|
|||||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |
Interface to Matrix-methods.
Method Summary | |
java.lang.Object |
clone()
Clone a matrix. |
Matrix |
copy()
Create a new matrix B, independent from A |
Matrix |
delColumn(int col)
delete a column from A. |
Matrix |
delRow(int row)
delete a row from A. |
double |
det()
Computes the determinant of the matrix |
double[] |
eig()
EigenvalueDecomposition of this Matrix |
boolean |
equals(java.lang.Object obj)
Test, whether A and B are identical or not |
double |
get(int row,
int col)
Get a single element |
Vector |
getColumn(int j)
|
int |
getColumnDimension()
Like the name says :-) |
Matrix |
getMatrix(int i0,
int i1,
int j0,
int j1)
Returns a Submatrix with dimension (i1-i0) x (j1-j0) Upper left element begin with indices (0,0) |
Vector |
getRow(int i)
|
int |
getRowDimension()
Like the name says :-) |
Matrix |
invert()
Matrix inverse or pseudoinverse |
boolean |
isSemiDefinite()
Test, whether A ist semidefinit or not |
Matrix |
kronecker(Matrix B)
Calculates the kronecker-product of two matrices. |
Matrix |
minus(Matrix B)
C=A-B |
Matrix |
mult(double f)
B=A*f , where f is a scalar |
Matrix |
mult(Matrix B)
C=A*B |
Vector |
mult(Vector v)
B=A*v, where v is a vector. |
Matrix |
plus(Matrix B)
C=A+B |
void |
print()
Prints this matrix to stdout |
void |
print(int w,
int d)
Prints this matrix to stdout It may be useful to select w > d. |
void |
printMatlab()
Prints this matrix in Matlab format to stdout |
Matrix |
pseudoInverse(int rank)
returns the pseudo-inverse A^+ . |
Matrix |
pseudoInverse(Matrix H)
returns the pseudo-inverse A^+ with given Nullspace |
Matrix[] |
qr()
Computes the QR Decomposition of given Matrix |
void |
set(double value)
Sets all elements of the matrix to the given value. |
void |
set(int row,
int col,
double value)
Set a single element |
void |
setColumn(int j,
Vector v)
|
void |
setRow(int i,
Vector v)
|
Matrix |
slice(int[] listOfRows,
int[] listOfCols)
Get submatrix with given list of rows and given list of columns. |
void |
slice(int[] listOfRows,
int[] listOfCols,
Matrix B)
As other slice, only: read values from Matrix B and put them in the object at the posisitions of the intersections of given rows and columns. |
Matrix |
slice(int i0,
int i1,
int j0,
int j1)
Gets a submatrix of A |
void |
slice(int i0,
int i1,
int j0,
int j1,
Matrix B)
Sets a submatrix of A with B |
Vector |
solve(Vector y)
|
Matrix[] |
svd()
Computes the SingularValueDecomposition of given Matrix with dimension m x n (m>=n), so the result is given by: Matrix = U*S*V^t |
java.lang.String |
toString()
Delivers a string with the elements of the matrix. |
Matrix |
trans()
Matrix transpose |
Vector |
vec()
returns the matrix as a vector: First the first column, then the second column and so on. |
Method Detail |
public Matrix plus(Matrix B)
C=A+B
B
- Must have same dimensions like this matrix
public Matrix minus(Matrix B)
C=A-B
B
- Must have same dimensions like this matrix
public Matrix mult(Matrix B)
C=A*B
B
- rowDim of B must be the same like colDim from A
public Matrix trans()
Matrix transpose
public double get(int row, int col)
Get a single element
row
- row-index
col
- column-index
public void set(int row, int col, double value)
Set a single element
row
- row-index
col
- column-index
value
- A(i,j):=value
public int getRowDimension()
Like the name says :-)
public int getColumnDimension()
Like the name says :-)
public Matrix invert()
Matrix inverse or pseudoinverse
public Matrix mult(double f)
B=A*f , where f is a scalar
f
- scalar, given as double
public Vector mult(Vector v)
B=A*v, where v is a vector. Dimension of v and column dimension of A must agree
v
- Vector, with dimension the same as column-dimension of A
public Matrix[] svd()
Computes the SingularValueDecomposition of given Matrix with dimension m x n (m>=n), so the result is given by: Matrix = U*S*V^t
orig_matrix = Matrix[0].mult(Matrix[1]).mult(Matrix[2].trans());gives the original matrix
public Matrix slice(int[] listOfRows, int[] listOfCols)
Get submatrix with given list of rows and given list of columns. If listofRows is emtpy, get complete column, if listOfCols is empty, get complete rows.
listOfRows
- ...
listOfCols
- ...
public void slice(int[] listOfRows, int[] listOfCols, Matrix B)
As other slice, only: read values from Matrix B and put them in the object at the posisitions of the intersections of given rows and columns.
listOfRows
- ...
listOfCols
- ...
B
- ...
public void slice(int i0, int i1, int j0, int j1, Matrix B)
i0
- initial row index (upper left is (0,0) )i1
- final row indexj0
- initial column indexj1
- final column indexB
- Matrix with dimension (i1-i0+1 x j1-j0+1)public Matrix slice(int i0, int i1, int j0, int j1)
i0
- initial row index (upper left is (0,0) )i1
- final row indexj0
- initial column indexj1
- final column indexpublic Vector vec()
e.g. : if A = | a b | then A.vec() returns | a | | c d | | c | | b | | d |
public Matrix copy()
public void set(double value)
Sets all elements of the matrix to the given value.
value
- public void print(int w, int d)
Prints this matrix to stdout
It may be useful to select w > d. A common value is w=5, d=3
w
- describes the width of a single elementd
- number of decimals after commapublic void print()
Prints this matrix to stdout
public void printMatlab()
Prints this matrix in Matlab format to stdout
public java.lang.String toString()
public boolean equals(java.lang.Object obj)
obj
- Matrix to test
public Matrix getMatrix(int i0, int i1, int j0, int j1)
Returns a Submatrix with dimension (i1-i0) x (j1-j0) Upper left element begin with indices (0,0)
i0
- Initial row indexi1
- Final row indexj0
- Initial column indexj1
- Final column index
public double[] eig()
EigenvalueDecomposition of this Matrix
public boolean isSemiDefinite()
public Matrix pseudoInverse(int rank)
returns the pseudo-inverse A^+ . This is done via SVD with a given rank
rank
- the rank which A with the given elements should have
public Matrix pseudoInverse(Matrix H)
returns the pseudo-inverse A^+ with given Nullspace
H
- nullspace
public Matrix kronecker(Matrix B)
|a_11*B ... a_1n*B | C = |... ... | |a_m1*B ... a_mn*B |
B
- an arbitrary-Matrix
public double det()
public Vector getRow(int i)
public Vector getColumn(int j)
public void setRow(int i, Vector v)
public void setColumn(int j, Vector v)
public Vector solve(Vector y)
public Matrix delColumn(int col)
e.g. : if A looks like | a11 a12 a13 | | a21 a22 a23 | 3x3 Matrix | a31 a32 a33 | then A.delColumn(0) returns | a12 a13 | | a22 a23 | 3x2 Matrix | a32 a33 |
col
- column to delete. Must be between 0 and m-1, if A is nxm
public Matrix delRow(int row)
e.g. : if A looks like | a11 a12 a13 | | a21 a22 a23 | 3x3 Matrix | a31 a32 a33 | then A.delRow(0) returns | a21 a22 a23 | 2x3 Matrix | a31 a32 a33 |
row
- row to delete. Must be between 0 and n-1, if A is nxm
public Matrix[] qr()
Computes the QR Decomposition of given Matrix
public java.lang.Object clone()
|
|||||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |