
Modern C++ for
Computer Vision and
Image Processing

Igor Bogoslavskyi and Cyrill Stachniss

Outline

Intro to C++
Variables and basic types

Built-in types
Strings
Vector and array

Control structures
If statement
Switch statement
Loops

Git and homework submission

2

Declaring variables

Variable declaration always follows pattern:
<TYPE> <NAME> [= <VALUE>];

Every variable has a type
Variables cannot change their type
Always initialize variables if you can

1 int sad_uninitialized_var;
2 bool initializing_is_good = true;

3

Naming variables

Name must start with a letter
Give variables meaningful names
Don’t be afraid to use longer names
Don’t include type in the name
Don’t use negation in the name
GOOGLE-STYLE name variables in snake_case
all lowercase, underscores separate words
C++ is case sensitive:
some_var is different from some_Var

0Google naming rules: https://google.github.io/styleguide/cppguide.html#General_Naming_Rules
4

https://google.github.io/styleguide/cppguide.html#General_Naming_Rules

Built-in types

“Out of the box” types in C++:
1 bool this_is_fun = false; // Boolean: true or false.
2 char carret_return = '\n'; // Single character.
3 int meaning_of_life = 42; // Integer number.
4 short smaller_int = 42; // Short number.
5 long bigger_int = 42; // Long number.
6 float fraction = 0.01f; // Single precision float.
7 double precise_num = 0.01; // Double precision float.
8 auto some_int = 13; // Automatic type [int].
9 auto some_float = 13.0f; // Automatic type [float].

10 auto some_double = 13.0; // Automatic type [double].

[Advanced] If curious read detailed info here:
http://en.cppreference.com/w/cpp/language/types

5

http://en.cppreference.com/w/cpp/language/types

Operations on arithmetic types

All character, integer and floating point
types are arithmetic
Arithmetic operations: +, -, *, /
Comparisons <, >, <=, >=, == return bool
a += 1 ⇔ a = a + 1, same for -=, *=, /=, etc.
Avoid == for floating point types

6

Some additional operations

Boolean variables have logical operations
or: ||, and: &&, not: !

1 bool is_happy = (!is_hungry && is_warm) || is_rich

Additional operations on integer variables:
/ is integer division: i.e. 7 / 3 == 2
% is modulo division: i.e. 7 / 3 == 1
Increment operator: a++ ⇔ ++a ⇔ a += 1
Decrement operator: a-- ⇔ --a ⇔ a -= 1
Do not use de- increment operators within
another expression, i.e. a = (a++) + ++b

Coding Horror image from Code Complete 2 book by Steve McConnell

7

Strings

#include <string> to use std::string
Concatenate strings with +
Check if str is empty with str.empty()
Works out of the box with I/O streams

1 #include <iostream >
2 #include <string>
3 int main() {
4 std::string hello = "Hello";
5 std::cout << "Type your name:" << std::endl;
6 std::string name = ""; // Init empty.
7 std::cin >> name; // Read name.
8 std::cout << hello + ", " + name + "!" << std::endl;
9 return 0;

10 }

8

Use std::array for fixed size
collections of items

#include <array> to use std::array
Store a collection of items of same type
Create from data:
array<float, 3> arr = {1.0f, 2.0f, 3.0f};
Access items with arr[i]
indexing starts with 0
Number of stored items: arr.size()
Useful access aliases:

First item: arr.front() == arr[0]
Last item: arr.back() == arr[arr.size() - 1]

9

Use std::vector when number of
items is unknown before-wise

#include <vector> to use std::vector
Vector is implemented as a dynamic table
Access stored items just like in std::array
Remove all elements: vec.clear()
Add a new item in one of two ways:

vec.emplace_back(value) [preferred, c++11]
vec.push_back(value) [historically better known]

Use it! It is fast and flexible!
Consider it to be a default container to
store collections of items of any same type

10

Optimize vector resizing

Many push_back/emplace_back operations
force vector to change its size many times
reserve(n) ensures that the vector has
enough memory to store n items
The parameter n can even be approximate
This is a very important optimization

1 std::vector<std::string> vec;
2 const int kIterNum = 100;
3 // Always call reserve when you know the size.
4 vec.reserve(kIterNum);
5 for (int i = 0; i < kIterNum; ++i) {
6 vec.emplace_back("hello");
7 }

11

Example vector

1 #include <string>
2 #include <vector>
3 #include <iostream >
4 using namespace std;
5 int main() {
6 vector<int> numbers = {1, 2, 3};
7 vector<string> names = {"Igor", "Cyrill"};
8 names.push_back("another_string");
9 cout << "First name: " << names.front() << endl;

10 cout << "Last number: " << numbers.back() << endl;
11 return 0;
12 }

12

Variables live in scopes

There is a single global scope
Local scopes start with { and ends with }
All variables belong to the scope where
they have been declared
All variables die in the end of their scope
This is the core of C++ memory system

1 int main() { // Start of main scope.
2 float some_float = 13.13f; // Create variable.
3 { // New inner scope.
4 auto another_float = some_float; // Copy variable.
5 } // another_float dies.
6 return 0;
7 } // some_float dies.

13

Any variable can be const

Use const to declare a constant
The compiler will guard it from any changes
Keyword const can be used with any type
GOOGLE-STYLE name constants in CamelCase
starting with a small letter k:

const float kImportantFloat = 20.0f;
const int kSomeInt = 20;
const std::string kHello = "hello";

const is part of type:
variable kSomeInt has type const int
Tip: declare everything const unless it
must be changed

14

References to variables

We can create a reference to any variable
Use & to state that a variable is a reference

float& ref = original_variable;
std::string& hello_ref = hello;

Reference is part of type:
variable ref has type float&
Whatever happens to a reference happens
to the variable and vice versa
Yields performance gain as references
avoid copying data

15

Const with references
References are fast but reduce control
To avoid unwanted changes use const

const float& ref = original_variable;
const std::string& hello_ref = hello;

1 #include <iostream >
2 using namespace std;
3 int main() {
4 int num = 42; // Name has to fit on slides
5 int& ref = num;
6 const int& kRef = num;
7 ref = 0;
8 cout << ref << " " << num << " " << kRef << endl;
9 num = 42;

10 cout << ref << " " << num << " " << kRef << endl;
11 return 0;
12 }

16

If statement

1 if (STATEMENT) {
2 // This is executed if STATEMENT == true
3 } else if (OTHER_STATEMENT) {
4 // This is executed if:
5 // (STATEMENT == false) && (OTHER_STATEMENT == true)
6 } else {
7 // This is executed if neither is true
8 }

Used to conditionally execute code
All the else cases can be omitted if needed
STATEMENT can be any boolean expression

17

Switch statement

1 switch(STATEMENT) {
2 case CONST_1:
3 // This runs if STATEMENT == CONST_1.
4 break;
5 case CONST_2:
6 // This runs if STATEMENT == CONST_2.
7 break;
8 default:
9 // This runs if no other options worked.

10 }

Used to conditionally execute code
Can have many case statements
break exits the switch block
STATEMENT usually returns int or enum value

18

While loop

1 while (STATEMENT) {
2 // Loop while STATEMENT == true.
3 }

Example while loop:
1 bool condition = true;
2 while (condition) {
3 condition = /* Magically update condition. */
4 }

Usually used when the exact number of
iterations is unknown before-wise
Easy to form an endless loop by mistake

19

For loop

1 for (INITIAL_CONDITION; END_CONDITION; INCREMENT) {
2 // This happens until END_CONDITION == false
3 }

Example for loop:
1 for (int i = 0; i < COUNT; ++i) {
2 // This happens COUNT times.
3 }

In C++ for loops are very fast. Use them!
Less flexible than while but less error-prone
Use for when number of iterations is fixed
and while otherwise

20

Range for loop

Iterating over a standard containers like
array or vector has simpler syntax
Avoid mistakes with indices
Show intent with the syntax
Has been added in C++11

1 for (const auto& value : container) {
2 // This happens for each value in the container.
3 }

21

Exit loops and iterations

We have control over loop iterations
Use break to exit the loop
Use continue to skip to next iteration

1 while (true) {
2 int i = /* Magically get new int. */
3 if (i % 2 == 0) {
4 cerr << i << endl;
5 } else {
6 break;
7 }
8 }

22

Free software for distributed version control
synchronizes local and remote files
stores a history of all changes

23

What is synchronized?

Local files on a computer
Remote Files in the repository
We are using a Gitlab server

Example repository:
https://gitlab.igg.uni-bonn.de/teaching/cpp-homeworks-2018

24

https://gitlab.igg.uni-bonn.de/teaching/cpp-homeworks-2018

Typical workflow

Cloning a repository:
git clone <repo_url> <local_folder>

In <local_folder>:
Change files
git add <files>
git commit -am 'descriptive message'
git push origin master

Git — the simple guide:
http://rogerdudler.github.io/git-guide/

25

http://rogerdudler.github.io/git-guide/

Submit homeworks through Git

Log in to https://gitlab.igg.uni-bonn.de/

Request access to cpp-2018 group:
https://gitlab.igg.uni-bonn.de/students/cpp-2018

Fork the base homework repository:
https://gitlab.igg.uni-bonn.de/Teaching/cpp-homeworks-2018

To fork a repository in Git means to create
a copy of the repository for your user

26

https://gitlab.igg.uni-bonn.de/
https://gitlab.igg.uni-bonn.de/students/cpp-2018
https://gitlab.igg.uni-bonn.de/Teaching/cpp-homeworks-2018

Submit homeworks through Git
The address of your fork will be:

/<your_name>/cpp-homeworks-2018
instead of:

/teaching/cpp-homeworks-2018

To enable homework checks, from your fork:
Settings Members Select members to invite

Pick @hw_bot with developer rights
This bot updates the Wiki in your project
with evaluation of your homework
Now push anything into the repo:
git push origin master

27

How to see evaluation results

Your repository has a Wiki page
In a couple of minutes after a push open the
wiki page
Example look:

28

References

Cpp Core Guidelines:
https://github.com/isocpp/CppCoreGuidelines

Google Code Styleguide:
https://google.github.io/styleguide/cppguide.html

Git guide:
http://rogerdudler.github.io/git-guide/

C++ Tutorial:
http://www.cplusplus.com/doc/tutorial/

Book: Code Complete 2 by Steve McConnell

29

https://github.com/isocpp/CppCoreGuidelines
https://google.github.io/styleguide/cppguide.html
http://rogerdudler.github.io/git-guide/
http://www.cplusplus.com/doc/tutorial/

	Intro to C++
	Variables and basic types
	Control structures

	Git and homework submission

