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Abstract— The awareness about moving objects in the sur-
roundings of a self-driving vehicle is essential for safe and
reliable autonomous navigation. The interpretation of LiDAR
and camera data achieves exceptional results but typically
requires to accumulate and process temporal sequences of data
in order to extract motion information. In contrast, radar
sensors, which are already installed in most recent vehicles, can
overcome this limitation as they directly provide the Doppler
velocity of the detections and, hence incorporate instantaneous
motion information within a single measurement. In this paper,
we tackle the problem of moving object segmentation in noisy
radar point clouds. We also consider differentiating parked
from moving cars, to enhance scene understanding. Instead of
exploiting temporal dependencies to identify moving objects,
we develop a novel transformer-based approach to perform
single-scan moving object segmentation in sparse radar scans
accurately. The key to our Radar Velocity Transformer is
to incorporate the valuable velocity information throughout
each module of the network, thereby enabling the precise
segmentation of moving and non-moving objects. Additionally,
we propose a transformer-based upsampling, which enhances
the performance by adaptively combining information and over-
coming the limitation of interpolation of sparse point clouds.
Finally, we create a new radar moving object segmentation
benchmark based on the RadarScenes dataset and compare
our approach to other state-of-the-art methods. Our network
runs faster than the frame rate of the sensor and shows superior
segmentation results using only single-scan radar data.

I. INTRODUCTION

Self-driving vehicles need to distinguish moving from
stationary objects to safely navigate in dynamic, real-world
environments. To enable redundancy and overcome the short-
comings of individual sensors, the sensor suites of au-
tonomous vehicles are versatile, including cameras, LiDARs,
and radars. The widely explored camera and LiDAR sensors
utilize temporal sequences of input data to segment moving
objects, often neglecting the valuable information of radar
data. The Doppler velocity provided by a radar enables the
identification of moving objects in single scans and radar
sensors work under adverse weather, including rain, fog,
and snow where other modalities encounter difficulties. A
serious drawback, however, is that the radar scans are largely
affected by noise due to multi-path propagation, ego-motion,
and sensor noise. The noisy measurements frequently lead
to false positives and make threshold-based moving object
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Fig. 1: Our learning-based approach enhance moving object seg-
mentation (middle), from noisy, single-scan radar point clouds (top)
compared to a velocity threshold determined on the validation set.
Best viewed in color.

segmentation [32] unacceptable, as visualized in Fig. 1. We
aim at investigating in this paper how the additional sensor
information of the Doppler velocity can be exploited by
learning-based approaches to enable reliable identification of
moving objects in the environment. Furthermore, the radar
cross section, which depends on the material properties and
the structure of the detection, supports the differentiation of
closely connected objects.

We investigate moving object segmentation in radar point
clouds. This task requires differentiation between the detec-
tion of moving and stationary objects. To accurately differen-
tiate between the two classes, we exploit single radar point
clouds, including the valuable Doppler velocity and radar
cross section. State-of-the-art methods for moving object
segmentation for camera and LiDAR data rely on the elabo-
ration of temporal dependencies in videos [10] or aggregated



residuals between previous scans [18]. The processing of
multiple frames induces latency which is unsuitable for a
task requiring immediate information about the environment
such as collision avoidance. Therefore, we investigate the
processing of single, sparse radar point clouds by exploiting
additional and valuable radar sensor information to leverage
the full potential of radar sensors.

The main contribution of this paper is a novel learning-
based approach that accurately predicts moving objects in
sparse, single-scan radar point clouds. Our approach, called
Radar Velocity Transformer, predicts for each point in the
input radar scan the semantic label of moving or non-moving.
To classify the individual detection and extract valuable
point-wise features, we introduce the velocity encoding in
each module of our network. The encoding of the velocity
enhances the performance by injecting important information
throughout the network. We optimize the feature aggregation
in the decoder part by our transformer-based upsampling to
adaptively merge features and capture complex local struc-
tures in sparse point clouds. Furthermore, we reorganized
the RadarScenes [34] dataset providing semantic classes for
individual detection, which we transfer into moving and non-
moving labels establishing a single-scan benchmark.

In sum, we make two key claims: (i) Our approach is able
to accurately perform moving object segmentation in single-
scan, noisy radar point clouds and enhance the state of the art
in moving object segmentation without exploiting temporal
dependencies; (ii) The velocity encoding throughout the
network and the transformer-based upsampling are essen-
tial to derive highly discriminative features and adaptively
aggregate information to enhance accuracy.

II. RELATED WORK

Moving object segmentation in point clouds can be cat-
egorized into map-based [17], [24], [31] and map-free ap-
proaches [18], [23], [37]. Current advancements focus on
the latter to work online and remove the burden of pre-
built maps, which is further supported by scene flow es-
timation [1], [8], [11], [19], [36], [40], [42] and semantic
segmentation [12], [16], [44], [46], [47], [52]. To differentiate
between the methods, we distinguish between projection-
based, voxel-based, point-based, transformer-based, and hy-
brid methods.

Projection-based methods are introduced to utilize the
successful convolutional neural networks (CNNs) on 3D
data. For example, Chen et al. [4] first project the LiDAR
point clouds into 2D range images and provide the residual
images of previous scans as input to SalsaNext [6] to
perform moving object segmentation on SemanticKITTI [2].
Kim et al. [18] extend the approach and improve state-of-the-
art performance for moving object segmentation in LiDAR
data by efficient data augmentation and the attention-based
fusion module to combine semantic and motion features. The
methods are highly efficient but face back projection artifacts
when transferring the 2D predictions to the 3D point cloud
which harms the accuracy.

Voxel-based methods keep the 3D information intact and
hence reduce the limitations caused by back projection. Mer-
sch et al. [23] adopted the Minkowski engine [5] and propose
a receding horizon strategy to incorporate new scans in an
online fashion and refine predictions by Bayesian filtering
to enhance LiDAR moving object segmentation. However,
the voxel-based methods inherently introduced discretization
artifacts resulting in an information loss.

Point-based methods [21], [28], [39] allow for keeping the
full spatial information of point clouds, which is desirable,
especially for sparse point clouds. The pioneering work of
Qi et al. [28], called PointNet, utilizes shared multi-layer
perceptrons (MLPs) to directly consume point clouds and
aggregate nearby information by max pooling functions.
FlowNet3D [21], FlowNet3D++ [39], and FLOT [27] follow
PointNet++ [29] and introduce dedicated architectures for
point-based scene flow estimation in LiDAR point clouds.
Schumann et al. [33] adapt the hierarchical grouping of
PointNet++ [29] combining features from multiple scales
and extending their approach by exploiting strong temporal
dependencies by the aggregation of consecutive scans [35] to
enhance semantic segmentation of sparse radar point clouds.
Fan et al. [10] propose P4Transformer, which combines 4D
point-based convolutions with video-level self-attention to
merge related local areas spatially and temporally. The point-
based method benefits from the transformer-based module
since the self-attention mechanism [25], [43], [49] is invari-
ant to permutation and thus inherently suitable to capture
strong local and global dependencies and extract valuable
features in point clouds.

Transformer-based methods dominate a variety of tasks
from natural language processing to point cloud understand-
ing by exploiting the powerful self-attention mechanism [7],
[12], [20], [30], [38], [44], [50], [52]. Guo et al. [12] pro-
pose offset-attention with an implicit Laplace operator and
normalization refinement to reduce the influence of noise and
sharpen the attention weights. SAFIT [36] models relations
on object and point level via transformers to estimate scene
flow. Since the self-attention mechanism is computationally
expensive, transformer-based networks benefit from effective
sampling strategies to aggregate local features and reduce
the computational cost. Besides the wide range of sampling
algorithms [15], [41], [48], [49] the common method for
downsampling is farthest point sampling following max pool-
ing [29]. For upsampling, trilinear interpolation is usually
the method of choice based on an inverse distance weighted
average [29]. To further keep fined-grained position infor-
mation throughout the network, Zhao et al. [52] introduce
the trainable position encoding and adapt vector-based at-
tention [51]. Stratified Transformer [44] extends the position
encoding and aggregates long-range context by a window-
based key-sampling strategy to enhance the accuracy.

In this paper, we follow recent advancements and pro-
pose a novel transformer-based moving object segmenta-
tion method for sparse and noisy radar data. In contrast
to the related work, our newly introduced Radar Veloc-
ity Transformer extends the transformer layer and exploits
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Fig. 2: The detailed design of each module of our Radar Velocity Transformer (a) shows the Radar Velocity Transformer, (b) the velocity
transformer block with the velocity transformer layer, (c) the downsampling layer, and (d) the transformer-based upsampling layer. The
different colors stand for the different building blocks. The tuples denote the number of points and feature channels in each stage. MLP:
multi-layer perceptron, FCL: fully connected layer, vel. encoding: velocity encoding, pos. enc.: positional encoding, FPS: farthest point
sampling, kNN: k-nearest neighbor, concat.: concatenation, W : weight matrices

the valuable velocity information throughout the network.
Furthermore, our proposed network includes an advanced
transformer-based upsampling strategy to capture complex
local structures and enhances state-of-the-art performance
for moving object segmentation in single-scan radar point
clouds.

III. OUR APPROACH

The goal of our approach is to achieve precise moving ob-
ject segmentation in single-scan, sparse radar point clouds to
enhance the environmental perception of autonomous vehi-
cles. Fig. 2 illustrates our Radar Velocity Transformer (RVT),
which is a transformer-based framework that builds upon
the successful self-attention mechanism [38] and directly
processes the input point cloud to omit information loss. We
incorporate the valuable Doppler velocity information within
each module and use the so-called velocity transformer layer
as the central building block of each encoder-decoder stage.
Furthermore, we introduce transformer-based upsampling
modules to adaptively combine local context information to
enable fine-grained feature extraction.

A. Velocity Transformer Layer

In sparse radar point clouds, the information of individual
detections can be of great benefit for solving downstream
tasks such as moving object segmentation. Therefore, we
introduce a velocity transformer layer to enhance feature
extraction, as illustrated in Fig. 2 (b).

The inputs are single-scan radar point clouds Ps with
point coordinates pi ∈ R2, ego-motion compensated Doppler

velocity vi ∈ R, and point-wise features xi ∈ RD with
feature dimension, D.

Since the Doppler velocity provides essential information
about the moving and non-moving parts of the environment,
we incorporate the information as a central part of our
velocity transformer layer. The idea is to support accurate
moving object segmentation based on the relative velocity
rvi,j ∈ RN×Nvtl since this enables the differentiation of nearby
points and the identification of moving objects. Hence, we
process the relative velocity rvi,j = vi − vj by two fully
connected layers and the Gaussian error linear unit (GELU)
as an activation function [14] to include the information. The
rest of our velocity transformer layer follows standard trans-
formers [51], [52] and relies on the encoded representation
of the input features x. The queries q, the keys k, and the
values v are determined by multi-layer perceptrons with the
corresponding weight matrices Wq ∈ RD×D, Wk ∈ RD×D

and Wv ∈ RD×D, as follows:

q = Wqx, k = Wkx, v = Wvx. (1)

As relation functions g for the queries and the keys, we
utilize subtraction. For the positional encoding, we adapt
the approach of Zhao et al. [52] and process the relative
position rpi,j = pi − pj by two fully connected layers and
the GELU. To calculate the attention scores ai,j within local
areas, we adapt vector attention [51] to allow for a weighting
of individual feature channels. We determine the local areas
with Nvtl points by farthest point sampling and k-nearest
neighbor (kNN) algorithm. To enable fine-grained informa-



tion aggregation, we calculate attention weights based on the
sum of the relation of queries and keys g(qi,kj), the relative
position encoding rpi,j , and the relative velocity encoding rvi,j .
The final attention weights are determined by the softmax
function:

ai,j = softmax(g(qi,kj) + rpi,j + rvi,j). (2)

Additionally, we add the relative velocity encoding to
the values and the relative position encoding to derive the
combined values vc

i,j = vi,j + rpi,j + rvi,j , which include and
update the valuable information throughout the network. To
derive the weighted features y, we calculate the sum of the
element-wise multiplication:

yj =

Nvtl∑
i=1

ai,j � vc
i , (3)

within the local areas. The aggregated features which are
enriched by the velocity encoding y are directly processed
by the following module to reduce the computational cost
within the velocity transformer layer.

B. Velocity Transformer Block

Our velocity transformer block is a residual block [13],
similar to the point transformer block [52], that embeds
the velocity transformer layer in the center of two fully
connected layers, as depicted in Fig. 2 (b). We add Lay-
erNorm [45] and a GELU activation function for each fully
connected layer. The features xi are processed by the velocity
transformer layer and the linear layers to enrich the informa-
tion of individual points within local areas. The velocity and
position data are utilized to determine the relative encodings
but are not further transformed to keep unaltered information
throughout the network.

C. Downsampling Layer

The downsampling layer reduces the cardinality of the
point cloud Ps+1 ⊂ Ps after each stage s and has to keep the
most relevant information intact. Following Qi et al. [29], we
adapt the max pooling operation depicted in Fig. 2 (c). We
first process the feature vector by a linear layer. To derive the
local areas, we sample and group the points by farthest point
sampling and kNN algorithm. The features and the Doppler
velocity values are sampled and grouped accordingly. To also
induce valuable velocity information in the downsampling,
we concatenate the features, the position, and the velocity
information. Afterward, we apply max pooling to aggregate
the information and process the feature vector by a fully
connected layer. We reduce the number of points Ns by a
factor of 2 and keep the position and velocity information
of the downsampled point cloud to enrich the information in
deeper layers.

D. Transformer-based Upsampling Layer

The common upsampling method interpolates the k = 3
nearest neighbors based on an inverse distance weighted
average [29] and combines these with the features of the
skip connection. Especially at the boundaries of moving

objects, the straightforward interpolation can result in a
combination of features of different classes, which can harm
the extraction of discriminative features. Hence, we argue
that the upsampling and the aggregation of the features in the
decoder part of the network are crucial to enhance accuracy,
especially for sparse point clouds.

To adaptively merge the information of the two point
clouds, we propose the transformer-based upsampling layer
visualized in Fig. 2 (d). The idea is to enable the network to
learn to concatenate important information by inter-attention
to extract valuable features. The inputs are the output point
cloud of the previous velocity transformer block Ps, with the
number of points Ns, which has to be upsampled, and the
point cloud of the skip connection Pskip where Ns ≤ Nskip.

Inspired by our velocity transformer layer, we first encode
the features xs as keys k, and values v and the features xskip
as queries q, following Eq. (1). To determine the relative
position and velocity encoding, we calculate the k-nearest
neighbors for the point cloud of the skip connection Pskip
within the point cloud Ps.

In the sample and grouping module, we compute the
relative position and velocity of the correspondent points of
the two point clouds. We determine the encodings by two
fully connected layers with the GELU activation function.
In contrast to the velocity transformer layer, we calculate
individual attention weights for the relation of queries and
keys aqki,j , the relative position encoding api,j , and the relative
velocity encoding avi,j to enable fine-grained information
aggregation and enhance accuracy. The individual attention
weights are determined by the softmax function as follows:

aqki,j =softmax(g(qi,kj)), (4)

api,j =softmax(rpi,j), (5)

avi,j =softmax(rvi,j). (6)

We concatenate the individual attention weights to derive
the final attention scores ai,j = (aqki,j ,a

p
i,j ,a

v
i,j). To weight

the respective information, the values v are concatenated
with rpi,j and the velocity encoding rvi,j resulting in the
combined values vc

i,j = (vi,j , r
p
i,j , r

v
i,j).

To derive the weighted features y, we calculate the sum
of the element-wise multiplication:

yj =

Ntus∑
i=1

ai,j � vc
i , (7)

within local areas. The aggregated features y are processed
by a fully connected layer to compress the features to the
original feature dimension D with a learnable weight matrix
Wy ∈ R(D+12)×D:

z = Wyy, (8)

where z are the updated features for the upsampled point
cloud. The fully connected layer enables the information
exchange of the individual parts and reduces the complexity
of the succeeding modules.

The final output of the transformer-based upsampling layer
is the sum of the features xskip and z, which incorporates



Method Input IoU

Threshold |vi| > t single-scan 35.1
4DMOS [23] multiple-scan 73.1
Stratified Transformer [44] single-scan 74.6
Our Radar Velocity Transformer single-scan 81.3

TABLE I: Moving object segmentation results on the RadarScenes
test set in terms of IoU for the moving class. The threshold
t = 0.92m/s is determined on the validation set and afterwards
applied to the test set [32].

the valuable information of both point clouds to derive
discriminative features.

E. Network Architecture

We build our network architecture based on the widely-
used U-Net [29], [52] with an encoder-decoder architecture
including skip connections as illustrated in Fig. 2. The
input to the network are the features xi

i, the position in-
formation pi with two spatial coordinates xCi , yCi , and the
ego-motion compensated Doppler velocity vi. The features
include the position, the velocity, and additionally, the radar
cross section σi resulting in a 4-dimensional vector xi

i =
(xCi , y

C
i , vi, σi). The input xi

i are processed in each stage s
resulting in the features xs. The input is first processed by
an MLP before being passed to the first velocity transformer
layer. The per-point features are gradually increased within
each stage from 32 to 64, 128, 256, and 512. The sampling
operations change the cardinality by a factor of 2 resulting in
[N, N/2, N/4, N/8, N/16] points for the respective stage. The
final output is determined by an MLP with two linear layers
to obtain per-point logit values. The individual stages of our
architecture each comprise one single velocity transformer
block to build an efficient network.

F. Implementation Details

The Radar Velocity Transformer is implemented in Py-
Torch [26]. We train our model over 50 epochs with
AdamW [22] optimizer with an initial learning rate of 0.0005
and a cosine annealing learning rate scheduler [22]. We
combine the Lovász loss [3] and the weighted cross-entropy
for which we follow the approach by Schumann et al. [35]
and set the weights for moving objects to 8.0 and for static
ones to 0.5. The local areas for the velocity transformer
layer are set to Nvtl = 16 and for the transformer-based
upsampling to Ntus = 12. We train the network with one
Nvidia A100 GPU and a batch size of 128. To reduce
overfitting, we further apply data augmentation, using jitter,
scaling, rotation, and instance augmentation.

IV. EXPERIMENTAL EVALUATION

The main focus of this work is an accurate, single-scan
moving object segmentation in sparse and noisy radar point
clouds. We present our experiments to show the capabilities
of our method to reliably segment moving objects. The
results of our experiments also support our key claims, which
are: Our approach (i) segments moving objects in radar point
clouds more precisely compared to state-of-the-art methods
and (ii) the velocity encoding and the transformer-based

upsampling enhance the accuracy by incorporating valuable
information throughout the network and.

A. Experimental Setup

We utilize the RadarScenes [34] dataset, to train and
evaluate our model since this dataset is the only open,
large-scale radar dataset that includes per-point annotations
for moving objects under different weather conditions and
driving scenarios. The dataset is split into 130 sequences for
training and 28 for validation. To construct a test set, we split
the RadarScenes validation set into 6 sequences for validation
(6, 42, 58, 85, 99, 122) and the remaining 22 sequences for
testing.

The RadarScenes [34] dataset includes four radar sensors.
To provide information on the surroundings of the vehicle,
we need to merge the point clouds of the individual sensors
into one central radar scan. Since the pose information, the
measurement time, and the coordinates of the individual
detection are given, we merge the data within a common
coordinate system.

Following Chen et al. [4], we utilize the intersection
over union (IoU) [9], where IoU = TP

TP+FN+FP with the
number of true positive (TP), false positive (FP), and false
negative (FN) predictions for moving objects to evaluate the
methods.

B. Moving Object Segmentation Performance

The first experiment evaluates the performance of our ap-
proach and its outcome supports the claim that our approach
enhances state-of-the-art moving object detection in sparse
and noisy radar point clouds utilizing only single scans.

To compare the results, we select the recently best-
performing point-based segmentation method, the Stratified
Transformer [44], which utilizes single scans, the 4DMOS
network [23] for LiDAR moving object segmentation which
does not use the range representation because this is incom-
patible with the 2D coordinates, and a simple threshold for
the velocity determined on the validation set [32]. For spe-
cific information on the training regime of the two networks,
we refer to the original papers [23], [44].

The Radar Velocity Transformer outperforms the two ex-
isting approaches and the learning-based methods are supe-
rior compared to the threshold-based method, as displayed in
Tab. I. The difference between the learning-based approaches
and the threshold-based method illustrates the necessity of
advanced models to perform moving object segmentation in
noisy radar point clouds. Additionally, the transformer-based
methods enhance the performance compared to the voxel-
based 4DMOS, which suggests that discretization artifacts
lead to information loss that cannot be compensated by
additional temporal information of consecutive radar scans.
The feature input vector of Stratified Transformer and Radar
Velocity Transformer both contain valuable velocity infor-
mation. However, our Radar Velocity Transformer consider-
ably improves the IoU for moving objects by 6.7 absolute
percentage points and performs well under adverse weather
conditions, as illustrated in Fig. 3.
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Fig. 3: Qualitative results of 4DMOS [23], Stratified Transformer [44], and our Radar Velocity Transformer on the test set of
RadarScenes [34]. Red points indicate moving objects and black points belong to static objects.

# velocity
encoding

transformer-based
upsampling IoU

[A] 73.4
[B] X 75.2
[C] X 75.6
[D] X X 77.4

TABLE II: Influence of the different components in terms of IoU
for moving objects on the RadarScenes validation set.

C. Ablation Study on Network Components

The second experiment, the ablation study on network
components, evaluates the influence of the velocity encoding
and transformer-based upsampling on the performance to
support our second claim that our proposed modules each
contribute to the improvements in terms of IoU. The com-
bined results of the ablation study on the validation set are
listed in Tab. II.

To assess the benefits of transformer-based upsampling,
we replace the module with the commonly used trilinear
interpolation based on an inverse distance weighted av-
erage [29]. Since the velocity encoding is new and the
information of the velocity of the individual detection is
present in the feature vector x, we remove the velocity
encoding to evaluate the influence on the IoU.

Ablation [A], we replace the upsampling and remove the
velocity encoding which leads to a decrease in terms of
IoU by 4 absolute percentage points. In ablation [B], we
add the transformer-based upsampling, which enables an
adaptive feature aggregation of the two point clouds and
leads to an improvement of IoU by 1.8 absolute percentage
points. In comparison to ablation [A], we add the velocity
encoding throughout the network in [C], which enhances the
performance. We assume that the velocity encoding is highly
valuable since the fine-grained Doppler velocity information
may be lost in high-level features of deeper layers. Hence,
the specific task of moving object segmentation benefits from
the velocity encoding. The final model of our Radar Velocity
Transformer, represented in [D], further enhances the IoU by
the usage of both, velocity encoding and transformer-based
upsampling. We conclude that the additional information of
the velocity encoding supports the aggregation of the features
for the upsampling and hence leads to the best results.

As an additional experiment, we replaced the concatena-
tion of the transformer-based upsampling with an addition in

our final Radar Velocity Transformer. The obtained IoU of
75.3 % indicates that the concatenation leads to a more fine-
grained weighting of the individual channels and improves
the performance. Additionally, we exploit transformer-based
downsampling. However, this does not improve the overall
performance and hence we keep the max pooling since it
is more efficient and does not mix information, which is
suitable for the downsampling of sparse point clouds.

D. Runtime

Finally, we analyze the runtime of our approach and
show that our approach runs fast enough to support online
processing in the vehicle. We tested our approach on an
AMD Ryzon 5 CPU with an Nvidia GTX 1660 GPU. Our
implementation includes an optimized farthest point sam-
pling and kNN algorithm in C++ to speed up the inference.
Since the point clouds differ in the number of detections,
we evaluate 1,000 scans that are randomly selected from the
validation set. The mean runtime is 0.012 s, which is equal
to 83 Hz, and thus over 4x faster than the frame rate of 17 Hz
of the sensor.

V. CONCLUSION

In this paper, we presented a novel approach to accu-
rately perform single-scan moving object segmentation in the
domain of radar data. Our approach encodes the valuable
Doppler velocity information throughout the network and
optimizes the upsampling operation by adaptively aggregat-
ing information to enhance performance. This allows us to
successfully differentiate between moving and non-moving
objects, which we evaluated on the RadarScenes dataset.
The experiments and the comparisons to other approaches
support all claims made in this paper and suggest that our
architecture achieves superior performance on moving object
segmentation in noisy, single-scan point clouds obtained
from automotive radars. The sensors used for recording the
RadarScenes dataset are series sensors, already implemented
in vehicles, which makes our approach available without
additional cost. Overall, our approach outperforms the state-
of-the-art methods and proposes a new benchmark for radar-
based moving object segmentation, which allows further
comparisons with future work, taking a step forward towards
reliable single-scan moving object segmentation and sensor
redundancy for autonomous vehicles.
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Scene understanding with automotive radar. IEEE Trans. on Intelligent
Vehicles, 5(2):188–203, 2019.

[36] Y. Shi and K. Ma. Safit: Segmentation-aware scene flow with improved
transformer. In Proc. of the IEEE Intl. Conf. on Robotics & Automation
(ICRA), 2022.

[37] J. Sun, Y. Dai, X. Zhang, J. Xu, R. Ai, W. Gu, and X. Chen. Efficient
spatial-temporal information fusion for lidar-based 3d moving object
segmentation. In Proc. of the IEEE/RSJ Intl. Conf. on Intelligent
Robots and Systems (IROS), 2022.

[38] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N.
Gomez, Ł. Kaiser, and I. Polosukhin. Attention is all you need.
In Proc. of the Conf. on Neural Information Processing Systems
(NeurIPS), 2017.

[39] Z. Wang, S. Li, H. Howard-Jenkins, V. Prisacariu, and M. Chen.
Flownet3d++: Geometric losses for deep scene flow estimation. In
Proc. of the IEEE Winter Conf. on Applications of Computer Vision
(WACV), 2020.

[40] Y. Wei, Z. Wang, Y. Rao, J. Lu, and J. Zhou. Pv-raft: point-voxel
correlation fields for scene flow estimation of point clouds. In Proc. of
the IEEE/CVF Conf. on Computer Vision and Pattern Recognition
(CVPR), 2021.

[41] W. Wu, Z. Qi, and L. Fuxin. Pointconv: Deep convolutional networks
on 3d point clouds. In Proc. of the IEEE/CVF Conf. on Computer
Vision and Pattern Recognition (CVPR), 2019.

[42] W. Wu, Z.Y. Wang, Z. Li, W. Liu, and L. Fuxin. Pointpwc-net: Cost
volume on point clouds for (self-) supervised scene flow estimation.
In Proc. of the Europ. Conf. on Computer Vision (ECCV), 2020.

[43] S. Xie, S. Liu, Z. Chen, and Z. Tu. Attentional shapecontextnet for



point cloud recognition. In Proc. of the IEEE/CVF Conf. on Computer
Vision and Pattern Recognition (CVPR), 2018.

[44] L. Xin, L. Jianhui, J. Li, W. Liwei, Z. Hengshuang, L. Shu, Q. Xi-
aojuan, and J. Jiaya. Stratified transformer for 3d point cloud
segmentation. In Proc. of the IEEE/CVF Conf. on Computer Vision
and Pattern Recognition (CVPR), 2022.

[45] R. Xiong, Y. Yang, D. He, K. Zheng, S. Zheng, C. Xing, H. Zhang,
Y. Lan, L. Wang, and T. Liu. On layer normalization in the transformer
architecture. In Proc. of the Intl. Conf. on Machine Learning (ICML),
2020.

[46] J. Xu, R. Zhang, J. Dou, Y. Zhu, J. Sun, and S. Pu. Rpvnet: A deep
and efficient range-point-voxel fusion network for lidar point cloud
segmentation. In Proc. of the IEEE/CVF Intl. Conf. on Computer
Vision (ICCV), 2021.

[47] M. Xu, R. Ding, H. Zhao, and X. Qi. Paconv: Position adaptive con-
volution with dynamic kernel assembling on point clouds. In Proc. of
the IEEE/CVF Conf. on Computer Vision and Pattern Recognition
(CVPR), 2021.

[48] B. Yang, S. Wang, A. Markham, and N. Trigoni. Robust attentional
aggregation of deep feature sets for multi-view 3d reconstruction.
Intl. Journal of Computer Vision (IJCV), 128(1):53–73, 2020.

[49] J. Yang, Q. Zhang, B. Ni, L. Li, J. Liu, M. Zhou, and Q. Tian.
Modeling point clouds with self-attention and gumbel subset sampling.
In Proc. of the IEEE/CVF Conf. on Computer Vision and Pattern
Recognition (CVPR), 2019.

[50] M. Zeller, J. Behley, M. Heidingsfeld, and C. Stachniss. Gaussian
Radar Transformer for Semantic Segmentation in Noisy Radar Data.
IEEE Robotics and Automation Letters (RA-L), 8(1):344–351, 2023.

[51] H. Zhao, J. Jia, and V. Koltun. Exploring self-attention for image
recognition. In Proc. of the IEEE/CVF Conf. on Computer Vision and
Pattern Recognition (CVPR), 2020.

[52] H. Zhao, L. Jiang, J. Jia, P.H. Torr, and V. Koltun. Point transformer.
In Proc. of the IEEE/CVF Intl. Conf. on Computer Vision (ICCV),
2021.


