
Efficient and Effective Matching of Image Sequences
Under Substantial Appearance Changes Exploiting GPS Priors

Olga Vysotska Tayyab Naseer Luciano Spinello Wolfram Burgard Cyrill Stachniss

Abstract— The ability to localize a robot is an important
capability and matching of observations under substantial
changes is a prerequisite for robust long-term operation. This
paper investigates the problem of efficiently coping with sea-
sonal changes in image data. We present an extension of a
recent approach [15] to visual image matching using sequence
information. Our extension allows for exploiting GPS priors
in the matching process, to overcome the main computational
bottleneck of the previous method and to handle loops within
the image sequences. We present an experimental evaluation
using real world data containing substantial seasonal changes
and show that our approach outperforms the previous method
in case a noisy GPS pose prior is available.

I. INTRODUCTION

The ability to identify that a robot is at a previously
visited place is an important element of localization in
partially known environments. Dealing with large changes of
appearance in the scene is a challenging problem but offers
the potential to improve autonomous long-term navigation.
This paper addresses the problem of visual localization using
image sequences and a rough position estimate, for example
from a simple GPS receiver. A series of robust approaches to
visual localization have been proposed in the past including
FAB-MAP2 [7], SeqSLAM [14], SP-ACP [16], and the
work of Naseer et al. [15]. Some of these methods have
been shown to robustly recognize previously seen locations
even under a wide spectrum of visual changes including
dynamic objects, different illumination, and varying weather
conditions.

The contribution of this paper is an extension to our
previous work [15], addressing one of its key limitation
when it comes to long-term operation. The approach relies
on a dense image matching matrix with the size of the
number of images in the database times the length of the
query sequence. This is a bottleneck when dealing with large
scale datasets. In this paper, we present a technique that
avoids building up the full matching matrix by exploiting
an uncertain GPS prior. We achieve this by proposing a
modified version of the data association graph, which is
used for identifying the sequences of matched images. As
a result of that, only a small fraction of the computationally
expensive image comparisons needs to be conducted. As a
by product of the new graph topology, we can effectively

Olga Vysotska and Cyrill Stachniss are with Institute for Geodesy
and Geoinformation, University of Bonn, Germany while Tayyab Naseer,
Luciano Spinello, and Wolfram Burgard are with Institute of Computer
Science, University of Freiburg, Germany. This work has partly been
supported by the European Commission under the grant numbers FP7-
610603-EUROPA2 and ERC-AG-PE7-267686-LifeNav.

Query
sequence

Database
sequence

Fig. 1: Examples of typical image pairs taken at the same places in
winter and summer. This paper presents an approach for effectively
and efficiently addressing the problem of matching such images.
Source of aerial image: Google Maps.

deal with loops in the image sequences without requiring to
formulate and solve a network flow problem.

The approach presented in this paper to match image
sequences may also support other mapping and navigation
approaches, for example, the experience-based navigation
framework by Churchill and Newman [6]. A possible com-
bination of our work with experience-based navigation could
enhance the ability to associate new images to an existing
place by exploiting sequence information—even if individual
images cannot be matched. In addition to that, we believe
that our sequence-based approach can also support visual
change detection in the environment—by explicitly identify-
ing parts of the dataset which can only be matched based on
sequences.

II. RELATED WORK

Localization is a frequently investigated problem in
robotics, computer vision, photogrammetry and other fields,
see [9] for a survey article. Different approaches have been

proposed for visual robot localization [7], [8], [1], [3]. Deal-
ing with substantial variations in the visual input has been
recognized as a major obstacle for persistent autonomous
navigation and this task has been addressed by different
researchers [11], [7]. In this paper, we extend our previous
work [15] for across season localization along routes to
effectively exploit GPS priors and to more efficiently find
matching sequences.

The majority of visual place recognition systems exploit
features such as SURF [2] and SIFT [13]. Such feature-
based approaches can deal with rotations and scale changes
and show a great performance if the environment appear-
ance does not change dramatically. They, however, perform
rather poor under extreme perceptual changes. Across season
matching using SIFT and SURF has been investigated by
Valgren and Lilienthal [18] by combining features and geo-
metric constraints. We found that SIFT and SURF features
do not match robustly over seasonal changes and that systems
relying on these features are often prone to errors in such
settings.

SeqSLAM [14], which also aims at matching image se-
quences under strong seasonal changes, also computes an
image-by-image matching matrix that stores dissimilarity
scores between all images in a query and database sequence.
This is similar to [15] and in this paper, we aim at eliminating
the computational bottleneck to build a full matching matrix
as this introduces a substantial computational complexity.
SeqSLAM computes a straight-line path through the full
matching matrix and select the path with the smallest sum
of dissimilarity scores across image pairs to determine the
matching route.

An interesting approach has recently been proposed by
Neubert et al. [16]. Their method aims at predicting the
change in appearance, building on top of a vocabulary.
For this vocabulary, they predict the change of the visual
word over different seasons. This learning phase requires an
accurate image alignment. The recent approach by Johns and
Young [12] builds a statistic on the co-occurrence of features
under different conditions. This approach relies on the ability
to stable and discriminative features over different seasons.
Finding such discriminative and stable features under the
strong changes is however a challenge and—from our point
of view—not solved yet. To avoid addressing the problems
of finding features that are robust under extreme perceptual
differences, Churchill and Newman [5], [6] store different
appearances for each place. These so-called experiences
enable them to localize in previously learned experiences
and associate a new data to places.

Biber and Duckett [4] address the problem of dealing with
changes in the environments by representing maps at five
different time scales. Each map is maintained and updated
using the sensor data modeling short-term and long-term
memories. This also enables for modeling and handling
variations in the map. In contrast to that, Stachniss and
Burgard [17] model different instances of typical world states
using clustering. To achieve a visual localization in a long
term autonomy setup, Furgale and Barfoot [10] propose a

Fig. 2: Examples of matching matrices with pairs depicted in red.
Left: dense matrix. Right: sparse matrix based on a GPS prior. Black
pixels correspond to elements that do not need to be computed.

teach and repeat system that is based on a stereo setup.
The approach exploits local submaps and enables a robot
to navigate over long trajectories but their method does not
address large perceptual changes with respect to the taught
path.

Our approach extends our previous work [15] by intro-
ducing the possibility of exploiting noisy GPS priors and by
offering substantial savings in the computational time as the
full cost matrix does not need to be computed. In addition
to that, the proposed data association graph structure allows
us for handling place revisits in a single pass of topological
sorting and thus eliminating the need to setup and solve a
network flow problem as in [15].

III. IMAGE MATCHING
EXPLOITING SEQUENCE INFORMATION

This section briefly summarizes our previous work [15] on
which this paper builds upon. The key idea of that method is
to build up a dense data association graph where the nodes
correspond to possible data associations of image pairs or
to non-matching events (so called hidden nodes). Thus, the
data association graph that relates images from two images
sequences, potentially retrieved in different seasons. The set
of possible paths through the data association graph thus
presents the possible sequences of image matches.

To build up the data association graph, the approach needs
to compute the dense matching matrix C. The matching
matrix C has a size of the query set times the size of the
database. An element cij models the matching cost of two
images and is computed using the cosine distance of a dense
grid of HOG descriptors in each image.

The problem of finding path hypotheses is then addressed
by means of network flows in the association graph. The
possible flows in the graph represent multiple vehicle route
hypotheses. By exploiting the specific structure of our graph,
we could show that the network flow problem can be solved
efficiently.

This approach works well to match image sequences and
it was shown that it outperforms methods such a SeqSLAM
or FABMAP2, given substantial changes in the appearance
of the scene. The main computational bottleneck, however,
is the need to build up the dense matching matrix C so
that a quadratic number of comparisons (in the length of
the smaller sequence) is needed. The contribution of this
paper is to address this bottleneck by exploiting noisy GPS
priors. Using such a prior allows to significantly reduce the
number of image comparisons that needs to be performed,
see Figure 2. In order to incorporate this information, we
propose a new data association graph structure. Besides the

=
hypernode
representing

a matching and
a hidden node

Fig. 3: A hypernode Xij = (xij , x̆ij) is simplified illustration of a
matching node xij and a hidden node x̆ij .

fact that the number of image comparisons is reduced, it also
allows us to find loops in the image sequences without the
need to compute a network flow.

IV. EFFICIENT MATCHING USING POSE PRIORS

We build upon the data association graph structure of
our previous work and modify it. In contrast to [15], our
modification, which requires a rough GPS prior, eliminates
the need of formulating the localization problems as a
network flow problem—instead a single search through the
graph solves it for us. To be able to perform matching
between the database sequence and the query sequence we
define the image sequences to be an ordered sets of images
D = (d1, ..., dD) with D = |D| and Q = (q1, ..., qQ) with
Q = |Q| respectively.

Our main data structure is a data association graph G =
(X,E), where X is a set of nodes and E is a set of edges.
The set of nodes X consists of four type of nodes: the
start state xs, the goal state xt, the matching nodes xij
and the hidden nodes x̆ij . A matching node xij represents
the fact that the images i and j match, whereas a hidden
node models the fact that no matching between both images
could be found. For every matching node, there exists a
corresponding hidden node. To simplify the notation, we
group both nodes together and call this a hypernode Xij =
(xij , x̆ij), i.e., it represents the matching node xij and hidden
node x̆ij . Visiting a matching node comes at a cost, which
is proportional to the similarity of the images given the
global HOG descriptor. Then, the localization problem can
be described as a search for the shortest path through the
graph.

Throughout this paper, we assume that a rough GPS prior
is available—or any other global pose prior. Given this pose
prior, we can avoid initiating the majority of matching and
hidden nodes—a pair of matching and hidden nodes is only
needed if the distance between the sensor locations was less
than the prior, for example, dGPS < 500m. As a result of
that, only a fraction of the matching matrix C needs to be
computed, which substantially limits the number of image
comparisons that have to be conducted.

A. Edges

The set of edges E specifies, in which way the nodes
can be traversed. In our representation, we use three types
of edges Es, Et, EX , which are identical to those of [15].
In addition to that, we define two further types of edges
(Ed and Eq) to appropriately exploit the pose priors, so that
E = {Es, Et, EX , Ed, Eq}. The construction of the graph

starts with edges Es that connect the start node xs with a
set of matching and hidden nodes, defined as

Es = {(xs, xfj), (xs, x̆fj)}j∈N(f). (1)

In Eq. (1), f refers to the index of the first image in the
query sequence for which a database image exists that has
been taken in a distance smaller than dGPS from f . The term
N(i) is defined as

N(i) = {j | j ∈ D ∧ dist(i, j) < dGPS}, (2)

where dist(i, j) is distance between the location at which
the images with index i and j have been taken according the
GPS prior.

The next set of edges is EX . It models the connection
between the hypernodes as:

EX = {(Xij , X(i+1)k))} i=1,...,Q,
j∈N(i),

k=j,...,(j+K) with k∈N(i+1)

(3)

where a connection between two hypernodes Xij and Xi′j′

is defined as

(Xij , Xi′j′) = {(xij , xi′j′), (x̆ij , x̆i′j′),
(xij , x̆i′j′), (x̆ij , xi′j′)}, (4)

i.e., the edge is created from a matching node xij to a
matching node xi′j′ and as well as to a hidden node x̆i′j′ .
Analogously, the edges from the hidden node x̆ij are build,
see also Figure 3 for an illustration.

These edges model the potential transition from one image
in the database sequence to another, when the transition
between subsequent images in query sequence occurs. The
value of K specifies the possible paths that are exiting from
a node. Values for K > 1 allow for matching sequences
recorded at different vehicle speeds or in case of different
camera frame rates, see [15] for details.

The set of edges, Et, connects the GPS neighbours of the
last query image l for which N(l) 6= ∅ to the goal state xt:

Et = {(xlj , xt), (x̆lj , xt)}j∈N(l) (5)

Traversing such an edge corresponds to the end of the
matching process.

The presented graph structure considers the neighborhoods
N(i) and encodes the pose prior constraints. Exploiting GPS
information yields a serious reduction in the number of
image comparisons that have to be performed. In analogy to
the dense matching matrix C, this corresponds to a sparse
matching matrix C′ in which all not specified matches take
infinity. Thus, the set EX in this formulation can be seen as a
set of edges that connects the consecutive rows of C′ as this
corresponds to the temporal order of the images in the query
image sequence. The proposed structure, however, can lead
to multiple separated components in C′, see also Figure 4.
These components in the matrix lead to an unconnected data
association graph. Thus, the current graph topology may
prevent to find the shortest path from the start to the goal.

In order to compute the matching sequence as a shortest
path problem, we need to connect the individual components

Fig. 4: Illustration of a sparse matching matrix C′ and the process
of connecting the separate components using Ed and Eq .

so that every node has at least one parent node and one child
node. For this, we use the new sets of edges Ed and Eq to
connect nodes among components. Two situations an occur
in this context.

First, a component can appear if the vehicle visited a
place more than once while recording the database images.
This leads to nodes that have no parent. To reconnect such
components, we introduce a new hidden node x̆∗i and we
re-connect the components via x̆∗i using edge set Ed defined
as:

Ed = {(X(i−1)k, x̆
∗
i), (x̆

∗
i , Xij)}k∈N(i−1)

∀Xij with par(Xij) = ∅, (6)

where par(X) is the set of parents of X , i.e. all nodes that
have an outgoing edges to X . The newly introduced node x̆∗i
exists once per line and connects all the components, which
represent the same place in a real world. See Figure 4 for
an illustration. Note that in such a situation there are nodes
X in a component that do not have any outgoing edges, i.e.,
child(XF) = ∅. We refer to nodes without children as XF .

Second, a component can appear if the vehicle visits
an area that has not been mapped in the database and
then returns to a known place. This situation can easily be
detected if an image i from the query set has no neighbors
within the range of the pose prior, i.e. N(i) = ∅. At the
point in time when query images are again close to database
images, we connect them through a new hidden node x̆∗ and
the edge set Eq defined as:

Eq = {(Xi′j′ , x̆∗), (x̆∗, Xij)}Xi′j′∈XF

∀Xij with par(Xij) = ∅. (7)

Afterwards all the elements from the set XF are removed
as they now have a child node. The node x̆∗ exists for every
query break, i.e. subsequences, where query dataset deviates
from the area mapped in database.

B. Edge Cost

So far, we defined the vertices and edges of the data
association graph but have not specified the cost associated
to an edge. As finding the best matching sequence will
be approached using a shortest path planner, the cost are
associated to the ability to match two images.

The cost for the edges in the sets Es and Et are set to
0 as they are used to initiate/terminate the sequence. The
weights for the edges in the set EX as well as in the set

Ed are distinguished by the type of the nodes the edges are
connecting. The cost associated to an edge that connects two
matching nodes (xi′j′ , xij) or that connects a hidden node
with a matching node (x̆i′j′ , xij) is given by the inverse
matching cost wij = 1

c′ij
, where c′ij is the entry in C ′. The

cost of an edge that connects two hidden nodes (x̆i′j′ , x̆ij) or
a matching node with a hidden node (xi′j′ , x̆ij) is specified
by a constant w̆ = W . This parameter can be seen as
the cost of rejecting a match of two images. We determine
this parameter experimentally by using a precision-recall
evaluations, for more details see [15].

The edges Ed enable the graph search to treat multiple
images from the same places in database alike. Thus the
costs for edges from any node to x∗i is zero, all other cost
are identical to the cost in EX .

For the edges in Eq , we use the following cost

wij =

{
w̆(i− i′ − 1) xij is hidden node
w̆(i− i′ − 2) + 1

c′ij
otherwise

(8)

with the indices i, j, i′, j′ as in Eq. (7). This definition of the
cost replicates the cost that we would generate if using the
dense matching matrix and moving between the components
through hidden nodes. Thus, the cost is proportional to the
distance in rows between the components times the cost of
traversing a hidden node.

C. Normalization of the Edge Cost

As mentioned in [14], it is important to normalize the
matching cost in the matrix C and thus C′. We apply
the normalization used in the implementation by Naseer et
al. [15], which normalizes the cost values by the mean of cost
values over each column. As we do not compute the full cost
matrix C due to the exploitation of the pose prior, we cannot
compute the same normalization. We therefore approximate
it using samples. In more detail, we sample fixed number
of additional image pairs (in our implementation we use
30 additional image pairs) from the same column and use
this for obtaining an approximation of the normalization
constant. Let µ1 be the mean of the cost values in the column
under consideration of matrix C ′ and µ2 the mean of the
sampled pairs along this column. Thus, we approximate the
normalization constant µ = µ1n+µ2(Q−n)

Q , where n is the
number cost values contributing to the computation of µ1.

D. Complexity

For the complexity analysis, we assume that the covered
areas are substantially larger than the GPS range, so that for
all query images, only a bounded number of elements from
the database is within the dGPS . The highest complexity
is the task of finding the images in the database that have
been taken near a given location according to the pose prior.
We achieve this through a kd-tree, yielding a logarithmic
complexity in the size of the database. Overall, this results
in O(Q logD). Due to the directed acyclic graph structure,
computing the shortest path via topological sorting yields a
complexity of O(|X|+ |E|).

Database (winter)
0 50 100 150 200 250 300 350 400

Q
u

e
ry

 (
s
u

m
m

e
r)

0

100

200

300

400

500

600

700

Ground truth
Our approach
Naseer et al.

Database (winter)
0 100 200 300 400 500 600

Q
u

e
ry

 (
s
u

m
m

e
r)

0

200

400

600

800

1000

1200

1400

Ground truth
Our approach
Naseer et al.

Database (winter)
0 500 1000 1500 2000 2500 3000

Q
u

e
ry

 (
s
u

m
m

e
r)

0

200

400

600

800

1000

1200

1400

Ground truth
Our approach
Naseer et al.

Recall
0 0.2 0.4 0.6 0.8 1

P
re

c
is

io
n

0

0.2

0.4

0.6

0.8

1

 Our approach (prior=50m)
 Our approach (prior=100m)
 Naseer et al.
 SeqSLAM
 HOG-bm

Recall
0 0.2 0.4 0.6 0.8 1

P
re

c
is

io
n

0

0.2

0.4

0.6

0.8

1

 Our approach (prior=50m)
 Our approach (prior=100m)
 Our approach (prior=500m)
 Naseer et al.
 SeqSLAM
 HOG-bm

Recall
0 0.2 0.4 0.6 0.8 1

P
re

c
is

io
n

0

0.2

0.4

0.6

0.8

1

 Our approach (prior=50m)
 Our approach (prior=100m)
 Our approach (prior=500m)
 Naseer et al.

Fig. 5: Comparisons to other methods. The images in the first row show the matches, including ground truth and the plots in the second
row show the precision recall plots. First column: Comparison of our approach the method Naseer et al. [15], openSeqSLAM and a
heuristic that always selects the best match in C on a dataset that consists of a sequence of 3 km. Second column: Comparison between
the same approaches on a dataset containing a loop in a query sequence. Third column: Comparison to the method of Naseer et al. on a
third dataset containing several loops in database as well as in query.

V. EXPERIMENTS

The evaluation is designed to illustrate the performance of
our approach and to support the three main claims made in
this paper. These three claims are: (i) we can exploit GPS
pose priors to substantially reduce the computational load
of the image matching process, (ii) we can naturally handle
loops without the need of using network flow algorithms,
(iii) we can either improve the matching results or perform
comparably to our previous work.

All our experiments have been conducted using real world
data, recorded in summer and winter. The data has been
obtained with a bumblebee camera mounted in a regular car.
The algorithm works with image of resolution 1024 × 768,
no cropping, undistortion or other preprocessing is done.
Examples for matching image pairs from the datasets can
be seen in Figure 6. We evaluate the performance of our
algorithm by precision-recall curves, which are computed
based on manually labeled ground truth image matches. We
calculate precision as TP

TP+FP and recall as TP
TP+FN . A match

is considered as a true positive (TP) if the found match
and the manually provided match differs by up to three
images within the sequence. If an image pair is not within the
specified boundaries than it is considered as a false positive
(FP). All the ground truth pairs that were not found by
algorithm are considered as false negatives (FN). To obtain
the precision-recall curves, we vary the parameter w̆ from
small to large values. If w̆ takes a values that is smaller than
the smallest element in the matrix, all potential matches will
be rejected. With increasing values for w̆ more and more
potential matches will be accepted.

Fig. 6: Four example image pairs from the database and query set
illustrating the perceptual change over the seasons.

The first experiment is designed to show that our approach
performs comparable to our previous approach [15], which
constructs the full matching matrix. As the precision-recall
plots as well as the matching performance with respect to
the (manually labeled) ground truth information suggests,
we perform equally or even better than the original method,
see Figure 5. The images in the first row of that figure show
the ground truth matches, as well as the performance of our
approach w.r.t. [15]. In the first dataset (see first column of
Figure 5), both approaches show a similar performance as
also the precision recall plots in the second row suggest.

The second experiment contains a loop, i.e., the robot
revisited places stored in the database twice (approx. the
first 200 images). As can be seen from second column of
Figure 5, our approach—although solving the data associa-
tion problem using topological sorting—can handle the loops
better than the network flow solution in [15]. This is also
visible from the precision recall plots shown in the second
row. They also illustrate that we outperform openSeqSLAM

TABLE I: Number of descriptor comparisons needed to build the
cost matrix is shown in the first rows. The second rows show the
overall computation time (1st value) and the time needed to find
the matching sequence through the given graph (2nd value).

Dataset
1 2 3 4 5

Q 79 676 1,213 1,266 1,428
D 943 361 596 3,601 1,476

[15] 74,498 244,037 722,948 4,558,866 2,107,728
100s / 0.7s 277s / 2s 798s / 6s 4,843s / 55s 2,305s / 19s

GPS 74,498 134,791 298,432 2,620,748 1,102,689
500m 100s / 0.7s 155s / 1s 325s / 2s 2,734s / 23s 1,283s / 10s
GPS 50,643 38,334 72,788 621,369 106,672
100m 47s / 0.2s 52s / 0.23s 107s / 0.5s 660s / 4s 138s / 0.6s
GPS 38,313 26,841 45,457 288,312 76,171
50m 33s / 0.1s 42s / 0.1s 70s / 0.2s 316s / 1s 100s / 0.25s

and a best match strategy based on the HOG descriptors
ignoring the sequence information (called “HOG-bm”).

Finally, we used a third dataset, a more challenging one,
since it contains multiple loops in database and in query
sequences. Here, the car was driving in circles around
perceptually similar blocks. The trajectory is also illustrated
in Figure 1. Similarly to before, the usage of a GPS prior
enables us to better match the corresponding parts of the
query to database trajectory. In the third column of Figure 5,
we observe in the precision recall plot that our method with
dGPS = 50 m gives the best results. This is due to the fact
that distance between the parallel streets in the dataset is
smaller then 100 m and using dGPS = 50 m leads to clearly
disconnected components in cost matrix.

The next experiment is designed to illustrate that exploit-
ing the GPS prior can lead to a substantial reduction in the
computational requirements. Table I summarizes the timing
results of evaluating the algorithms on datasets of different
size and complexity. The table shows the total number of
global image comparisons for each approach (all values in
the first rows). In addition to that, the table lists (in the second
rows) the overall runtime of the algorithm as well as the time
needed to compute the path through the matching matrix—
the latter ones are the timings reported in [15].

As can be seen from the table, the datasets of smaller size
tend to show a smaller gain in terms of the overall reduction
of image comparisons and thus nodes in the data association
graph compared to larger datasets. This is due to the fact
that smaller datasets typically cover more near-by places and
thus yield a denser matching matrix. In general, we can say
the larger the area that the dataset covers, the bigger the
gain of our method. For the spatially distributed datasets, the
factor of the computations savings is between 9 and 27 as a
substantially smaller number of nodes needs to be created.

Most of the computation time is spent on the comparison
of the image descriptors. The computation of the global HOG
descriptor per image, described in [15], takes around 23 ms
and matching two descriptor takes around 6 ms—but this
has to be done often. The GPS priors help to reduce the
overall number of comparisons and thus lead to a substantial
reduction of the computation times.

VI. CONCLUSION

We proposed an approach to visual image matching un-
der substantial appearance changes by exploiting sequence
information. We extended our recent approach [15] so that
it can exploit noisy GPS pose priors and at the same
time substantially reduced the number of required image
comparisons and enabled us to run our method online. In
addition to that, our approach can naturally handle loops
in the input image sequences. We implemented and tested
our approach using real world image and GPS data acquired
in summer and in winter. Our comparisons suggest that
our approach can increase the matching performance while
reducing the computation time and in this way outperforms
the existing methods under consideration.

REFERENCES

[1] M. Agrawal and K. Konolige. Frameslam: From bundle adjustment
to real-time visual mapping. IEEE Trans. on Robotics, 24(5), 2008.

[2] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool. Speeded-up robust
features (SURF). Comput. Vis. Image Underst., 110(3):346–359, 2008.

[3] M. Bennewitz, C. Stachniss, W. Burgard, and S. Behnke. Metric local-
ization with scale-invariant visual features using a single perspective
camera. In European Robotics Symposium, pages 143–157, 2006.

[4] P. Biber and T. Duckett. Dynamic maps for long-term operation of
mobile service robots. In Proc. of Robotics: Science and Systems,
pages 17–24. The MIT Press, 2005.

[5] W. Churchill and P. Newman. Practice makes perfect? managing and
leveraging visual experiences for lifelong navigation. In Proc. of the
IEEE Int. Conf. on Robotics and Automation (ICRA), 2012.

[6] W. Churchill and P. Newman. Experience-based Navigation for Long-
term Localisation. Int. Journal of Robotics Research, 2013.

[7] M. Cummins and P. Newman. Highly scalable appearance-only SLAM
- FAB-MAP 2.0. In Proc. of Robotics: Science and Systems, 2009.

[8] A.J. Davison, I.D. Reid, N.D. Molton, and O. Stasse. Monoslam: Real-
time single camera slam. IEEE Trans. Pattern Anal. Mach. Intell.,
29:2007, 2007.

[9] J. Fuentes-Pacheco, J. Ruiz-Ascencio, and J.M. Rendón-Mancha.
Visual simultaneous localization and mapping: a survey. Artificial
Intelligence Review, pages 1–27, 2012.

[10] P.T. Furgale and T.D. Barfoot. Visual teach and repeat for long-range
rover autonomy. Int. J. Field Robotics, 27:534–560, 2010.

[11] A.J. Glover, W.P. Maddern, M. Milford, and G.F. Wyeth. FAB-MAP
+ RatSLAM: Appearance-based slam for multiple times of day. In
Proc. of the IEEE Int. Conf. on Robotics and Automation (ICRA),
pages 3507–3512, 2010.

[12] E. Johns and G.-Z. Yang. Feature co-occurrence maps: Appearance-
based localisation throughout the day. In Proc. of the IEEE
Int. Conf. on Robotics and Automation (ICRA), 2013.

[13] D.G. Lowe. Distinctive image features from scale-invariant keypoints.
Int. J. Comput. Vision, 60(2):91–110, 2004.

[14] M. Milford and G.F. Wyeth. Seqslam: Visual route-based navigation
for sunny summer days and stormy winter nights. In Proc. of the
IEEE Int. Conf. on Robotics and Automation (ICRA), 2012.

[15] T. Naseer, L. Spinello, W. Burgard, and C. Stachniss. Robust visual
robot localization across seasons using network flows. In Proc. of the
AAAI Conference on Artificial Intelligence, 2014.

[16] P. Neubert, N. Sunderhauf, and P. Protzel. Appearance change
prediction for long-term navigation across seasons. In Proc. of the
European Conference on Mobile Robotics (ECMR), 2013.

[17] C. Stachniss and W. Burgard. Mobile robot mapping and localization
in non-static environments. In Proc. of the AAAI Conference on
Artificial Intelligence, pages 1324–1329, 2005.

[18] C. Valgren and A.J. Lilienthal. SIFT, SURF & Seasons: Appearance-
based long-term localization in outdoor environments. Robotics and
Autonomous Systems, 85(2):149–156, 2010.

