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Declaring variables

Variable declaration always follows pattern:
<TYPE> <NAME> [ = <VALUE>];

Every variable has a type
Variables cannot change their type
Always initialize variables if you can

1 int sad_uninitialized_var;
2 bool initializing_is_good = true;
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Naming variables

Name must start with a letter
Give variables meaningful names
Don’t be afraid to use longer names
Don’t include type in the name
Don’t use negation in the name
GOOGLE-STYLE name variables in snake_case
all lowercase, underscores separate words
C++ is case sensitive:
some_var is different from some_Var

0Google naming rules: https://google.github.io/styleguide/cppguide.html#General_Naming_Rules
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Built-in types

“Out of the box” types in C++:
1 bool this_is_fun = false; // Boolean: true or false.
2 char carret_return = '\n'; // Single character.
3 int meaning_of_life = 42; // Integer number.
4 short smaller_int = 42; // Short number.
5 long bigger_int = 42; // Long number.
6 float fraction = 0.01f; // Single precision float.
7 double precise_num = 0.01; // Double precision float.
8 auto some_int = 13; // Automatic type [int].
9 auto some_float = 13.0f; // Automatic type [float].

10 auto some_double = 13.0; // Automatic type [double].

[Advanced] If curious read detailed info here:
http://en.cppreference.com/w/cpp/language/types
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Operations on arithmetic types

All character, integer and floating point
types are arithmetic
Arithmetic operations: +, -, *, /
Comparisons <, >, <=, >=, == return bool
a += 1 ⇔ a = a + 1, same for -=, *=, /=, etc.
Avoid == for floating point types
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Some additional operations

Boolean variables have logical operations
or: ||, and: &&, not: !

1 bool is_happy = (!is_hungry && is_warm) || is_rich

Additional operations on integer variables:
/ is integer division: i.e. 7 / 3 == 2
% is modulo division: i.e. 7 / 3 == 1
Increment operator: a++ ⇔ ++a ⇔ a += 1
Decrement operator: a-- ⇔ --a ⇔ a -= 1
Do not use de- increment operators within
another expression, i.e. a = (a++) + ++b

Coding Horror image from Code Complete 2 book by Steve McConnell
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Strings

#include <string> to use std::string
Concatenate strings with +
Check if str is empty with str.empty()
Works out of the box with I/O streams

1 #include <iostream >
2 #include <string>
3 int main() {
4 std::string hello = "Hello";
5 std::cout << "Type your name:" << std::endl;
6 std::string name = ""; // Init empty.
7 std::cin >> name; // Read name.
8 std::cout << hello + ", " + name + "!" << std::endl;
9 return 0;

10 }
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Use std::array for fixed size
collections of items

#include <array> to use std::array
Store a collection of items of same type
Create from data:
array<float, 3> arr = {1.0f, 2.0f, 3.0f};
Access items with arr[i]
indexing starts with 0
Number of stored items: arr.size()
Useful access aliases:

First item: arr.front() == arr[0]
Last item: arr.back() == arr[arr.size() - 1]
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Use std::vector when number of
items is unknown before-wise

#include <vector> to use std::vector
Vector is implemented as a dynamic table
Access stored items just like in std::array
Remove all elements: vec.clear()
Add a new item in one of two ways:

vec.emplace_back(value) [preferred, c++11]
vec.push_back(value) [historically better known]

Use it! It is fast and flexible!
Consider it to be a default container to
store collections of items of any same type
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Optimize vector resizing

Many push_back/emplace_back operations
force vector to change its size many times
reserve(n) ensures that the vector has
enough memory to store n items
The parameter n can even be approximate
This is a very important optimization

1 std::vector<std::string> vec;
2 const int kIterNum = 100;
3 // Always call reserve when you know the size.
4 vec.reserve(kIterNum);
5 for (int i = 0; i < kIterNum; ++i) {
6 vec.emplace_back("hello");
7 }
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Example vector

1 #include <string>
2 #include <vector>
3 #include <iostream >
4 using namespace std;
5 int main() {
6 vector<int> numbers = {1, 2, 3};
7 vector<string> names = {"Igor", "Cyrill"};
8 names.push_back("another_string");
9 cout << "First name: " << names.front() << endl;

10 cout << "Last number: " << numbers.back() << endl;
11 return 0;
12 }
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Variables live in scopes

There is a single global scope
Local scopes start with { and ends with }
All variables belong to the scope where
they have been declared
All variables die in the end of their scope
This is the core of C++ memory system

1 int main() { // Start of main scope.
2 float some_float = 13.13f; // Create variable.
3 { // New inner scope.
4 auto another_float = some_float; // Copy variable.
5 } // another_float dies.
6 return 0;
7 } // some_float dies.
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Any variable can be const

Use const to declare a constant
The compiler will guard it from any changes
Keyword const can be used with any type
GOOGLE-STYLE name constants in CamelCase
starting with a small letter k:

const float kImportantFloat = 20.0f;
const int kSomeInt = 20;
const std::string kHello = "hello";

const is part of type:
variable kSomeInt has type const int
Tip: declare everything const unless it
must be changed
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References to variables

We can create a reference to any variable
Use & to state that a variable is a reference

float& ref = original_variable;
std::string& hello_ref = hello;

Reference is part of type:
variable ref has type float&
Whatever happens to a reference happens
to the variable and vice versa
Yields performance gain as references
avoid copying data
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Const with references
References are fast but reduce control
To avoid unwanted changes use const

const float& ref = original_variable;
const std::string& hello_ref = hello;

1 #include <iostream >
2 using namespace std;
3 int main() {
4 int num = 42; // Name has to fit on slides
5 int& ref = num;
6 const int& kRef = num;
7 ref = 0;
8 cout << ref << " " << num << " " << kRef << endl;
9 num = 42;

10 cout << ref << " " << num << " " << kRef << endl;
11 return 0;
12 }
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If statement

1 if (STATEMENT) {
2 // This is executed if STATEMENT == true
3 } else if (OTHER_STATEMENT) {
4 // This is executed if:
5 // (STATEMENT == false) && (OTHER_STATEMENT == true)
6 } else {
7 // This is executed if neither is true
8 }

Used to conditionally execute code
All the else cases can be omitted if needed
STATEMENT can be any boolean expression
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Switch statement

1 switch(STATEMENT) {
2 case CONST_1:
3 // This runs if STATEMENT == CONST_1.
4 break;
5 case CONST_2:
6 // This runs if STATEMENT == CONST_2.
7 break;
8 default:
9 // This runs if no other options worked.

10 }

Used to conditionally execute code
Can have many case statements
break exits the switch block
STATEMENT usually returns int or enum value
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While loop

1 while (STATEMENT) {
2 // Loop while STATEMENT == true.
3 }

Example while loop:
1 bool condition = true;
2 while (condition) {
3 condition = /* Magically update condition. */
4 }

Usually used when the exact number of
iterations is unknown before-wise
Easy to form an endless loop by mistake
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For loop

1 for (INITIAL_CONDITION; END_CONDITION; INCREMENT) {
2 // This happens until END_CONDITION == false
3 }

Example for loop:
1 for (int i = 0; i < COUNT; ++i) {
2 // This happens COUNT times.
3 }

In C++ for loops are very fast. Use them!
Less flexible than while but less error-prone
Use for when number of iterations is fixed
and while otherwise
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Range for loop

Iterating over a standard containers like
array or vector has simpler syntax
Avoid mistakes with indices
Show intent with the syntax
Has been added in C++11

1 for (const auto& value : container) {
2 // This happens for each value in the container.
3 }
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Exit loops and iterations

We have control over loop iterations
Use break to exit the loop
Use continue to skip to next iteration

1 while (true) {
2 int i = /* Magically get new int. */
3 if (i % 2 == 0) {
4 cerr << i << endl;
5 } else {
6 break;
7 }
8 }
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Free software for distributed version control
synchronizes local and remote files
stores a history of all changes
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What is synchronized?

Local files on a computer
Remote Files in the repository
We are using a Gitlab server

Example repository:
https://gitlab.igg.uni-bonn.de/teaching/cpp-homeworks-2018
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Typical workflow

Cloning a repository:
git clone <repo_url> <local_folder>

In <local_folder>:
Change files
git add <files>
git commit -am 'descriptive message'
git push origin master

Git — the simple guide:
http://rogerdudler.github.io/git-guide/
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Submit homeworks through Git

Log in to https://gitlab.igg.uni-bonn.de/

Request access to cpp-2018 group:
https://gitlab.igg.uni-bonn.de/students/cpp-2018

Fork the base homework repository:
https://gitlab.igg.uni-bonn.de/Teaching/cpp-homeworks-2018

To fork a repository in Git means to create
a copy of the repository for your user
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Submit homeworks through Git
The address of your fork will be:

/<your_name>/cpp-homeworks-2018
instead of:

/teaching/cpp-homeworks-2018

To enable homework checks, from your fork:
Settings Members Select members to invite

Pick @hw_bot with developer rights
This bot updates the Wiki in your project
with evaluation of your homework
Now push anything into the repo:
git push origin master
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How to see evaluation results

Your repository has a Wiki page
In a couple of minutes after a push open the
wiki page
Example look:
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