Modern C++ for
Computer Vision and
Image Processing

Igor Bogoslavskyi and Cyrill Stachniss

UNIVERSITAT

Outline

Intro to C++

Variables and basic types
Built-in types
Strings
Vector and array
Control structures
If statement

Switch statement
Loops

Git and homework submission

Declaring variables

Variable declaration always follows pattern:
<TYPE> <NAME> [= <VALUE>];

m Every variable has a type
= Variables cannot change their type
= Always initialize variables if you can

int sad_uninitialized_var;
bool initializing_is_good = true;

Naming variables

= Name must start with a letter

Give variables meaningful names
Don’t be afraid to use longer names
Don’t include type in the name
Don’t use negation in the name

ehienxynelal name variables in snake_case
all lowercase, underscores separate words

m C++ is case sensitive:
some_var iS different from some_Var

https://google.github.io/styleguide/cppguide.html#General_Naming_Rules

Built-in types

“Out of the box” types in C++:

bool this_is_fun = false;

char carret_return = '\n';
int meaning_of_life = 42;

short smaller_int = 42;

long bigger_int = 42;
float fraction = 0.01f;

double precise_num = 0.01;

auto some_int = 13;

auto some_float = 13.0f;
auto some_double = 13.0;

//
//
//
//
//
//
//
//
//
//

Boolean: true or false.
Single character.
Integer number.

Short number.

Long number.

Single precision float.
Double precision float.
Automatic type [int].
Automatic type [float].
Automatic type [double].

[Advanced] If curious read detailed info here:
http://en.cppreference.com/w/cpp/language/types

http://en.cppreference.com/w/cpp/language/types

Operations on arithmetic types

= All character, integer and floating point
types are arithmetic

= Arithmetic operations: +, -, *, /

= Comparisons <, >, <=, >=, == return bool
ma+=1&a=a+ 1, same for -=, %=, /=, etc.
= Avoid == for floating point types

Some additional operations

= Boolean variables have logical operations
or: ||, and: &, not: !

bool is_happy = (!'is_hungry && is_warm) || is_rich

» Additional operations on integer variables:
= / is integer division: i.e. 7 / 3 ==
% is modulo division: i.e. 7 / 3 ==
Increment operator: a++ © ++a & a += 1
Decrement operator: a-- & -—a o a -= 1
~ Do not use de- increment operators within
A‘ﬁk another expression, i.e. a = (a++) + ++b

CODING
HORROR

Strings

#include <string> tO use std::string
Concatenate strings with +

Check if str is empty with str.empty ()
Works out of the box with I/O streams

#include <iostream>
#include <string>
int main() {

std:
std:
std:
std:
std:

:string hello = "Hello";

:cout << "Type your name:" << std::endl;

:string name = ""; // Init empty.

:cin >> name; // Read name.

:cout << hello + ", " + name + "!" << std::endl;

return O;

Use std::array for fixed size
collections of items

® #include <array> tO use std::array
m Store a collection of items of same type
= Create from data:

array<float, 3> arr = {1.0f, 2.0f, 3.0f};
m Access items with arr[i]

indexing starts with 0
m Number of stored items: arr.size()

m Useful access aliases:

m First item: arr.front() == arr[0]
m [ast item: arr.back() == arr[arr.size() - 1]

Use std::vector when number of
items is unknown before-wise

® #include <vector> tO USe std::vector
= Vector is implemented as a dynamic table
m Access stored items just like in std: :array

= Remove all elements: vec.clear()
= Add a new item in one of two ways:

B vec.emplace_back(value) [preferred, c++11]
® vec.push_back(value) [historically better known]

m Use it! It is fast and flexible!
Consider it to be a default container to
store collections of items of any same type

10

Optimize vector resizing

®m Many push_back/emplace_back operations
force vector to change its size many times

m reserve(n) ensures that the vector has
enough memory to store n items

= The parameter n can even be approximate

® This is a very important optimization

std::vector<std::string> vec;

const int kIterNum = 100;

// Always call reserve when you know the size.

vec.reserve (kIterNum) ;

for (int i = 0; i < kIterNum; ++i) {

vec.emplace_back("hello");

}

11

Example vector

#include <string>
#include <vector>
#include <iostream>
using namespace std;
int main() {

vector<int> numbers = {1, 2, 3};

vector<string> names = {"Igor", "Cyrill"};

names .push_back("another_string");

cout << "First name: " << names.front() << endl;
cout << "Last number: " << numbers.back() << endl;

return O;

12

Variables live in scopes

= There is a single global scope

m | ocal scopes start with { and ends with }

= All variables belong to the scope where
they have been declared

= All variables die in the end of their scope

m This is the core of C++ memory system

int main() { // Start of main scope.

float some_float = 13.13f; // Create variable.
{ // New inner scope.

auto another_float = some_float; // Copy variable.

} // another_float dies.
return O;
} // some_float dies.

13

Any variable can be const

m Use const to declare a constant
= The compiler will guard it from any changes
m Keyword const can be used with any type

m [elo[IMERINIRY name constants in CamelCase
starting with a small letter k:
® const float kImportantFloat = 20.0f;
B const int kSomeInt = 20;
® const std::string kHello = "hello";

® const iS part of type:
variable kSomeInt has type const int

= Tip: declare everything const unless it
must be changed

14

References to variables

= We can create a reference to any variable
m Use & to state that a variable is a reference

B float& ref = original variable;
B std::string& hello_ref = hello;

= Reference is part of type:
variable ref has type float&

= Whatever happens to a reference happens
to the variable and vice versa

= Yields performance gain as references
avoid copying data

15

Const with references

m References are fast but reduce control
= To avoid unwanted changes use const
B const float& ref = original_variable;
B const std::string& hello_ref = hello;

#include <iostream>
using namespace std;
int main() {

int num = 42; // Name has to fit on slides

int& ref = num;

const int& kRef = num;

ref = 0;

cout << ref << " " << num << " " << kRef << endl;
num = 42;

cout << ref << " " << num << " " << kRef << endl;

return O;

16

If statement

if (STATEMENT) {

// This is executed if STATEMENT == true
} else if (OTHER_STATEMENT) A

// This is executed if:

// (STATEMENT == false) && (OTHER_STATEMENT == true)
} else {
// This is executed if neither is true

}

m Used to conditionally execute code
m All the else cases can be omitted if nheeded
m STATEMENT can be any boolean expression

17

Switch statement

switch (STATEMENT) {
case CONST_1:

// This runs if STATEMENT == CONST_1.
break;

case CONST_2:
// This runs if STATEMENT == CONST_2.
break;

default:

// This runs if no other options worked.
}
= Used to conditionally execute code
= Can have many case statements
® break exits the switch block

m STATEMENT usually returns int or enum value

18

While loop

while (STATEMENT) {
// Loop while STATEMENT == true.
3

Example while loop:

bool condition = true;
while (condition) {
condition = /* Magically update condition. */

}

m Usually used when the exact number of
iterations is unknown before-wise

= Easy to form an endless loop by mistake

19

For loop

for (INITIAL_CONDITION; END_CONDITION; INCREMENT) {
// This happens until END_CONDITION == false
}

Example for loop:

for (int i = 0; i < COUNT; ++i) {
// This happens COUNT times.
3

m In C++ for loops are very fast. Use them!

m | ess flexible than while but less error-prone

m Use for when number of iterations is fixed
and while otherwise

20

Range for loop

m [terating over a standard containers like
array Or vector has simpler syntax

= Avoid mistakes with indices
= Show intent with the syntax
= Has been added in C++11

for (const auto& value : container) {
// This happens for each value in the container.

}

21

Exit loops and iterations

= We have control over loop iterations
m Use break to exit the loop
m Use continue to skip to next iteration

while (true) {
int i = /* Magically get new int. x*/
if (4 % 2 == 0) {
cerr << i << endl;
} else {
break;
}
}

22

] t
m Free software for distributed version control

= synchronizes local and remote files
= stores a history of all changes

23

What is synchronized?

= Local files on a computer
= Remote Files in the repository
= We are using a Gitlab server

Example repository:
https://gitlab.igg.uni-bonn.de/teaching/cpp-homeworks-2018

24

https://gitlab.igg.uni-bonn.de/teaching/cpp-homeworks-2018

Typical workflow

Cloning a repository:

B git clone <repo_url> <local_folder>
In <local folder>:

= Change files

B git add <files>

B ogit commit -am 'descriptive message'
B ogit push origin master

Git — the simple guide:
http://rogerdudler.github.io/git-guide/

25

http://rogerdudler.github.io/git-guide/

Submit homeworks through Git

u Log in £O nttps://gitlab.igg.uni-bonn.de/

Request access to cpp-2018 group:
https://gitlab.igg.uni-bonn.de/students/cpp-2018

Fork the base homework repository:
https://gitlab.igg.uni-bonn.de/Teaching/cpp-homeworks-2018
To fork a repository in Git means to create
a copy of the repository for your user

Fork C,
\

cpp-homeworks-2018 &
Forked from Teaching / cpp-homeworks-2018

7 Star 0 ¥ Fork 0 SSH v git@gitlab.igg.uni-bonn.de:igo I P~ + - A Global ~

26

https://gitlab.igg.uni-bonn.de/
https://gitlab.igg.uni-bonn.de/students/cpp-2018
https://gitlab.igg.uni-bonn.de/Teaching/cpp-homeworks-2018

Submit homeworks through Git

The address of your fork will be:

% /<your_name>/cpp-homeworks-2018
instead of:

% /teaching/cpp-homeworks-2018

To enable homework checks, from your fork:
n \Settings>> Members>> Select members to invite‘

= Pick ehw_bot (@) with developer rights
® This bot updates the Wiki in your project
with evaluation of your homework

= Now push anything into the repo:
git push origin master

27

How to see evaluation results

= Your repository has a Wiki page

= In a couple of minutes after a push open the
wiki page

= Example look:

Test results

Homework Name Task Name Test Name Result
Bash and C++ intro Guessinggame Build Succeeded ‘/

Simple Bash Test 1 v

With from homework bot (221

28

References

= Cpp Core Guidelines:
https://github.com/isocpp/CppCoreGuidelines

= Google Code Styleguide:
https://google.github.io/styleguide/cppguide.html

= Git guide:
http://rogerdudler.github.io/git-guide/

= C++ Tutorial:
http://www.cplusplus.com/doc/tutorial/

= Book: Code Complete 2 by Steve McConnell

29

https://github.com/isocpp/CppCoreGuidelines
https://google.github.io/styleguide/cppguide.html
http://rogerdudler.github.io/git-guide/
http://www.cplusplus.com/doc/tutorial/

	Intro to C++
	Variables and basic types
	Control structures

	Git and homework submission

