates for this dataset. Once you have picked your favorite dataset, you are ready
to go

Start the timer now!

1. Install the library

● First, make sure you have an updated version of pip: $ pip install -U pip. We tested
with version 21.3.1

● Then run pip install vdbfusion on a terminal to install our library.

2. Writing the Dataloader
You have your favorite dataset, so it’s time to start coding! For that you have two

options:
1. Use an existing dataloader from your own.
2. Define a new Dataset class in Python like the one shown below.



The only restriction is that you need to provide point clouds(in global coordinate
frame) in the form of a numpy array and the origin of the sensor in this global coordinate
frame, also a numpy array. For what follows, we assume you implemented a Dataset using
the snippet provided here.

NOTE: Please pay attention in providing your point cloud in a global coordinate
frame(this means, you need to have applied the pose you have for that sensor frame before
feeding it into the mapping pipeline)

3. Writing the fusion pipeline
Now that you have your data ready it is time to write the fusion pipeline. For that, you

need to initialize your dataset and instantiate a VDBVolume object from our vdbfusion
library. At this point, you should also pick a voxel size (resolution) and a truncation distance.
The values chosen on this snippet are a good starting point.
NOTE: If you didn’t follow the recommended Dataset API, your implementation might defer
to the one below. You just need to pass numpy arrays to the integrate function.



4. Visualizing the results
Done! You just built your map. Now it’s time to inspect your results, for doing so I will

be using Open3D but you can choose whatever library you like the most.

Please remember to report back the time spent on each of the 4 steps!


