
Toward Reproducible Version-Controlled Perception Platforms:
Embracing Simplicity in Autonomous Vehicle Dataset Acquisition

Ignacio Vizzo

Louis Wiesmann

Benedikt Mersch

Tiziano Guadagnino

Lucas Nunes

Cyrill Stachniss

Abstract— Building datasets for autonomous vehicles has
become an essential element of robotics research. Numerous
datasets were published, pushing the state-of-the-art forward.
This article investigates the problem of building reliable per-
ception platforms that can accurately capture and process
sensor data, ensuring the integrity and quality of the datasets
generated. We propose using version control systems to enhance
dataset acquisition’s efficiency, reliability, and scalability. We
present a method that can launch the system and record data
while logging the exact state of the system simultaneously,
making the setup and the data generated with it more reliable
and reproducible. The main contribution of this paper is
a systematic method that applies to existing and operating
perception platforms used to collect data. Our framework is
based solely on standard tools and is independent of the chosen
sensor suite or host system. Implementing our method for
existing perception platforms is possible, and to facilitate this,
we open-source all the software used to operate our perception
platform at: https://www.github.com/ipb-car.

I. INTRODUCTION

Building datasets for autonomous vehicles [1], [2], [3], [7],
[14], [24], [30], [34] has pushed research forward and allows
easy comparison between approaches. Properly recording
such a dataset, especially if multiple sensors are used, is
a significant effort in robotics. While various datasets have
been developed to aid the development of algorithms, nu-
merous challenges remain when building robust and scalable
perception platforms. Software in research labs is rarely in
the final state [5], [6], and researchers continuously test, use,
discard, and deploy new developments, configurations, and
setups. The tools used to record datasets often lack repro-
ducibility due to scattered software, hardware descriptions,
and documentation. This makes it difficult to determine the
system’s state for a specific recording. In addition, system
documentation is often maintained separately and not as
part of the main software, leading to potential errors in the
recording phase due to outdated instructions.

One solution to these challenges is what we call version-
controlled perception platforms. These platforms allow the
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Fig. 1: After recording data at different points in time using different
driver versions or configurations, our proposed version-controlled
perception platform allows to checkout at a recording’s unique hash
describing the state of the complete system at that moment.

creation of datasets by exploiting version control beyond
the software, enabling tracking changes in the configuration,
setup, sensor drivers, documentation, hardware description,
and operating system configuration. This facilitates collabo-
ration among team members and ensures the use of up-to-
date software for the perception platform.

This system or best-practice paper focuses on improving
perception platforms’ reliability in robotics research. We
propose to extend the usage of version-control systems, like
Git, to implement version-controlled perception platforms.
As illustrated in Fig. 1, we integrate the complete system
description into a version-controlled environment, in which
each recording generated with the platform is associated with
a Git hash that captures the complete state of the system at
the time of recording. This approach facilitates the creation
of experimental branches for development and testing. We
also explore the concept of a software-configurable sensor
suite that provides flexibility and adaptability without requir-
ing hardware modification. Furthermore, our methodology
explores the use of a time-synchronization scheme that en-
ables the synchronization of different sensors solely through
network cables, eliminating the need for additional hardware
triggering systems, enhancing the system’s simplicity, and
avoiding the complexities and costs associated with external
triggering mechanisms.

https://www.github.com/ipb-car


To implement a version-controlled perception platform, we
utilize standard tools available in most modern operating sys-
tems, namely Git and Docker. We propose a method to install
and launch the system on a new machine easily, reliably
record data, and simultaneously log the exact state of the
system. Furthermore, we introduce a sensor synchronization
setup that minimizes hardware intervention using a single
network cable, such as Ethernet or Thunderbolt. This unique
network interface is sufficient to capture the complete sensor
stream using multiple cameras and 3D LiDARs.

The main contribution of this paper is a systematic and
practical method that will improve the existing perception
platforms used for data collection in most research labs. Our
method implements version control across the entire system
and uses Docker containers. By utilizing specific versions
and referencing the commit hash in the logs, the configura-
tions, software, and recording sessions of the datasets can be
retrieved precisely. Our method not only simplifies the setup
process but also increases the accessibility of the platform
for users who may not have specialized equipment or knowl-
edge. Although our focus has been on perception platforms
for autonomous vehicles, the principles and techniques we
propose can be adapted and applied to other robotic systems.
All components needed to reproduce our system or build an
own setup are open-source.

II. RELATED WORK

Validation and testing algorithms’ performance is a crucial
step in robotics research [8], [28], [29], but it also ensures
safety when deploying robotic systems in the real world.
This requires the availability of large, diverse, and reliable
datasets. Although various datasets are available in the con-
text of autonomous vehicles, there is little detailed work on
how to build a good platform for data collection.

In the robotics research community, some integration
frameworks have been developed to facilitate the integration
of components of the robotic system [20], [22], [23]. Within
these frameworks, the Robotic Operating System (ROS) [23]
became popular within the robotic community. For years,
ROS has been the primary development platform for robotic
systems, being a hub of algorithms in robotics, providing
tools and architecture for communication between robot
sensors. With the rapid expansion of robotics in enterprise
environments, ROS 2 [18] was proposed as a more reliable,
consistent, and robust platform. Although ROS 2 has been
proposed as a more robust replacement for ROS 1, the
robotics community still widely uses ROS 1 since years of
research contributions integrated with this platform are not
easily portable to ROS 2. Most robots today are a mixture
of existing ROS modules, self-developed software, research
code under development, and proprietary drivers. Similar
observations hold for other middleware systems as well.

One of the first benchmarks for autonomous driving was
the KITTI dataset [14], [15]. Their data collection platform
comprised two colors, two grayscale cameras, a Velodyne
LiDAR with 64 beams, and a GNSS/IMU localization unit
with real-time kinematic correction (RTK). To synchronize

the LiDAR and camera frames, the LiDAR is used as a
reference to trigger the cameras after each rotation. For each
LiDAR-triggered time, the closest GNSS/IMU measurement
is taken since the localization system runs at a higher
frequency than the other sensors.

Following KITTI, other datasets were proposed in the
context of autonomous driving [2], [17], [19], [24], [30],
[34]. Some datasets use a unimodal sensor setup that collects
only image data [9], [13], [21], [25]. One such dataset is
Cityscapes [9] which first focused on semantic segmentation
in an urban context and contained only image data from
a stereo camera. Later, the dataset was extended to 3D
object detection using depth information from stereo cam-
eras [13]. Other works [10], [25] took advantage of advances
in simulation environments to generate synthetic datasets.
More recently, many companies have pushed the field of
publishing large-scale datasets from urban scenarios [4], [7],
[26], [33]. These works and their proposed datasets helped
to push the field of autonomous driving. However, since
those works focused on the collected datasets, their data
collection platform was often not discussed in detail, which
kept the challenge of developing a system able to collect syn-
chronized data continuously. To the best of our knowledge,
solely the ApolloScape dataset [16] released an open-source
software architecture for data collection. However, unlike our
work, many specific hardware requirements must be met
to collect the data properly. This paper mainly discusses
our approach to managing our data collection platform,
developing a portable, reliable, and consistent system capable
of recording synchronized data on different hardware sets
and operating systems in a plug-and-play fashion.

Moreover, in robotics research, an equally challenging
aspect is the ability to reproduce software code, which
is crucial for validating research findings and promoting
collaboration within the community. Several studies have
focused on this aspect [5], [6], [12], [27]. These studies have
highlighted researchers’ difficulties in effectively reusing
code and proposed solutions to overcome these challenges.
Additionally, working with ROS in Docker can be chal-
lenging, especially when network configurations must be
performed [31], [32]. To cope with networking problems,
Wendt et al. [31] proposed a method for containerized
ROS deployments in distributed multi-host environments,
including proxying ROS communications, enabling efficient
deployment and communication in distributed settings. In
contrast to the challenges mentioned above, our methodology
offers a streamlined approach that minimizes the difficulties.
By implementing version control and Docker containers,
our method simplifies the setup process and enhances the
accessibility of the perception platform. Additionally, we
provide a straightforward and configurable networking setup
by specifying the networking setup in a simple configuration
file. This eliminates the need to manually configure complex
network settings, making the deployment and communication
of the perception platform more efficient and user-friendly
and transforming the platform into a plug-and-play solution,
as no manual intervention on the host machine is required.



III. THE META-WORKSPACE CONCEPT

An essential component of our system is what we call the
meta-workspace. It is a Git repository containing only two
files sufficient to describe, build, and run the entire system:
.gitmodules and launch.yaml. Our meta-workspace is similar
to what is commonly known as the src directory in Catkin
or Colcon workspaces. This implies that cloning it into an
empty directory on the host system is sufficient to download
all components, initiate the build process, and launch the
system.

The file launch.yaml is a docker-compose description
file, which specifies the network configuration of the host
machine, the Docker services to run, the IP addresses of
all sensors present in the network, and the network interface
used to stream data. This description file also indicates where
to mount the meta-workspace directory in the container that
will run the setup. Encoding the network configuration in the
launch.yaml file and the container specifications are crucial
components that enable development on a host machine
completely decoupled from the operating system used to run
the sensor suite.

We utilize Git Submodules, a standard tool included in
all Git distributions, to list all the necessary components re-
quired for the proper functioning of our system. Maintaining
a separate Git repository for each component, enables us
to have different configurations for continuous integration
(CI), issue trackers, and potentially separate Git servers. On
the contrary, using a monorepo to store all the software
components is also a common technique. However, it does
have certain drawbacks: one major drawback is the loss of
individual version control for modules. This makes updating
specific modules with newly released code from sensor ven-
dors difficult. Additionally, a monorepo environment lacks
the transparency to change individual module configurations.
These limitations can hinder the flexibility and efficiency of
managing and updating modules within the perception plat-
form, especially when larger systems are built, and modern
sensors are used. Therefore, we opted against a monorepo
for our setup.

A significant benefit of our system is that the data record-
ing process is simplified by decoupling the host machine
from the software used to operate the perception platform.
This means that, unlike other robotics platforms with more
specific requirements, our platform only needs a computer
running any GNU/Linux distribution and a network interface
to connect to the setup. The meta-workspace handles all
other dependencies and configurations. This approach not
only simplifies the setup process but also increases the
accessibility of the platform for users who may not have
specialized equipment or knowledge.

Employing Git for all components in our perception plat-
form brings the inherent benefits of version control, such as
checking out, tracing back changes (blaming), branching, and
others. This ensures the reliability of the datasets created with
the system since the perception platform state at the time
of dataset recording is preserved through the associated Git

launch.yaml.gitmodules

Networking

C
I/

C
D D
o

ck
er

R
eg

is
tr

y

Sensor Drivers

Time Synchronization

URDF Models

Documentation

Fig. 2: Main components of a version-controlled perception plat-
form. Our meta-workspace is defined by two files, .gitmodules and
launch.yaml. As shown in this illustration, the launch.yaml file
specifies all the necessary network configurations to operate the
system. The .gitmodules file, instead, specifies all the necessary
components to build and run the system.

hash. As a result, users can have confidence in the datasets
knowing that all components’ states can be accurately recov-
ered. Furthermore, reproducing the platform state is simple
by checking the hash associated with a specific recording, as
illustrated in Fig. 1.

IV. BUILDING BLOCKS OF A
VERSION-CONTROLLED PERCEPTION PLATFORM

In the following sections, we outline the essential com-
ponents required to realize a version-controlled perception
platform using standard tools, regardless of the chosen sensor
suite or the host machine used for recording. Our approach
is not tied to a specific platform, but we will give a practical
example of how to implement the concepts discussed here in
a real-world case study. Unless explicitly stated otherwise,
each subsection refers to one or more Git repositories that
are part of our meta-workspace. An illustration of the meta-
workspace is given in Fig. 2.

A. Docker Registry

We containerize all software components required to op-
erate the sensor suite to decouple the host system from
the perception platform. Furthermore, we maintain a private
Docker registry on our Git server that provides pre-built
Docker images for all the containers required to run our
system. The docker files used to build these containers are
also included in our meta-workspace, allowing us to have a
local copy of the files used to generate these containers in
our registry. Additionally, this approach enables us to modify
the containers locally, as necessary, for example, in the early
stages of development or for debugging purposes.

B. Sensor Drivers

Our perception platform uses the Robot Operating System
ROS to operate the sensors and log data. However, we do not



enforce a specific ROS version, and other robotic frameworks
can also be used. We containerize all required sensor drivers,
including LiDAR, camera, and custom nodes. Adding a new
sensor to our setup is as simple as adding the sensor-specific
driver to our Git submodules list. If a specific SDK or system
package is required to operate the sensor, then the Dockerfile
can be updated without affecting the development on the host
machine.

An important benefit of this design choice is that the
sensor suite can be operated independently with different
ROS versions, such as ROS 1 or ROS 2, simply by changing
the meta-workspace definition. A possible realization could
be maintaining separate Git branches for each ROS version,
with modified Git submodules and Dockerfiles. This enables
switching between ROS versions without changing the host
machine or its operating system, hardware, or sensor config-
uration.

C. Time Synchronization

Ensuring time-synchronized sensor data is a crucial re-
quirement for modern perception platforms. It is important
to distinguish between two concepts: sensor time synchro-
nization and synchronized sensor triggering, which are of-
ten misunderstood and (wrongly) used interchangeably. We
compare both setups in Fig. 3.

Sensor time synchronization refers to the use of a shared
master clock by all sensors in a running system that allows
them to report timestamps relative to the same clock, and
often, it is possible to also trigger sensors via software, for
example, to take images at a specific point in time. However,
it does not necessarily mean that the sensors will capture data
frames in perfect sync as a hardware trigger would do.

On the other hand, synchronized sensor triggering refers to
the use of a particular signal, often generated by a hardware
trigger or another sensor GPIO output, to capture the sensor
data frames in a coordinated fashion. This approach is
often used for stereo cameras or overlapping multi-camera
systems. For example, in the KITTI odometry dataset [14],
the Velodyne LiDAR triggers the cameras at the end of
each laser sweep. Although this approach can ensure that
data frames from different sensors can be associated, it
has some limitations. For example, it enforces additional
hardware modifications, such as wiring the GPIO pins from
one sensor to another. This makes the platform setup chal-
lenging to reproduce in scenarios where hardware engineers
are unavailable. It also limits the flexibility of triggering
by the LIDAR hardware. Furthermore, some sensors, such
as a 3D LiDAR, cannot be actively triggered. They can
only generate a trigger output in specific configurations.
Additionally, triggering does not scale well as the number
of sensors in the suite grows.

In contrast, we advocate building a sensor suite entirely
configurable by software and not requiring additional hard-
ware intervention. To achieve this, we use the IEEE 1588
Precise Time Protocol (PTP) [11], today a widely adopted
standard for clock synchronization in networked measure-
ment and control systems. PTP provides accurate clock
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Fig. 3: Difference between synchronized sensor triggering (top)
and time synchronization (bottom). Traditional sensor hardware
triggering relies on external hardware sources to capture data from
sensors within the network. Our approach to time synchronization
using PTP eliminates the need for additional hardware components.
Instead, it synchronizes the internal clocks of the sensors them-
selves, ensuring precise and coordinated data acquisition without
reliance on external triggers.

synchronization across multiple sensors and other devices,
which is critical to obtaining reliable measurements. Note
that the software-based PTP protocol can be established
through standard plug-and-play network connectors, but it
enforces the requirement that the sensor must come with PTP
support from the vendor. Although our time synchronization
setup drastically simplifies the hardware connections, stereo
cameras or multi-sensor arrays with overlapping fields of
views used for point triangulations may still require a hard-
ware trigger if exactly synchronized exposure is essential.

PTP Grandmaster Clock. Our approach to network-
synchronized sensors requires a precise Grandmaster node
in the PTP network [11]. In some scenarios, any sensor
or device on the network can act as this master clock.
Nevertheless, we design and control the Grandmaster clock
as part of the sensor suite to achieve reliability and absolute
timestamps for each sensor. We propose using an onboard
computing system like a Raspberry Pi or Intel NUC with
additional GNSS hardware.

Although not strictly required for realizing a version-
controlled system, we utilize a GPS-disciplined host to
develop our synchronization setup. The GPS satellite time
initially adjusts the Grandmaster’s internal clock and is
subsequently synchronized with a pulse-per-second (PPS)
signal from the GPS sensor once per second. Once the
Grandmaster clock is synchronized with the GPS satellites,
all PTP-enabled sensors in the network will synchronize to



this Grandmaster clock, eliminating the need for user inter-
vention or hardware configuration. Moreover, each sensor’s
timestamps will contain absolute timestamp information,
as the PTP Grandmaster clock receives its time from the
GPS satellites. Therefore, all datasets recorded with this
synchronization setup will store the exact time a particular
data frame was recorded.

This choice might introduce an additional vulnerability
that could disrupt the functioning of the perception platform.
Once the Grandmaster clock machine is set, it becomes
crucial to ensure that any interventions or modifications to
the system do not compromise its internal configuration.
To address this weak point, we have developed a custom
OS distribution for the Grandmaster clock computer, incor-
porating an additional monitoring layer1. Before launching
our system, we conduct a sanity check to verify that the
configuration of the Grandmaster clock computer aligns
precisely with the specifications outlined in the current work-
ing environment. This enables us to identify any potential
mismatches or discrepancies that may arise promptly.

D. Networking

Our methodology introduces a minimal requirement for
the sensors, specifically an Ethernet connection with support
for PTP, which is now commonly available. In contrast
to the traditional approach in the robotics community, our
system simplifies network configurations by specifying all
essential details, such as IP addresses, within the launch.yaml
file. Consequently, no modifications to the host machine
are needed, resulting in a streamlined and portable setup.
Another advantage is the ease of transferring and running
our perception platform on another host machine without
any changes or adjustments. Importantly, our setup does not
override any local configuration on the host machine, making
it a non-invasive approach.

Depending on the sensor configuration, it might also be
necessary to ensure the network is 10 GbE instead of more
traditional 1 GbE setups for fast and collision-free routing, an
option we chose to handle multiple cameras and 3D LiDARs
in our setup.

E. Documentation

Traditionally, the documentation for perception platforms
is stored in a separate repository or documentation system,
independent of the system’s main codebase. While this sepa-
ration may have benefits, we have experienced that including
the documentation repository in the main codebase of our
system has several advantages. Firstly, it ensures that the
documentation is always tightly coupled with the codebase.
Second, it allows developers to search for source code and
documentation consistently. Third, it allows one to check the
documentation even when no internet connection is available.
Lastly, it provides a comprehensive system overview by
bringing together all relevant information in one place. We

1All the details of our custom OS can be found at https://www.
github.com/ipb-car/raspbian
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Fig. 4: The ipb-car platform: a practical example of a version-
controlled approach.

strongly recommend this approach, especially for university
research labs with changing personnel.

F. URDF Models

In our meta-workspace, we also incorporate the calibration
of the sensors utilized in our system. Our system’s URDF
(Unified Robot Description Format) models are included
in our meta-workspace, which completes the description of
the current working setup. By storing the calibration in
the URDF Git submodule, any changes to the calibration
parameters can be tracked and visually inspected when
launching the system.

G. CI/CD

Continuous Integration/Continuous Deployment (CI/CD)
is a software development practice that relies on a build
server or similar infrastructure to automatically integrate
code changes, build software artifacts, run tests, and deploy
applications in a streamlined and continuous manner. The
stability of our proposed system is highly dependent on
our CI/CD infrastructure. All the sensor drivers and Docker
images are built daily or when a request change is carried
over on the repositories. Additionally, to keep our meta-
workspace up to date, we use our CI/CD to pull new changes
from the stable branches into the meta-workspace definition.
In addition to keeping the meta-workspace updated, the
CI/CD is in charge of building all the ROS nodes, docs,
URDF models, and more on each commit of each Git
submodule. We use the same containers to run the perception
platform and the CI/CD infrastructure to ensure we can build
the components locally. Furthermore, the CI/CD performs
nightly builds of all the system components and deploys
the Docker images our setup uses daily. This ensures that
the Docker containers are up-to-date. Lastly, our CI/CD
infrastructure builds our custom operating system for the
Grandmaster clock computer, meaning that at any point in
time, we can use the image generated by the CI to flash the
OS and start from a new and known state.

https://www.github.com/ipb-car/raspbian
https://www.github.com/ipb-car/raspbian
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Fig. 5: An example of our ipb-car meta-workspace. All the necessary components are described within the .gitmodules file. Additionally,
sensor IP addresses and additional network configurations are defined in the launch.yaml file on the right of the picture.

V. BUILDING A VERSION-CONTROLLED PLATFORM

In this section, we specify how to apply the concepts
described in this paper to an existing perception platform
in three steps. Although the concepts described in our work
apply to virtually any hardware configuration, we illustrate
how to follow these steps using our platform called ipb-car,
the perception platform we use to record datasets for research
on autonomous driving.

A. A Practical Use Case Example: The ipb-car Platform

The sensor setup of the ipb-car platform is shown in Fig. 4.
It consists of the following sensors:

• 1 x 3D LiDAR Ouster OS1-128
• 1 x 3D LiDAR Ouster OS1-32
• 4 x industrial-grade cameras, Basler ACA2040-35GC
• 1 x navigation system (GNSS/IMU), SBG Ellipse-D
• 1 x PTP Grandmaster computer, based on a Raspberry

Pi 4 with an additional GPS receiver
• 1 x QNAP WSW-M2108-2C 10 GbE network switch
• 1 x QNAP QNA-T310G1T 10 GbE, thunderbolt conv.
Our platform is designed with a single network cable to

allow the seamless flow of the entire sensor stream from the
platform to the host machine. For this, we use a 10 GbE
setup. This requires that all sensors have available Ethernet
ports, but not necessarily 10 GbE capable ones. For example,
in our setup, all the cameras are 1 GbE. All the 1 GbE streams
are automatically integrated into the 10 GbE network. We
connect all Ethernet sensors to a network switch, which is
then connected to an Ethernet-to-thunderbolt converter. As a
result, a single thunderbolt cable is the only cable required to
connect to the host machine to record data from the platform.

B. Step 1: Identify System Git Components

The most crucial aspect of version control of a new plat-
form is creating Git repositories for each system component.
This is a common practice in robotics nowadays. However,

we push this technique further by creating repositories for
non-software components, such as the URDF models de-
scribing the system, the documentation, and others. The
reasoning behind this design choice is to enable us to take
a snapshot of the entire system with a simple Git hash.
Because of this design choice, the first step is identifying
all the components required to run the perception platform
and ensuring the selected components are accessible through
the Git repositories.

C. Step 2: Containerize All Components

Once all components have been identified, a container
must be provided for each component. There are two ap-
proaches to solving this step. The first is to create one
container for each service, for example, one for the cameras,
one for the LiDARs, and so on. The second approach is to
create one unique container for all the services in the system.
We chose the second option since we found that, in practice,
it is easier to maintain and adapt to different types of sensor
configurations.

D. Step 3: Create a Meta-Workspace Repository

Assuming all system components can be used in Docker
containers and the information where each Git repository
is already gathered, the next step is to create the meta-
workspace repository, introduced in Sec. III. This is a reg-
ular Git repository that contains the two files sufficient to
describe, build, and run the perception system: the files .git-
modules and the launch.yaml. The file .gitmodules contains
all the necessary repositories that describe the perception
platform. The containers identified in the previous stage
should be added to the file launch.yaml. Additionally, all
network configurations, such as the host machine’s subnet,
mask, and IP address, should be included in the launch.yaml.
An example of how ours looks is shown in Fig. 5.



VI. APPLICATIONS OF OUR METHOD

This section exemplifies how using our method simplifies
everyday tasks encountered in the data collection process in
robotics research labs.

A. How to Reliably Record Data

We can ensure consistency across multiple datasets by
generating a Git tag for the meta-workspace when the system
is known to be in a functional state. This tag represents
the exact setup, configuration, and code for recording the
datasets. Consequently, it is easy to reproduce the same con-
ditions and maintain a reliable and consistent environment
for dataset generation, even over long recording periods.

In practice, even small changes in the codebase can result
in non-working system configurations. With our framework,
as long as we can identify a functioning commit within the
Git infrastructure, we can utilize standard tools like git-bisect
to reproduce the problem, pinpoint the introduction of the
bug, and finally eliminate it. It enables us to restore the last
known working system state and effectively debug the issue.
Furthermore, by using development branches, other team
members can continue their work without disrupting the main
recording setup. This allows for parallel development efforts
while ensuring the stability and integrity of the system.

B. How to Retrieve System State From Data Recordings

Backtracing the state of the perception platform for a
previously recorded dataset is usually challenging. Our ap-
proach allows us to check out the entire system at the hash
associated with a recording to know precisely how data
was recorded, for example, if any pre-processing or filtering
was applied or what a specific sensor configuration was.
This dramatically increases trust in the data and allows fair
comparisons between different recordings.

C. How to Work on Different Hardware Configurations

When deployed in practice, our methodology facilitates
using the perception platform on various types of robots,
considering their specific constraints. For example, for a
wheeled mobile robot that cannot accommodate a laptop
for data recording, customization of the meta-workspace
becomes necessary. If sensor drivers and the corresponding
SDK associated with the cameras are removed, the build time
and system footprint can be significantly reduced, allowing
for the use of the system on a more resource-constrained
platform. This adaptability allows the perception platform to
be tailored to different robot configurations and requirements,
ensuring its applicability across a wide range of robotic
applications. It is also important to note that calibration
procedures may need to be adjusted accordingly, which are
also tracked when using our methodology.

D. How to Run the System on Different Machines

In practice, it is highly advantageous to have the ability
to operate the system using different computers within a
team. Sharing a single laptop can become a bottleneck,

affecting productivity and flexibility. Our methodology en-
ables developers to have individual copies of the meta-
workspace, allowing them to build, launch, and test the
system independently without relying on a shared machine
or constant coordination. Furthermore, there are no specific
requirements for the host operating system. This allows for
the operation of the perception platform using an OS that
may not support parts of the stack, such as ROS 1. As a
result, team members can work independently on different
requirements while maintaining a consistent and efficient
development environment. This eliminates the challenges of
sharing a single machine and allows for seamless collab-
oration and progress on different requirements within the
perception platform. In the daily life of a research lab, this
is a great support.

E. How to Migrate between ROS 1 and ROS 2

Migrating to ROS 2 can be challenging, as existing sys-
tems may not work seamlessly, and installing ROS 1 and
ROS 2 on the same operating system can be problematic.
One possible solution is to dedicate a separate computer
solely for the ROS 2 migration. Our framework offers a more
elegant approach. By creating a new branch of the meta-
workspace, developers can change the base image of the
Docker containers and work towards achieving a functional
ROS 2 setup. Once the migration goal is achieved, the team
can decide whether to merge the ROS 2 branch into the main
development branch or keep it separate. Importantly, even if
the ROS 2 branch is merged, the older ROS 1-compatible
branch remains accessible at any time through Git tags or re-
leases, so previously used recording setups can be reproduced
on demand easily. This allows developers to switch between
ROS versions without changing the host operating system,
computer, or other configurations. Our framework simplifies
the migration process, reduces associated challenges, and
allows us to easily revert to previous working configurations.

VII. CONCLUSION

This paper presented a novel methodology to develop
version-controlled perception platforms that we use at the
Photogrammetry and Robotics lab at the University of Bonn.
Our approach to building a sensor suite enhances the repro-
ducibility of the system’s state and is easily adapted to any
existing perception platform. Our methodology relies only on
standard tools in any modern operating system, namely Git
and Docker. It is, from our point of view, key when building
a complex robot or sensing infrastructure. This allows us
to successfully build a containerized software stack that can
run on multiple host machines without setting the host to a
particular state. All the software and tools used to develop
our perception platform are open-source for the benefit of
the community. We envision this work as a step forward in
building more reliable perception platforms in the context
of mobile robots that can accelerate the research of new
algorithms for autonomous vehicles.
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