Modern C++ for
Computer Vision and
Image Processing

Igor Bogoslavskyi

UNIVERSITAT

Outline

Compilation flags and debugging
Functions

Header / Source Separation
Libraries

CMake Intro

Compilation flags

= There is a lot of flags that can be passed
while compiling the code

= We have seen some already:
-std=c++11, -o, etc.

Other useful options:

m Enable all warnings, treat them as errors:
-Wall, -Wextra, -Werror

® Optimization options:
® -00 - no optimizations
® -03 or -Ofast - full optimizations

= Keep debugging symbols: -g

https://godbolt.org/

Debugging tools

The best option is to use gdb

Insanely popular and powerful

No build-in gui

Use gdbgui for a user-friendly interface
Install gdbgui from pip:

sudo pip3 install --upgrade gdbgui

gul

https://gdbgui.com/

Functions

ReturnType FuncName (ParamTypel in_1, ParamType2 in_2) {

3

// Some awesome code here.
return return_value;

= Code can be organized into functions

= Functions create a scope

= Single return value from a function

= Any humber of input variables of any types
= Should do only one thing and do it right

= Name must show what the function does

m name functions in CamelCase
m write small functions

https://google.github.io/styleguide/cppguide.html#Write_Short_Functions

Good function example

#include <vector>

using namespace std;

vector<int> CreateVectorOfFullSquares (int size) {
vector<int> result(size); // Vector of size “size’
for (int i = 0; i < size; ++i) { result([i] = i * i; }
return result;

}

int main() {

auto squares = CreateVectorOfFullSquares(10);
return O;

}

= Is small enough to see all the code at once
= Name clearly states what the function does
= Function does a single thing

Bad function example 3758

CODING
HORROR

#include <vector>

using namespace std;

vector<int> Func(int a, bool b) {
if (b) { return vector<int>(10, a); }
vector<int> vec(a);
for (int i = 0; i < a; ++i) { vec[i] = a * i; }
if (vec.size() > a * 2) { vecl[a]l /= 2.0f; }
return vec;

= Name of the function means nothing
= Names of variables mean nothing
= Function does not have a single purpose

Declaration and definition

= Function declaration can be separated from
the implementation details
= Function declaration sets up an interface

void FuncName (int param) ;

= Function definition holds the
implementation of the function that can
even be hidden from the user

void FuncName (int param) {
// Implementation details.
cout << "This function is called FuncName! ";
cout << "Did you expect anything useful from it?";

}

Passing big objects

m By default in C++, objects are copied when
passed into functions

= If objects are big it might be slow
= Pass by reference to avoid copy

void DoSmth(std::string huge_string); // Slow.
void DoSmth(std::string& huge_string); // Faster. ‘,ﬁ,‘
Is the string still the same?

HORROR
string hello = "some_important_long_string";
DoSmth (hello) ;

Unknown without looking into DoSmth()!

Pass by reference intuition

pass by reference : pass by value

w-@ -G

*®, ™)

£itlcup(

www.penjee.com

= Pass by reference:
® yoid fillCup(Cup &cup);
m cup is full

= Pass by value:
® void fillCup(Cup cup);
= A copy of cup is full
® cup is still empty

10

Solution: use const references

m Pass const reference to the function
= Great speed as we pass a reference
® Passed object stays intact

void DoSmth(const std::string& huge_string) ;

m Use snake_case for all function arguments

= Non-const refs are mostly used in older
code written before C++11

= They can be useful but destroy readability
m Avoid using non-const refs

11

https://google.github.io/styleguide/cppguide.html#Reference_Arguments

Function overloading

= Compiler infers a function from arguments
= Cannot overload based on return type

m Return type plays no role at all

m Avoid non-obvious overloads

#include <iostream>
#include <string>
using namespace std;
string Func(int num) { return "int"; }
string Func(const string& str) { return "string"; }
int main() {
cout << Func (1) << endl;
cout << Func("hello") << endl;
return O;

3

12

https://google.github.io/styleguide/cppguide.html#Function_Overloading

Default arguments

® Functions can accept default arguments
= Only set in declaration not in definition

= Pro: simplify function calls
= Cons:
= Evaluated upon every call
= Values are hidden in declaration
= Can lead to unexpected behavior when overused

m Only use them when
readability gets much better

13

https://google.github.io/styleguide/cppguide.html#Default_Arguments

Example: default arguments

#include <iostream> // std::cout, std::endl
using namespace std;
string SayHello(const string& to_whom = "world") {
return "Hello " + to_whom + "!";
}
int main() {
cout << SayHello() << endl;
cout << SayHello("students") << endl;
return O0;

3

14

Don’t reinvent the wheel

= When using std: :vector, std: :array, etc.
try to avoid writing your own functions.

m Use #include <algorithm>

m There is a lot of functions in std which are
at least as fast as hand-written ones:

std::vector<float> v;
// Filling the vector omitted here.
std::sort(v.begin(), v.end()); // Sort ascending.
float sum = std::accumulate(v.begin(), v.end(), 0.0f);
float product = std::accumulate(

v.begin(), v.end(), 1.0f, std::multiplies<float>());

15

http://en.cppreference.com/w/cpp/algorithm

Header / Source Separation

= Move all declarations to header files (*.h)

= Implementation goes to *.cpp Or *.cc

// some file.h
Type SomeFunc (... args ...);

// some_file.cpp
#include "some_file.h"
Type SomeFunc(... args ...) { /* code */ }

// program.cpp
#include "some_file.h"
int main() {
SomeFunc (/* args */);
return O;

16

How to build this?

folder/
--- tools.h
--- tools.cpp
--- main.cpp

Short: we separate the code into modules
Declaration: tools.h

#pragma once // Ensure file is included only once
void MakeItSunny () ;
void MakeItRain();

17

How to build this?

Definition: tools.cpp

#include <iostream>

#include "tools.h"

void MakeItRain() {
// important weather manipulation code
std::cout << "Here! Now it rains! Happy?\n";

3

void MakeItSunny() { std::cerr << "Not available\n";

Calling: main.cpp

#include "tools.h"

int main() {
MakeItRain () ;
MakeItSunny () ;
return O0;

3

18

Just build it as before?

c++ -std=c++11 main.cpp -o main

Error:

/tmp/tools_main-Oeacf5.0: In function “main':
tools_main.cpp: undefined reference to “makeItRain()'
tools_main.cpp: undefined reference to “makeItSunny()'
clang: error: linker command failed with exit code 1
(use -v to see invocation)

19

Use modules and libraries!

Compile modules:
c++ -std=c++11 -c tools.cpp -o tools.o

Organize modules into libraries:
ar rcs libtools.a tools.o <other_modules>

Link libraries when building code:
c++ -std=c++11 main.cpp -L . -1ltools -o main

Run the code:
./main

20

Libraries

= Library: multiple object files that are
logically connected
m Types of libraries:
m Static: faster, take a lot of space, become part
of the end binary, named: 1lib*.a
= Dynamic: slower, can be copied, referenced by a
program, named lib*.so
= Create a static library with
ar rcs libname.a module.o module.o ..
m Static libraries are just archives just like
zip/tar/..

21

What is linking?

= The library is a binary object that contains
the compiled implementation of some
methods

= Linking maps a function declaration to its
compiled implementation

= To use a library we need a header and
the compiled library object

22

Use CMake to simplify the build

= One of the most popular build tools

= Does not build the code, generates files to
feed into a build system

m Cross-platform
= Very powerful, still build receipt is readable

= The library creation and linking can be
rewritten as follows:

add_library(tools tools.cpp)
add_executable(main main.cpp)
target_link_libraries(main tools)

23

Typical project structure

|-- project_name/

| |-- CMakelists.txt

|-- build/ # All generated build files
|-- bin/

| |-- tools_demo

[-- 1ib/

| |-- libtools.a

[-- src/

| |-- CMakelLists.txt

| |-- project_name

| |-- CMakelists.txt

| |-- tools.h

| |-- tools.cpp

| |-~ tools_demo.cpp

|-- tests/ # Tests for your code

| |-- test_tools.cpp

| | -- CMakelists.txt

|-- readme.md # How to use your code

24

Build process

®m CMakeLists.txt defines the whole build

= CMake reads CMakeLists.txt sequentially
= Build process:

«» cd <project_folder>

«» mkdir build

cd build

. cmake ..

. make -j2 # pass your number of cores here

b 9JhJ|d

25

First working CMakelists.txt

project(first_project) # Mandatory.
cmake _minimum_required (VERSION 3.1) # Mandatory.
set (CMAKE_CXX_STANDARD 11) # Use c++11.

tell cmake to output binaries here:

set (EXECUTABLE_OUTPUT_PATH ${PROJECT_SOURCE_DIR}/bin)
set (LIBRARY_OUTPUT_PATH ${PROJECT_SOURCE_DIR}/1lib)
tell cmake where to look for *.h files
include_directories (${PROJECT_SOURCE_DIR}/src)

create library "libtools"

add_library(tools src/tools.cpp)

add executable main

add_executable(main src/tools_main.cpp)

tell the linker to bind these objects together
target_link_libraries(main tools)

26

Useful commands in CMake

m Just a scripting language

m Has features of a scripting language, i.e.
functions, control structures, variables, etc.

= All variables are string

m Set variables with set (VAR VALUE)

» Get value of a variable with ${VAR}

= Show a message message (STATUS "message")
m Also possible WARNING, FATAL_ERROR

27

Use CMake in your builds

= Build process is standard and simple

= No need to remember sequence of
commands

= All generated build files are in one place
m CMake detects changes to the files

= Do this after changing files:

1. cd project/build
2. make -j2 # pass your number of cores here

28

Set compilation options in CMake

set (CMAKE_CXX_STANDARD 14)
Set build type if not set.
if (NOT CMAKE_BUILD_TYPE)

set (CMAKE_BUILD_TYPE Release)
endif ()
Set additional flags.
set (CMAKE_CXX_FLAGS "-Wall -Wextra")
set (CMAKE_CXX_FLAGS_DEBUG "-g -00")
set (CMAKE_CXX_FLAGS_RELEASE "-03")

m -Wall -Wextra: show all warnings

= -g: keep debug information in binary

® —O<num>: optimization level in {0, 1, 2, 3}
= 0: no optimization
= 3: full optimization

29

Remove build folder for
performing a clean build

= Sometimes you want a clean build
= It is very easy to do with CMake
1. cd project/build
2. make clean [remove generated binaries]
3. rm -r * [make sure you are in build folder]

30

Use pre-compiled library

= Sometimes you get a compiled library

= You can use it in your build

= For example, given libtools.so it can be
used in the project as follows:

find_library (TOOLS

NAMES tools

PATHS ${LIBRARY_OUTPUT_ PATH})
Use it for linking:
target_link_libraries(<some_binary> ${TOOLS})

31

References

= Compiler Explorer:
https://godbolt.org/

= Gdbgui:
https://gdbgui.com/

= Gdbgui tutorial:
https://www.youtube.com/watch?v=em842geJhfk

= CMake website:
https://cmake.org/

= Modern CMake Tutorial:
https://www.youtube.com/watch?v=eC9-iRN2b04

32

https://godbolt.org/
https://gdbgui.com/
https://www.youtube.com/watch?v=em842geJhfk
https://cmake.org/
https://www.youtube.com/watch?v=eC9-iRN2b04

	Compilation flags and debugging
	Functions
	Header / Source Separation
	Libraries
	CMake Intro

