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Intuition lvalues, rvalues

m Every expression is an lvalue Or an rvalue

® lvalues can be written on the left of
assignment operator (=)

® rvalues are all the other expressions

= Explicit rvalue defined using &&

m Use std: :move(..) to explicitly convert an
lvalue tO an rvalue

int a; // "a" is an 1lvalue
int& a_ref = a; // "a" is an 1lvalue
// "a_ref" is a reference to an lvalue
a =2+ 2; // "a" is an 1lvalue,
// "2 + 2" is an rvalue
int b = a + 2; // "b" is an 1lvalue,

// "a + 2" is an rvalue
int&& c = std::move(a); // "c" is an rvalue



Hands on example

#include <iostream>
#include <string>

using namespace std; // Save space on slides.
void Print(const string& str) {
cout << "lvalue: " << str << endl;
}
void Print(string&& str) {
cout << "rvalue: " << str << endl;
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int main() {
string hello = "hi";

Print (hello) ;

Print ("world");

Print (std: :move(hello));

// DO NOT access "hello" after move!
return O;



Never access values after move

The value after move is undefined

#include <iostream>
#include <string>
#include <vector> “ﬁh

using namespace std; // Save space on slides. HORROR
int main() {

string hello = "hello";

vector<string> owner;

owner .emplace_back(hello); // Copy.

owner .emplace_back (move (hello)); // Move.

cout << hello << endl; // Undefined.

return O;



How to think about std::move

= Think about ownership

= Entity owns a variable if it deletes it, e.qg.
m A function scope owns a variable defined in it
= An object of a class owns its data members

= Moving a variable transfers ownership
of its resources to another variable

= When designing your program think
“who should own this thing?”

= Runtime: better than copying, worse than
passing by reference



Custom operators for a class

= Operators are functions with a signature:
<RETURN_TYPE> operator<NAME>(<PARAMS>)

® <NAME> represents the target operation,
e.g. >, <, =, ==, << etc.

= Have all attributes of functions

= Always contain word operator in name

= All available operators:
http://en.cppreference.com/w/cpp/language/operators



http://en.cppreference.com/w/cpp/language/operators

Example operator <

#include <algorithm>

#include <vector>

using namespace std;

class Human {

public:
Human (int kindness) : kindness_{kindness} {}
bool operator<(const Human& other) const {

return kindness_ < other.kindness_;

}

private:
int kindness_ = 100;
g
int main() {
vector<Human> humans = {Human{0}, Human{10}};

std::sort (humans.begin(), humans.end());
return O;
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Copy constructor

= Called automatically when the object is
copied

= For a class MyClass has the signature:
MyClass(const MyClass& other)

MyClass a; // Calling default constructor.
MyClass b(a); // Calling copy constructor.
MyClass ¢ = a; // Calling copy constructor.



Copy assignment operator

= Copy assignment operator is called
automatically when the object is
assigned a new value from an Lvalue

m For class MyClass has a sighature:
MyClass& operator=(const MyClass& other)

= Returns a reference to the changed
object

m Use *xthis from within a function of a class
to get a reference to the current object

MyClass a; // Calling default constructor.
MyClass b(a); // Calling copy constructor.

MyClass ¢ = a; // Calling copy constructor.

a = b; // Calling copy assignment operator.
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Move constructor

= Called automatically when the object is
moved

= For a class MyClass has a signature:
MyClass(MyClass&& other)

MyClass a; // Default constructors.
MyClass b(std::move(a)); // Move constructor.
MyClass ¢ = std::move(a); // Move constructor.
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Move assignment operator

= Called automatically when the object is
assigned a new value from an Rvalue

® For class MyClass has a sighature:
MyClass& operator=(MyClass&& other)

= Returns a reference to the changed
object

MyClass
MyClass
MyClass
b = std

a;
b(std::move(a));
c = std::move(a);
::move (c);

//
//
//
//

Default constructors.
Move constructor.

Move constructor.

Move assignment operator.
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#include <iostream>
using std::cout; using std::endl;
class Hmm {
public:
Hmm () { cout << "default" << endl; }
Hmm (const Hmm& other) { cout << "copy" << endl; }
Hmm (Hmm&& other) { cout << "move" << endl; }
Hmm& operator=(const Hmm& other) {
cout << "copy operator" << endl; return *this;
}
Hmm& operator=(Hmm&& other) {
cout << "move operator" << endl; return *this;
}
I
int main() {
Hmm a;
Hmm
a = b;
Hmm ¢ = std::move(a);
c = std::move(b);
return O;

o’
I

a;
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Do I need to define all of them?

m The constructors and operators will be
generated automatically

= Under some conditions...
= Five special functions for class MyClass:

~MyClass ()

MyClass(const MyClass& other)

MyClass (MyClass&& other)

MyClass& operator=(const MyClass& other)
MyClass& operator=(MyClass&& other)

= None of them defined: all autogenerated
= Any of them defined: none autogenerated
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Rule of all or nothing

= Try to define none of the special functions
= If you must define one of them define all

m Use =default to use default implementation

class MyClass {
public:
MyClass () = default;
MyClass (MyClass&& var) = default;
MyClass (const MyClass& var) = default;
MyClass& operator=(MyClass&& var) = default;
MyClass& operator=(const MyClass& var) = default;
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https://arne-mertz.de/2015/02/the-rule-of-zero-revisited-the-rule-of-all-or-nothing/
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#cdefop-default-operations

Deleted functions
= Any function can be set as deleted

void SomeFunc(...) = delete;

= Calling such a function will result in
compilation error

= Example: remove copy constructors when
only one instance of the class must be
guaranteed

= Compiler marks some functions deleted
automatically

= Example: if a class has a constant data
member, the copy/move constructors and
assignment operators are implicitly deleted
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Inheritance

m Classes and structs can inherit data and
functions from other classes
= There are 3 types of inheritance in C++:

® public [used in this course]
m protected
® private

® public inheritance keeps all access
specifiers of the base class
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https://google.github.io/styleguide/cppguide.html#Inheritance

Public inheritance

= Public inheritance stands for “is a”
relationship, i.e. if class Derived inherits
publicly from class Base we say, that
Derived is a kind of Base

class Derived : public Base {
// Contents of the derived class.

E

= Allows Derived to use all public and
protected members of Base

m Derived still gets its own special functions:
constructors, destructor, assignment
operators

19



#include <iostream>
using std::cout; using std::endl;
class Rectangle {
public:
Rectangle(int w, int h) : width_{w}, height_{h} {}
int width() const { return width_; 7}
int height() const { return height_; }
protected:
int width_ = 0;
int height_ = 0;
};
class Square : public Rectangle {
public:
explicit Square(int size) : Rectangle{size, sizel} {}
};
int main() {
Square sq(10); // Short name to save space.
cout << sq.width() << " " << sq.height() << endl;
return O;

3
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Function overriding

m A function can be declared virtual
virtual Func (<PARAMS>);

m If function is virtual in Base class it can be
overridden in Derived class:
Func (<PARAMS>) override;

®m Base can force all Derived classes to override
a function by making it pure virtual

virtual Func (<PARAMS>) = 0;
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Overloading vs overriding

= Do not confuse function overloading and
overriding
= Overloading:

m Pick from all functions with the same name, but
different parameters

= Pick a function at compile time

= Functions don’t have to be in a class

= Overriding:
= Pick from functions with the same arguments
and names in different classes of one class
hierarchy
= Pick at runtime
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Abstract classes and interfaces

m Abstract class: class that has at least one
pure virtual function

= Interface: class that has only pure virtual
functions and no data members
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How virtual works

m A class with virtual functions has a virtual
table

= When calling a function the class checks
which of the virtual functions that match
the signature should be called

» Called runtime polymorphism
m Costs some time but is very convenient
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References

= Fluent C++: structs vs classes:
https://goo.gl/NFo8HP [shortened]

25


https://goo.gl/NFo8HP
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