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Joint Plant and Leaf Instance Segmentation
on Field-Scale UAV Imagery

Jan Weyler Jan Quakernack Philipp Lottes Jens Behley Cyrill Stachniss

Abstract—Monitoring of fields and breeding plots is critical
for farmers, plant scientists, and breeders. In this process, a key
objective is to assess and monitor the growth stages together with
the number of individual plants on the field. Traditionally, this
in-field assessment is performed manually and thus is limited
in temporal and spatial throughput. In contrast, vision-based
systems offer the potential to assess these traits frequently in
an automated fashion on a large scale. The primary target of
these systems is to detect and segment each plant and its leaves
since this information directly correlates to the growth stage
and allows for detailed monitoring. In this paper, we address
the problem of automated, instance-level plant monitoring in
agricultural fields and breeding plots. We propose a vision-based
approach to perform a joint instance segmentation of crop plants
and leaves in breeding plots. We develop a convolutional neural
network to determine the position of specific plant keypoints and
group pixels to detect individual leaf and plant instances. Finally,
we provide a pixel-wise instance segmentation of each crop and
its associated leaves based on orthorectified RGB images captured
by UAVs. The experimental evaluation shows that our method
outperforms state-of-the-art instance segmentation approaches
such as Mask-RCNN on this task.

Index Terms—Robotics and Automation in Agriculture and
Forestry, Deep Learning for Visual Perception, Object Detection,
Segmentation and Categorization

I. INTRODUCTION

AN important aspect of crop breeding and agricultural
research is monitoring field trials. This process involves

a frequent visual assessment of individual plants at several
stages. A key objective is to analyze individual leaves of each
plant to monitor its vegetative growth stage [8] as it supports
breeders and scientists to select plants that show desirable
traits to employ them in further experiments. Typically, each
experiment is conducted in spatially separated breeding plots
that cover entire agricultural fields. However, this in-field
assessment is conventionally done manually [4] and thus
limited in spatial and temporal throughput.

In contrast, vision-based plant classification systems offer
the potential to monitor field trials in an automated fashion
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Fig. 1: Left: Orthophoto of a breeding plot. Right: Predictions of
our method visualized at a specific location of the plot. Top: Stem
keypoints (red), leaf keypoints (blue) and associations (yellow).
Center: Pixel-wise mask of each leaf. Bottom: Pixel-wise mask of
each plant. We illustrate different instances by different colors.

based on images of agricultural robots [10] or unmanned aerial
vehicles (UAVs) at a large scale more frequently [22]. Several
vision-based learning methods have been proposed in the
context of automated vegetation classification on agricultural
fields [3], [10], [14]. Typically, such methods perform a
semantic segmentation to distinguish pixels belonging to crops
and weeds [10] or detect individual plants [3]. However, we
see a lack of systems that allow a more in-depth analysis per
plant and its organs on agricultural fields.

We propose an approach that predicts a pixel-wise mask
of individual crop leaves and assigns each leaf to a particu-
lar plant. Consequently, we can access per-plant parameters
relevant for field monitoring in an automated fashion, e.g.,
the total number of leaves per plant and their shape and size,
which correlates to vegetative growth stages [8]. This task is
challenging since plants may overlap with increasing growth
stages, making the association of leaves to a particular plant
difficult. Our method offers the potential to perform a high-
quality, in-field analysis automatically [22].

The main contribution of this paper is a bottom-up model
that provides a pixel-wise instance segmentation of each crop
and its associated leaves that can be applied to large-scale
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orthorectified images of entire fields obtained by UAVs. It
provides a georeferenced field-map that allows performing
the field analyses as an integrated whole instead of sampling
a subset of field locations. In addition, such georeferenced
maps enable tracking static objects over time. We propose a
single-stage convolutional neural network (CNN) that predicts
geometric embeddings, i.e., it determines pixel-wise offsets
encoding the association of individual pixels to a leaf or
plant stem keypoint. In this context, we define a keypoint
as a distinct location of a leaf or plant representative for
its associated instance. We employ these embeddings in an
automated post-processing step to group individual leaf and
plant instances, see Fig. 1.

We make the following three claims. First, our proposed
approach detects plant-specific leaf and stem keypoints via pre-
dicted offsets. Second, we perform an instance segmentation of
crop leaves which we effectively associate to its corresponding
plant to conduct a joint instance segmentation of whole sugar
beets. Third, on these tasks, we achieve higher performance
w.r.t. Mask-RCNN [5] often applied in the agricultural do-
main [3], [23]. Finally, we published our annotated dataset for
comparison: https://www.ipb.uni-bonn.de/data/plis/.

II. RELATED WORK

Semantic scene analysis often relies on CNNs [16], which
replaced other learning techniques in this context [12], [24].
Also, there has been an increasing interest in exploiting the
potential of UAVs and autonomous ground vehicles [19] for
agriculture [17]. These systems target detecting vegetation and
localizing individual plant or leaf instances to perform yield
prediction, monitoring, and counting.

In an earlier work, Lottes et al. [10] perform seman-
tic segmentation of crops and weeds based on RGB and
near infra-red images. Simultaneously, they estimate the stem
position of each plant to improve the semantic segmentation
and allow for mechanical treatments of weeds. They employ a
CNN with two specialized decoders that performs both tasks
jointly. In contrast to our approach, this method performs
a pixel-wise classification but does not detect instances as
required for monitoring breeding plots.

There are competitive approaches to perform instance seg-
mentation, which can be divided into two sets. First, top-down
approaches [5], [20] that initially detect bounding boxes
for each instance and subsequently generate binary masks
for each detected instance, e.g., Mask R-CNN [5]. Second,
box-free bottom-up methods [2], [18] that localize keypoints
as instance-representatives and jointly map each pixel close
to its associated keypoint via predicted offsets. The offsets
enforce pixels that belong to the same instance to be close
to each other. Thus, they can easily be clustered to perform
instance segmentation. Both methods are commonly applied
in the agricultural domain [3], [23].

Champ et al. [3] employ Mask R-CNN [5] to perform
instance segmentation for crops and weeds on real fields based
on RGB images. However, this method does not detect each
plant’s leaves, which is key information for plant scientists and
breeders to monitor breeding plots. Kulikov et al. [7] propose

a bottom-up method to detect and segment individual leaf
instances based on RGB images that contain single plants.
They employ a two-stage method that first specifies target
embeddings, which a CNN subsequently learns. At inference,
they perform a simple clustering approach to recover each
leaf instance. However, this method assumes that each image
contains only a single plant which is not realistic for uncon-
trolled imagery of breeding plots. Magistri et al. [13] propose
an automated 4D registration technique based on sequential
point clouds of individual plants to track phenotypic traits in
laboratory environments.

The aforementioned methods can either perform an instance
segmentation of plants or leaves but not both simultaneously.
Depending on the particular application, these approaches may
be sufficient, e.g., to count the total number of crops on a
field. However, for a detailed monitoring of breeding plots
a simultaneous instance segmentation of plants and leaves is
important to determine relevant parameters for each crop, e.g.,
the total number of leaves per plant.

Accordingly, Weyler et al. [25] jointly detect the bounding
boxes of single plants and per-plant leaf keypoints in images
of real fields to compute the total number of leaves per plant.
However, this method does not segment individual leaves
or plants but provides exclusively coarse keypoints that are
unsuitable for determining leaf size and shape. In contrast, we
propose a novel approach that predicts the pixel-wise mask of
each leaf and associates it with its related plant to provide a
more detailed assessment for monitoring.

III. OUR APPROACH

The main objective of our approach is to perform a joint
instance segmentation of sugar beet plants and their individual
leaves based on RGB images captured by UAVs. Our method
works on orthorectified images that we compute through
a photogrammetric bundle adjustment [1] using overlapping
images covering entire fields. This enables breeders and plant
scientists to assess relevant parameters for each plant on the
entire field through a single model instead of sampling them
at a subset of locations.

We propose a CNN that relies on a simple yet effective
topological model of plants. Specifically, we define a plant by
its well-defined stem keypoint and a variable number of leaf
keypoints, see top of Fig. 1. In this context, we assign each
leaf keypoint to a single stem keypoint to model a plant as
the union of its leaves. Furthermore, we implicitly associate
each keypoint with a unique pixel-wise mask. Particularly, we
associate a leaf keypoint with the mask of its related leaf
instance and a stem keypoint with the mask of its related plant,
see Fig. 1. Thus, we geometrically associate plant pixels to
their associated leaf and stem keypoints.

Our network predicts two sets of offset vectors to model
the geometric information of each pixel concerning their cor-
responding leaf and plant instances. One set of offset vectors
points for each pixel towards its associated leaf keypoint. We
exploit these offsets in an automated post-processing step to
first detect the position of leaf keypoints as leaf instance-
representatives and then assign each pixel to a specific leaf

https://www.ipb.uni-bonn.de/data/plis/
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Fig. 2: Our network architecture for semantic segmentation and offset regression with task-specific decoders. We feed the RGB input image
∈ R3×h×w to a shared encoder and forward its output to separate decoders with h and w being the heigth and width of the image. The
upper decoder predicts normalized confidences Pc ∈ R3×h×w per semantic class c ∈ {beet,weed, background}. The lower decoder predicts
short-range offsets Sk ∈ R2×h×w, long-range offsets Lk ∈ R2×h×w, and vote weights Wk ∈ Rh×w per keypoint type k ∈ {stem, leaf}.
We utilize these predictions to compute crop plant and leaf instances. In the lower left, we show long-range offsets associated with stem
(D) and leaf keypoints (G). In addition, we visualize short-range offsets of stem (C) and leaf keypoints (F). Finally, we illustrate the vote
weights Wk for stem (E) and leaf (H) keypoints.

to obtain its instance segmentation. The other set of offsets
carries the same kind of information, but the offsets do not
refer to the leaves but to the stem keypoint of the plants,
i.e., the plant instance. To generate the plant segmentation
mask, we use the offsets to associate each leaf to a specific
stem keypoint in an automated post-processing step. We then
generate the instance mask of each plant by joining the
corresponding leaf segmentation masks.

A. Ground Truth Annotations

To train our model, we require ground truth data with
the following annotations. First, the semantic class la-
bel c(x) ∈ {beet,weed, background} per pixel x ∈ R2. We
treat all pixels with class label beet as foreground pixels xf

and perform the instance segmentation only for those. Second,
a sugar beet instance label b(xf) ∈ N and a leaf instance
label l(xf) ∈ N per foreground pixel xf . Third, a unique
assignment of each leaf instance l to its associated sugar
beet instance b denoted as b(l) ∈ N. Fourth, a stem keypoint
position ystem(b) ∈ R2 per sugar beet instance b. Finally, a leaf
keypoint position yleaf(l) ∈ R2 per leaf instance l. In contrast
to stem keypoints, we set the position of leaf keypoints to the
centroid of their mask. Thus, we consider only visible leaves.
A domain expert annotated the images at a pixel-level.

B. General Network Architecture

We propose an encoder-decoder network with lateral skip
connections [21] that follows a two-branch architecture with
two task-specific decoders. Our network shares the encoder
and predicts dense feature maps in its task-specific decoders,
see Fig. 2. The upper decoder performs a semantic segmen-
tation to determine pixels of interest that belong to sugar
beets (Sec. III-C). The lower decoder predicts long-range
offsets Lk(x) ∈ R2 and short-range offsets Sk(x) ∈ R2 per

pixel x and keypoint type k ∈ {stem, leaf}. These offsets
translate each pixel of a sugar beet towards its associated leaf
and stem keypoint (Sec. III-D). We utilize the predicted offsets
for different tasks in an automated post-processing step. First,
we estimate the spatial position of leaf and stem keypoints,
where each translated pixel casts a vote for its position to be
a keypoint. We accumulate these votes in keypoint-specific
heatmaps to detect keypoints by a high number of votes. In
this context, we predict a voting weight Wk(x) ∈ R per
keypoint type k and pixel x that considers an object’s size
to ensure scale-invariance (Sec. III-E). Next, we group sugar
beet pixels into individual leaf instances by assigning them to
their nearest leaf keypoint via the offsets (Sec. III-F). Third,
the offsets serve to associate each leaf to a specific stem
keypoint to generate crop plant instances as the union of its
leaves (Sec. III-G).

C. Semantic Segmentation

We propose a semantic segmentation branch that computes
for each pixel x a probability distribution modeling the
assignment to the category beet, weed, or background by
their corresponding confidence score Pc(x). This allows us
to filter pixels with the most probable class weed or back-
ground and perform instance segmentation only for sugar beet
pixels. However, the segmentation of weeds is still essential
to measure weed density.

Consequently, the upper decoder in Fig. 2 predicts a dense
feature map for each of the three classes. We apply a softmax
activation to obtain the normalized confidence scores for each
category. During training, we employ a weighted cross entropy
loss [26] based on the predicted scores and ground truth anno-
tations. At inference, we consider a pixel with Pbeet(x) > 0.8
as foreground and assign a pixel with Pweed(x) > 0.5 to the
class weed. We determined these hyperparameters based on
the validation set.
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Fig. 3: Visualization of long-range and short-range offsets pointing
for each foreground pixel towards its related leaf and stem keypoint.

D. Long-Range and Short-Range Offset

We propose long-range and short-range offsets to trans-
late each foreground pixel precisely towards its associated
keypoints, as illustrated in Fig. 3. The long-range offsets
define 2D vectors Lk(xf) = yk(xf)− xf , which point for
each foreground pixel xf towards its associated keypoint yk,
where k ∈ {stem, leaf}. However, the prediction of long-
range offsets is known to be inaccurate since they cover large
distances [18]. Thus, a translated pixel x∗f = xf + Lk(xf)
needs further refinement to approach its associated key-
point precisely. Therefore, we define 2D short-range offsets
Sk(xf) = yk(xf)− x∗f to improve the offsets close by the
desired keypoint. Finally, we merge both to obtain refined
offsets Rk(xf) = Lk(xf) + Sk(xf). Since we consider two
types of keypoints, we predict two such 2D vector fields for
both offsets, shown by four feature volumes in the lower
decoder of Fig. 2. The former translates pixels xf towards
leaf keypoints and the latter towards stem keypoints. During
training, we use L1 losses for each keypoint type k:

LL-offsets
k =

1

|Xf |
∑
xf∈Xf

‖xf + Lk(xf)− yk(xf)‖1 , (1)

LR-offsets
k =

1

|Xf |
∑
xf∈Xf

‖xf + Rk(xf)− yk(xf)‖1 , (2)

where Xf is the set of all foreground pixels. We minimize
the objective in Eq. (1) to optimize the predicted long-range
offsets explicitly. In Eq. (2) we optimize both offsets jointly
to enforce our network explicitly to predict large offsets for
Lk(xf) and small offsets for Sk(xf). Finally, we average the
losses for both keypoint types k during optimization.

E. Keypoint Detection

At inference time, we employ the predicted offsets to obtain
the instance relationships via an automated post-processing
step. First, we exploit the refined offsets to estimate the spatial
position of keypoints as instance-representatives via a voting
scheme [18]. Since the offsets point for each foreground
pixel towards their related keypoint, we aggregate a heatmap
where each pixel xf translated by Rk(xf) casts a vote to its
position. Accordingly, a high number of votes indicates the
position of a keypoint, see Fig. 4. We consider two keypoint-
specific heatmaps to extract the position of leaf and stem
keypoints separately. The former employs Rleaf(xf) and the
latter Rstem(xf). We use bilinear interpolation to distribute
votes into discrete cells.

Fig. 4: Left: Image patch of sugar beets at early growth stages and
refined offsets pointing towards leaf keypoints. Note that we show
only a few offsets for reasons of clarity. Right: Cropped patches from
the heatmap for leaf keypoints obtained by our voting scheme.

However, we must assign a voting weight to each pixel xf

to prevent large instances from dominating small ones in the
heatmaps. Thus, we predict a weight Wk(x) per keypoint
type k and pixel x that contains large weights for pixels whose
related instance is small and vice versa, see Fig. 2.

We use a L1 loss for each predicted Wk during training:

LWk =
1

|Xf |
∑

xf∈Xf

∥∥∥∥Wk(xf)−
κ

Ak(xf)

∥∥∥∥
1

. (3)

Let Ak(xf) be the area of the leaf or plant instance associated
with the pixel xf and κ be a hyperparameter set to 100 px2.
By minimizing Eq. (3), we enforce high weights for pixels
associated with small instances and vice versa. Finally, we
average the losses over both keypoint types for optimization.

At inference, we recover the position of keypoints by
considering local maxima in the heatmaps as keypoint candi-
dates yck, see Fig. 4. However, we suppress lower-scoring can-
didates within a certain radius δk(yck). Intuitively this radius
should be small for small instances to avoid the suppression
of actual keypoints lying close together and larger for large
instances to reduce false positive detections. Thus, we first
approximate the extent of an instance for the given candidate
by accounting for the set of all pixels Xyc

k
voting for the

candidate:

λk(yck) =

√√√√ κ

|Xyc
k
|
∑

x∈Xyc
k

1

Wk(x)
. (4)

This value increases as the total number of pixels voting
for this candidate increases, i.e., large instances and vice
versa. Next, we suppress all lower scoring candidates within
the radius δk(yck) = min(1

2λk(yck), λmax), where λmax is the
maximum rejection radius, here set to 15 px. We show the
estimated extent and rejection radius for both keypoint types
in Fig. 5. Finally, we set the detection score of an accepted
keypoint candidate equal to its corresponding score in the
associated heatmap and denote it as sk(yk).

F. Leaf Instance Segmentation

Next, we perform instance segmentation of sugar beet leaves
by employing the predicted offsets Rleaf(xf) to assign each
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Fig. 5: Left: Predicted stem keypoints with their approximated
extent λstem (outer circle) and rejection radius δstem (inner circle)
for non-maximum suppression. Right: Same illustration for leaves.

foreground pixel xf to its nearest, previously detected leaf
keypoint. First, we define a metric to compute the distance
from any leaf keypoint yleaf to a translated foreground pixel
x′f = xf + Rleaf(xf) as:

D(x′f ,yleaf) =
‖x′f − yleaf‖2
λleaf(yleaf)

, (5)

where λleaf is the approximated extent in Eq. (4). Thus, this
metric is scale-aware and accounts for differently sized leaves
that may be spatially close. Next, we assign xf to its nearest
leaf keypoint yleaf(l) in case:

D(x′f ,yleaf) ≤ min

(
1.0,

dmax

λleaf(yleaf)

)
, (6)

but otherwise discard it to reduces false positives. Let dmax

be the maximum acceptance distance set to 30 px that we
normalize by the object’s extent in accordance with Eq. (5).
We determine this hyperparameter based on the validation set.
This process assigns a subset of foreground pixels Xl ⊂ Xf to
a specific leaf keypoint yleaf(l). We define Xl as the pixel-wise
mask of the leaf instance l, as shown in Fig. 1. Subsequently,
we follow the work by Papandreou et al. [18] and define the
detection score of a leaf instance l as:

Sleaf(l) =
sleaf (yleaf(l))

|Xl|
∑

xf∈Xl

exp
(
−D (x′f ,yleaf(l))

2
)
, (7)

which corresponds to the confidence of the leaf key-
point sleaf (yleaf(l)) multiplied by the average confidence about
the pixels being correctly assigned to this leaf instance. Thus,
the score increases in case the translated pixels are spatially
closer to their associated keypoint.

G. Plant Instance Segmentation

Finally, we employ the predicted offsets Rstem(xf) to group
each detected leaf instance to a specific stem keypoint. First,
we define a metric to compute the average distance from any
stem keypoint ystem to subset of translated foreground pixels
previously assigned to a leaf instance l as:

D̄(l,ystem) =
1

|Xl|
∑

xf∈Xl

‖x′′f − ystem‖2
λstem(ystem)

, (8)

where x′′f = xf + Rstem(xf). As before, we assign a leaf
instance l to its nearest stem keypoint ystem(b) in case:

D̄(l,ystem) ≤ min(1.0,
dmax

λstem(ystem)
). (9)

This process assigns a set of leaf instances Yb to a specific
sugar beet instance b. We define the union of all leaves in Yb
as the pixel-wise mask of this sugar beet instance. However,
we discard leaf instances not assigned to any stem keypoint.
Finally, we define the detection score of b as:

Sbeet(b)=sstem(ystem(b)) max
l∈Yb

exp
(
−D̄ (l,ystem(b))

2
)
, (10)

which corresponds to the confidence of the stem keypoint
multiplied by the score of the most confident leaf associated
to this plant. Thus, we consider the presence of at least one
leaf associated with a specific stem keypoint as an indicator
for the existence of a plant instance.

IV. EXPERIMENTAL EVALUATION

The main focus of this work is to perform a joint instance
segmentation of sugar beets and their individual leaves based
on large-scale orthomosaics captured by UAVs. We perform
experiments to support our claims: Our single-stage bottom-
up approach (i) detects plant-specific leaf and stem keypoints
via predicted offsets, (ii) performs an instance segmentation
of crop leaves that we associate to its corresponding plant to
conduct a joint instance segmentation of whole sugar beets,
and (iii) achieves higher performance w.r.t. Mask-RCNN.

Experimental Setup. We evaluate the performance of our
approach in comparison with Mask R-CNN [5] often applied
in the agricultural domain [3]. In contrast to our method, it
is a top-down approach that detects the bounding box of each
instance and subsequently generates its binary mask. However,
we train two networks based on Mask-RCNN since a single
model cannot perform a joint instance segmentation of plants
and leaves. We train the former network to perform an instance
segmentation of crop leaves and the latter network to perform
instance segmentation of crop plants. Finally, we merge the
predictions of both: First, we compute for each predicted leaf
the centroid of its mask and subsequently assign it to the plant
in whose mask this centroid lies.

Dataset. We evaluate our approach on orthorectified RGB
imagery recorded by an UAV that covers a field trial con-
sisting of multiple, spatially separated breeding plots with a
ground sampling distance of around 1.5 mm

px . The size of each
breeding plot is about 1.5 m× 8 m and contains a specific
plant breeding experiment. We designed these plots with a
small plant spacing and a high weed pressure for challenging
conditions. The dataset consists of four spatially separated
breeding plots recorded on five different sessions during five
weeks. Thus, we obtain for each breeding plot a time series
consisting of five orthomosaics. Finally, this results in 20 large-
scale orthomosaics of individual breeding plots with plants
at different growth stages. We use the entire time series of
the first and second breeding plot for training, resulting in
10 orthomosaics. In contrast, we use the time series of the
third breeding plot for validation, consequently containing 5
orthomosaics. Finally, we report the results on the remaining
five orthomosaics of the time series of the fourth breeding plot.
The size of each orthomosaic is about 4320 px× 4100 px.
Note that there is no overlap between the train, val, and test
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TABLE I: Evaluation of semantic segmentation.
beet weed

Approach Date P ↑ R ↑ F1 ↑ P ↑ R ↑ F1 ↑
Ours 09/02 0.85 0.90 0.88 0.75 0.82 0.78
Mask R-CNN 0.94 0.65 0.77 - - -
Ours 09/06 0.80 0.95 0.87 0.65 0.76 0.70
Mask R-CNN 0.92 0.61 0.74 - - -
Ours 09/11 0.85 0.95 0.90 0.67 0.83 0.74
Mask R-CNN 0.94 0.66 0.77 - - -
Ours 09/20 0.80 0.95 0.87 0.64 0.80 0.71
Mask R-CNN 0.95 0.67 0.78 - - -
Ours 10/07 0.93 0.93 0.93 0.84 0.91 0.88
Mask R-CNN 0.93 0.64 0.76 - - -

split since each breeding plot is spatially separated. We provide
a analysis together with the published dataset.

Training Details. The original orthorectified images require
an impracticable amount of memory on the GPU. Thus,
we crop smaller image patches of size 224 px× 224 px and
apply data augmentation via image rotation, scaling, shearing,
and flipping. We employ a multi-task loss as the uniformly
weighted sum of Eq. (1), Eq. (2), and Eq. (3) to train our
network with a batch of six images using Adam [6].

Inference Details. At inference time, we propose a slid-
ing window approach to extract overlapping image patches
appropriate for our network. Specifically, we use a window
size of 224 px× 224 px with a stride of 56 px. We emphasize
that the outputs of our network allow us to average the
predictions in case of overlapping windows. In contrast, the
predictions of other approaches [25] do not provide any
geometric interpretation that can be averaged in a meaningful
way. Thus, these methods cannot be applied to our large-scale
imagery. Additionally, we avoid difficult boundary regions by
selecting a center crop of 128 px× 128 px from the network’s
predictions and fuse only this into the final output that has
the same size as the original image. After the aggregation,
we perform the keypoint detection and predict the pixel-wise
masks of leaf and plant instances.

A. Evaluation Metrics

We evaluate our approach on task-specific metrics that
correspond to each prediction of our network.

Semantic Segmentation. To evaluate the semantic seg-
mentation, we compute the precision (P) and recall (R) for
the categories beet and weed [11], [15] by comparing the
predicted and ground-truth category for each pixel and also
provide the F1 score as their harmonic mean.

Keypoint Detection. We evaluate the keypoint extraction
by processing the predicted keypoints in descending order
w.r.t. their score. We consider a keypoint as true positive if its
distance to a ground-truth keypoint is less than a predefined
threshold θ and if the ground-truth was not encountered before.
Otherwise, we count it as a false positive. Conversely, we
consider all ground-truth keypoints that are not matched to any
predicted keypoint as false negatives. We set the threshold θ,
derived from the average leaf area, to 20 px and report the
precision, recall, and average precision (APθ). We also report
the total difference in count (DiC) between the number of
predicted and ground-truth keypoints.

Instance Segmentation. We follow a similar procedure to
evaluate the quality of pixel-wise instance masks but compute

the intersection over union (IoU) for each combination of
predicted and ground-truth mask. We consider a predicted
instance mask as true positive if the IoU is greater than a
predefined threshold and the ground-truth mask is not already
assigned to any other prediction. Otherwise, we count it as
a false positive. In contrast, we consider all ground-truth
masks that cannot be assigned to any predicted mask as false
negatives. We set the IoU threshold to 0.5 and report the
precision, recall, and average precision (AP50). In addition,
we follow [9] and compute the average precision for different
IoU thresholds ∈ [0.5, 0.95] with step size 0.05 and report
their average, denoted as AP. Finally, we compute the mean
deviation of the leaf count per plant (MADiC).

B. Performance of Our Approach

We report the performance of our approach in comparison
with Mask R-CNN based on the evaluation of the test set.

Semantic Segmentation. First, we show that our approach
outperforms the baseline w.r.t. the semantic segmentation of
sugar beets. This stage is essential since our instance segmen-
tation is based on these results. Thus, any unidentified sugar
beet pixel decreases the performance in the following steps.
For Mask R-CNN, we assign any pixel of a detected instance
to the category beet to derive its semantic segmentation
implicitly. We emphasize that we do not report any results for
Mask R-CNN w.r.t. weeds since the dataset does not contain
weed instance labels required to train these models.

In Tab. I, we show the results for both methods. Our
approach achieves superior performance regarding the recall
across all sessions and detects more than 90 % of all pixels
for the sugar beet class. However, we perform worse regarding
precision except for the last session containing the largest
plants, where both methods achieve 93 %. We consider this
less problematic since false positive pixels can still be dis-
carded in Eq. (6) during instance segmentation. Otherwise,
this can result in less accurate instance masks. However, the F1

score indicates that we achieve a better trade-off between both
metrics. In addition, our method can effectively exploit the
semantic information about weeds in the ground-truth labels
to segment weed pixels at inference, as describe in Sec. III-C.
This provides crucial information about weed coverage.

Keypoint Detection. Next, we evaluate the detection of
plant-specific keypoints used to perform the subsequent in-
stance segmentation. For Mask R-CNN, we define a keypoint
as the centroid of the predicted instance mask. We show that
our approach detects these keypoints more accurately.

First, we analyze the performance w.r.t. leaf keypoints for
both methods in Tab. II. Our approach consistently shows a
higher recall for sugar beets across all growth stages, e.g., it is
always above 88 %, while Mask R-CNN never surpasses 80 %.
Consequently, we detect more ground-truth leaf keypoints, as
shown in Fig. 6. However, we notice a worse performance
regarding the precision as our approach predicts a higher
total number of leaf keypoints compared to the ground-truth
value denoted by #. This happens more frequently across
the intermediate sessions indicated by positive values in the
metric DiC and can result in an overcount of leaves. In
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TABLE II: Evaluation of keypoint detection.
Approach Date Type # P ↑ R ↑ APθ ↑ DiC→ 0
Ours 09/02 leaf 482 0.92 0.91 0.88 −5
Mask R-CNN 0.86 0.79 0.77 −37
Ours 09/06 leaf 475 0.89 0.95 0.90 30
Mask R-CNN 0.92 0.76 0.74 −83
Ours 09/11 leaf 576 0.92 0.95 0.92 15
Mask R-CNN 0.95 0.72 0.72 −136
Ours 09/20 leaf 583 0.90 0.93 0.90 25
Mask R-CNN 0.93 0.77 0.75 −104
Ours 10/07 leaf 813 0.92 0.88 0.85 −33
Mask R-CNN 0.95 0.80 0.79 −127

Ours 09/02 stem 141 0.89 0.96 0.89 11
Mask R-CNN 0.97 0.88 0.86 −13
Ours 09/06 stem 141 0.94 0.98 0.94 6
Mask R-CNN 0.95 0.81 0.79 −21
Ours 09/11 stem 156 0.96 0.97 0.96 2
Mask R-CNN 0.97 0.85 0.85 −19
Ours 09/20 stem 159 0.93 0.93 0.91 1
Mask R-CNN 0.88 0.79 0.74 −16
Ours 10/07 stem 172 0.94 0.92 0.90 −3
Mask R-CNN 0.83 0.78 0.71 −10

contrast, Mask R-CNN underestimates the total number of
leaf keypoints by a large margin of up to 136. Consequently,
Mask R-CNN achieves a higher precision but performs worse
regarding the recall. Still, we achieve a better trade-off between
precision and recall stated by higher values w.r.t. APθ with
above 0.85 across all sessions, see Tab. II.

Next, we analyze the performance w.r.t. stem keypoints for
both methods in Tab. II. For our approach, we observe a
similar behavior as before. We consistently achieve a recall
above 92 % across all sessions, while Mask R-CNN does
not surpass a recall of 88 %. However, we perform worse
regarding precision in the first three sessions, containing sugar
beets of early growth stages. This can result in false positive
instances biasing the estimated number of plants. In contrast,
we outperform Mask R-CNN in this metric for later growth
stages by up to 11 percent points in the last session. Again,
Mask R-CNN constantly underestimates the total number of
stem keypoints by up to 21. This results in an increased
precision at the expense of recall. However, we still achieve
an increased trade-off between precision and recall as reported
by higher values w.r.t. APθ, see Tab. II.

Instance Segmentation. The last experiments show the
performance of the instance segmentation. The results support
our claim that our approach provides pixel-wise masks for
crop leaves and plants and also associates each leaf effectively
to a specific plant, see Fig. 6. We show that our approach
outperforms the baseline regarding this task.

First, we provide quantitative results w.r.t. the instance
segmentation of leaves in Tab. III. We achieve a consistently
high performance regarding precision and recall across all
sessions. For Mask R-CNN, we observe a considerable loss
in performance at early growth stages. In contrast, we achieve
the best performance at intermediate growth stages resulting
in a recall of 87 % and a precision of 85 % compared to 59 %
or 77 % for Mask R-CNN. We attribute this to leaves that are
large enough to be well-detectable without too much mutual
overlap. Besides, detecting small objects is a well-known is-
sue [5]. This is supported in terms of AP50, where we achieve
consistently scores above 0.76 while Mask R-CNN performs
worst (0.48) at the earliest growth stage and best (0.71) at the

TABLE III: Evaluation of instance segmentation.
Approach Date Type # P ↑ R ↑ AP50 ↑ AP ↑ MADiC ↓
Ours 09/02 leaf 482 0.85 0.84 0.78 0.36 -
Mask R-CNN 0.57 0.53 0.48 0.12 -
Ours 09/06 leaf 475 0.84 0.89 0.79 0.37 -
Mask R-CNN 0.74 0.61 0.58 0.20 -
Ours 09/11 leaf 576 0.85 0.87 0.82 0.39 -
Mask R-CNN 0.77 0.59 0.56 0.21 -
Ours 09/20 leaf 583 0.83 0.86 0.80 0.39 -
Mask R-CNN 0.84 0.69 0.66 0.27 -
Ours 10/07 leaf 813 0.85 0.82 0.76 0.44 -
Mask R-CNN 0.87 0.73 0.71 0.32 -

Ours 09/02 plant 141 0.88 0.94 0.89 0.56 0.32
Mask R-CNN 0.95 0.86 0.84 0.29 0.81
Ours 09/06 plant 141 0.90 0.94 0.90 0.53 0.35
Mask R-CNN 0.84 0.72 0.68 0.21 0.63
Ours 09/11 plant 156 0.95 0.96 0.94 0.53 0.42
Mask R-CNN 0.86 0.76 0.71 0.23 0.85
Ours 09/20 plant 159 0.87 0.87 0.83 0.44 0.56
Mask R-CNN 0.82 0.74 0.71 0.24 0.93
Ours 10/07 plant 172 0.88 0.85 0.82 0.42 0.79
Mask R-CNN 0.75 0.70 0.64 0.21 0.99

latest session. Thus, our approach provides more accurate leaf
masks for crops at a variety of growth stages.

Finally, we provide quantitative results w.r.t. the instance
segmentation of sugar beet plants in Tab. III. We achieve
the highest score of 0.94 in terms of AP50 at intermediate
growth stages compared to 0.71 by Mask R-CNN, where crops
have a considerable size and are well separated. However,
the performance decreases for both methods with increasing
growth stages since different sugar beets overlap, see Fig. 6.
However, we still achieve higher values in such cases. In
contrast to the leaf instance segmentation, we note a decrease
of performance w.r.t. to the AP with increasing growth stages
for our method. We attribute this to crowded in-field conditions
with less spacing between plants which makes the task to
associate each leaf to a specific plant more difficult. Thus,
wrong associations result in less accurate plant instance masks.

For field monitoring, we consider the MADiC particularly
important since it evaluates the leaf count per plant that is
highly correlated to its growth stage [8]. We achieve superior
performance across all sessions, indicating that our method
to associate each leaf to a particular plant is more accurate.
Generally, this task is less complex at early growth stages since
each plant consists of small leaves but increases complexity as
plants grow. This is reflected by a small value of 0.32 at the
earliest and an increased deviation of 0.79 in the last session.

V. CONCLUSION

We presented a novel approach that provides a pixel-wise
instance segmentation of crops and their associated leaves in
large-scale orthorectified imagery. Our vision-based method
supports plant breeders and scientists to assess relevant per-
plant parameters relevant for automatica field monitoring. We
propose CNN that relies on a simple yet effective topological
model of plants that associates each pixel to plant-specific
keypoints via offsets. Our thorough experimental evaluation
using real-world imagery from breeding plots shows that our
method performs an accurate instance segmentation compared
to state-of-the-art instance segmentation approaches and is
well-suited to monitor individual plants at different growth
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Fig. 6: Qualitative results of leaf and stem keypoints, leaf instance segmentation, and plant instance segmentation of our approach (left) and
Mask R-CNN (right) at a particular growth stage. We show the outline of each instance’s pixel-wise mask for reasons of clarity.

stages. We emphasize that the predictions of our approach are
relevant for autonomous ground vehicles to identify the growth
stage of individual plants for targeted management actions.
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