

Detecting Interpretable and Accurate Scale-Invariant Keypoints

Wolfgang Förstner, Timo Dickscheid, Falko Schindler

Motivation

Desired properties of keypoint detectors:

- Invariance and repeatability for object recognition
- Accuracy to support camera calibration
- Interpretability: Especially corners and circles, should be part of the detected keypoints (see figure).
- ► As few **control parameters** as possible with clear semantics
- Complementarity to known detectors

We make use of ▶ spiral model [1] ► feature operator [2] to end up with a scale-invariant corner/circle detector.

structure $\lambda_{\min}(M)$ (2)

Theory

Maximize the weight = 1/variance of a point p $w(\boldsymbol{p}, \alpha, \tau, \sigma) = (N(\sigma) - 2) \frac{\lambda_{\min}(M(\boldsymbol{p}, \alpha, \tau, \sigma))}{\Omega(\boldsymbol{p}, \alpha, \tau, \sigma)}$

comprising

▶ the *image model* [1]

Results

Interpretability of SFOP keypoints:

Harris affine Hessian affine

SFOP: junctions (red), circular features (cyan)

$$\Omega(\boldsymbol{p}, \alpha, \tau, \sigma) = \sum_{n=1}^{N(\sigma)} \left[(\boldsymbol{q}_n - \boldsymbol{p})^\mathsf{T} \boldsymbol{R}_\alpha \nabla_\tau g(\boldsymbol{q}_n) \right]^2 G_\sigma(\boldsymbol{q}_n - \boldsymbol{p})$$
$$= N(\sigma) \operatorname{tr} \left\{ R_\alpha \nabla_\tau \nabla_\tau^\mathsf{T} R_\alpha^\mathsf{T} * \boldsymbol{p} \boldsymbol{p}^\mathsf{T} G_\sigma(\boldsymbol{p}) \right\} \quad (1)$$

► the smaller eigenvalue of the *structure tensor*

Reduce the 5-dimensional search space by

• linking the differentiation scale τ to the integration scale σ :

 $\tau = \sigma/3$

• solving for the optimal $\hat{\alpha}$ using the model

 $\Omega(\alpha) = a - b\cos(2\alpha - 2\alpha_0)$

and determining the parameters from three angles, e. g. $\Omega(0^\circ), \Omega(60^\circ), \Omega(120^\circ)$ $\rightarrow a, b, \alpha_0$ α

Bundle Adjustment on 3D scenes:

comparable to other detectors

pre-selection possible:

 $\alpha = 0^{\circ} \rightarrow \text{junctions}, \quad \alpha = 90^{\circ} \rightarrow \text{circular features}$

Filter potential keypoints

- non-maxima suppression over scale, space and angle
- thresholding the isotropy $\lambda_2(M)$: eigenvalues characterize the shape of the keypoint, smallest eigenvalue has to be larger than threshold T_{λ} derived from noise variance V(n) and significance level S:

$$T_{\lambda}(V(n),\tau,\sigma,S) = \frac{N(\sigma)}{16\pi\tau^4}V(n)\chi_{2,S}^2$$

References

[1] J. Bigün.

A Structure Feature for Some Image Processing Applications Based on Spiral Functions. Computer Vision, Graphics and Image Processing, 51(2):166–194, 1990.

[2] W. Förstner.

A Framework for Low Level Feature Extraction.

In Third European Conference on Computer Vision, volume III, pages 383–394, Stockholm, Sweden, 1994.

[3] K. Mikolajczyk and C. Schmid.

An affine invariant interest point detector.

In Proc. European Conf. Computer Vision, pages 128–142, 2002.

University of Bonn Institute for Geodesy and Geoinformation

Department for Photogrammetry Nussallee 15, 53115 Bonn, Germany

(2)

{wf@ipb.,dickscheid@,falko.schindler@}uni-bonn.de Project website: http://www.ipb.uni-bonn.de/sfop

