Modern C++ for
Computer Vision and
Image Processing

Igor Bogoslavskyi

UNIVERSITAT



Outline

Move semantics

Classes
Operator overloading
Making your class copyable
Making your class movable
Rule of all or nothing
Inheritance



Intuition lvalues, rvalues

m Every expression is an lvalue Or an rvalue

® lvalues can be written on the left of
assignment operator (=)

® rvalues are all the other expressions

= Explicit rvalue defined using &&

m Use std: :move(..) to explicitly convert an
lvalue tO an rvalue

int a; // "a" is an 1lvalue
int& a_ref = a; // "a" is an 1lvalue
// "a_ref" is a reference to an lvalue
a =2+ 2; // "a" is an 1lvalue,
// "2 + 2" is an rvalue
int b = a + 2; // "b" is an 1lvalue,

// "a + 2" is an rvalue
int&& c = std::move(a); // "c" is an rvalue



Hands on example

#include <iostream>
#include <string>

using namespace std; // Save space on slides.
void Print(const string& str) {
cout << "lvalue: " << str << endl;
}
void Print(string&& str) {
cout << "rvalue: " << str << endl;
3
int main() {
string hello = "hi";

Print (hello) ;

Print ("world");

Print (std: :move(hello));

// DO NOT access "hello" after move!
return O;



Never access values after move

The value after move is undefined

#include <iostream>
#include <string>
#include <vector> “ﬁh

using namespace std; // Save space on slides. HORROR
int main() {

string hello = "hello";

vector<string> owner;

owner .emplace_back(hello); // Copy.

owner .emplace_back (move (hello)); // Move.

cout << hello << endl; // Undefined.

return O;



How to think about std::move

= Think about ownership

= Entity owns a variable if it deletes it, e.qg.
m A function scope owns a variable defined in it
= An object of a class owns its data members

= Moving a variable transfers ownership
of its resources to another variable

= When designing your program think
“who should own this thing?”

= Runtime: better than copying, worse than
passing by reference



Custom operators for a class

= Operators are functions with a signature:
<RETURN_TYPE> operator<NAME>(<PARAMS>)

® <NAME> represents the target operation,
e.g. >, <, =, ==, << etc.

= Have all attributes of functions

= Always contain word operator in name

= All available operators:
http://en.cppreference.com/w/cpp/language/operators



http://en.cppreference.com/w/cpp/language/operators

Example operator <

#include <algorithm>

#include <vector>

using namespace std;

class Human {

public:
Human (int kindness) : kindness_{kindness} {}
bool operator<(const Human& other) const {

return kindness_ < other.kindness_;

}

private:
int kindness_ = 100;
g
int main() {
vector<Human> humans = {Human{0}, Human{10}};

std::sort (humans.begin(), humans.end());
return O;

3



Copy constructor

= Called automatically when the object is
copied

= For a class MyClass has the signature:
MyClass(const MyClass& other)

MyClass a; // Calling default constructor.
MyClass b(a); // Calling copy constructor.
MyClass ¢ = a; // Calling copy constructor.



Copy assignment operator

= Copy assignment operator is called
automatically when the object is
assigned a new value from an Lvalue

m For class MyClass has a sighature:
MyClass& operator=(const MyClass& other)

= Returns a reference to the changed
object

m Use *xthis from within a function of a class
to get a reference to the current object

MyClass a; // Calling default constructor.
MyClass b(a); // Calling copy constructor.

MyClass ¢ = a; // Calling copy constructor.

a = b; // Calling copy assignment operator.

10



Move constructor

= Called automatically when the object is
moved

= For a class MyClass has a signature:
MyClass(MyClass&& other)

MyClass a; // Default constructors.
MyClass b(std::move(a)); // Move constructor.
MyClass ¢ = std::move(a); // Move constructor.

11



Move assignment operator

= Called automatically when the object is
assigned a new value from an Rvalue

® For class MyClass has a sighature:
MyClass& operator=(MyClass&& other)

= Returns a reference to the changed
object

MyClass
MyClass
MyClass
b = std

a;
b(std::move(a));
c = std::move(a);
::move (c);

//
//
//
//

Default constructors.
Move constructor.

Move constructor.

Move assignment operator.

12



#include <iostream>
using std::cout; using std::endl;
class Hmm {
public:
Hmm () { cout << "default" << endl; }
Hmm (const Hmm& other) { cout << "copy" << endl; }
Hmm (Hmm&& other) { cout << "move" << endl; }
Hmm& operator=(const Hmm& other) {
cout << "copy operator" << endl; return *this;
}
Hmm& operator=(Hmm&& other) {
cout << "move operator" << endl; return *this;
}
I
int main() {
Hmm a;
Hmm
a = b;
Hmm ¢ = std::move(a);
c = std::move(b);
return O;

o’
I

a;

13



Do I need to define all of them?

m The constructors and operators will be
generated automatically

= Under some conditions...
= Five special functions for class MyClass:

~MyClass ()

MyClass(const MyClass& other)

MyClass (MyClass&& other)

MyClass& operator=(const MyClass& other)
MyClass& operator=(MyClass&& other)

= None of them defined: all autogenerated
= Any of them defined: none autogenerated

15



Rule of all or nothing

= Try to define none of the special functions
= If you must define one of them define all

m Use =default to use default implementation

class MyClass {
public:
MyClass () = default;
MyClass (MyClass&& var) = default;
MyClass (const MyClass& var) = default;
MyClass& operator=(MyClass&& var) = default;
MyClass& operator=(const MyClass& var) = default;

16


https://arne-mertz.de/2015/02/the-rule-of-zero-revisited-the-rule-of-all-or-nothing/
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#cdefop-default-operations

Deleted functions
= Any function can be set as deleted

void SomeFunc(...) = delete;

= Calling such a function will result in
compilation error

= Example: remove copy constructors when
only one instance of the class must be
guaranteed

= Compiler marks some functions deleted
automatically

= Example: if a class has a constant data
member, the copy/move constructors and
assignment operators are implicitly deleted

17



Inheritance

m Classes and structs can inherit data and
functions from other classes
= There are 3 types of inheritance in C++:

® public [used in this course]
m protected
® private

® public inheritance keeps all access
specifiers of the base class

18


https://google.github.io/styleguide/cppguide.html#Inheritance

Public inheritance

= Public inheritance stands for “is a”
relationship, i.e. if class Derived inherits
publicly from class Base we say, that
Derived is a kind of Base

class Derived : public Base {
// Contents of the derived class.

E

= Allows Derived to use all public and
protected members of Base

m Derived still gets its own special functions:
constructors, destructor, assignment
operators

19



#include <iostream>
using std::cout; using std::endl;
class Rectangle {
public:
Rectangle(int w, int h) : width_{w}, height_{h} {}
int width() const { return width_; 7}
int height() const { return height_; }
protected:
int width_ = 0;
int height_ = 0;
};
class Square : public Rectangle {
public:
explicit Square(int size) : Rectangle{size, sizel} {}
};
int main() {
Square sq(10); // Short name to save space.
cout << sq.width() << " " << sq.height() << endl;
return O;

3

20



Function overriding

m A function can be declared virtual
virtual Func (<PARAMS>);

m If function is virtual in Base class it can be
overridden in Derived class:
Func (<PARAMS>) override;

®m Base can force all Derived classes to override
a function by making it pure virtual

virtual Func (<PARAMS>) = 0;

21



Overloading vs overriding

= Do not confuse function overloading and
overriding
= Overloading:

m Pick from all functions with the same name, but
different parameters

= Pick a function at compile time

= Functions don’t have to be in a class

= Overriding:
= Pick from functions with the same arguments
and names in different classes of one class
hierarchy
= Pick at runtime

22



Abstract classes and interfaces

m Abstract class: class that has at least one
pure virtual function

= Interface: class that has only pure virtual
functions and no data members

23



How virtual works

m A class with virtual functions has a virtual
table

= When calling a function the class checks
which of the virtual functions that match
the signature should be called

» Called runtime polymorphism
m Costs some time but is very convenient

24



References

= Fluent C++: structs vs classes:
https://goo.gl/NFo8HP [shortened]

25


https://goo.gl/NFo8HP

	Move semantics
	Classes
	Operator overloading
	Making your class copyable
	Making your class movable
	Rule of all or nothing
	Inheritance


