
Path-Planning for Autonomous Parking with Dubins Curves

Christoph Siedentop∗ Robert Heinze∗ Dietmar Kasper∗ Gabi Breuel∗

Cyrill Stachniss†

Abstract: Autonomous cars can offer numerous services to its users, one is fully autonomous parking.

There are different challenges involved in autonomous parking on parking spaces such as efficient path

planning under constraints or limited sensing of today’s cars. In this paper, we present a path planning

approach for automated car parking in unstructured environments. Our system is able to find paths

without imposing additional restrictions on either the environment, the final parking position, the number

of direction switches, nor the length of the path. Our method consists of a lattice grid search, which

yields kinematically-feasible paths and a subsequent optimization step to obtain a dynamically-desirable

solution. The main contribution of this paper is in the construction of edges for the grid search through

Dubins Curves. We implemented and throughly tested our system both in simulation and on a real

Mercedes-Benz E-Class instrumented for automated driving. The parking solutions are found quickly

and allow for an accurate execution so that parking is possible for small- and medium-sized parking lots.

We believe that this paper is a viable approach towards fully automated parking.

Keywords: Automated Parking, Path Planning, Dubins Curves

1 Introduction

In the last decade, fully-automated research vehicles have become better and better. After an
autonomous journey on highways and city streets, these vehicles will need to park. Because of
the unstructured environment, maneuvering for parking is significantly different to trajectory
planning on a road.

Finding a path for a car-like vehicle in an obstructed environment is hard. Simultaneously,
one has to find a solution that does not violate the kinematic restrictions of the vehicle and the
restrictions imposed by the environment. One kinematic restriction is the minimal curvature.
The environment imposes the restriction that the vehicle does not collide with obstacles or moves
outside the drivable area.

When the vehicle in question is an autonomous car additional objectives become important.
First, what is kinematically-feasible might not be dynamically-feasible: the minimal curvature
is speed-dependent and the change in steering is never instantaneous. Secondly, often human
occupants are present in the vehicle and might wish to forgo speed for safety or comfort.

Our objective for this paper is two-fold: Find a path if it exists and improve it if possible.
The application of interest is finding a path that can park a car from an initial position into
a desired parking spot. We choose a hybrid approach for addressing this challenge. First, we
construct a discrete grid in the configuration space and then search it with A* search connecting
vertices with kinematically-feasible edges. To ensure this, we use the Dubins Car-Model, which
provides a shortest-path closed-form solution between any two states. The A* search provides
us with a shortest path between start and target configuration. We then pass this path to an

∗Daimler AG, Autonomous Driving, Böblingen, Germany, E-Mail: first.last@daimler.com
†Institute for Geodesy and Geoinformation, University of Bonn, Germany, E-Mail:

cyrill.stachniss@igg.uni-bonn.de



Figure 1: A typical parking scenario. The car is tasked of finding a drivable path from the
bottom left to the black box in the bottom right. A solution is plotted in orange, with boundary
boxes of the vehicle plotted every meter. In this example the found path consists of just 4 states
connected with Dubins Curves. The grid consists of more than 200k states, 50k of which were
visited during search and only 24 states were expanded. This is equivalent to a branching factor
of 2000. The image shows only the visited states in blue.

optimisation engine. We formulate a cost function that improves the path in Frenet coordinates,
minimizing the total jerk for comfortable movements, minimizing curvature for dynamics and
maximises the distance to obstacles for a feeling of safety to occupants. The constraints are that
the kinematics of the car may not be violated and that no obstacles are hit.

Our evaluation shows that this approach yields solutions in small- and medium-sized parking
environments (see Fig. 1) and allows the car to park both forwards and backwards. Our approach
finds solutions if the car can park in a single move, and if multi-turn maneuvering is necessary.

2 Literature Review

Path planning for parking can be approached from various directions. Automated parking
systems found in production-series cars are based on geometric curves [18]. Yet, all currently
available (mid 2015) systems can only deal with standard situations like parallel parking and
orthogonal parking.

While these systems are solved through geometry, the opposite approach are graph-based
planning approaches. These are not restricted to specific situations and can potentially solve
any parking situation. Graph-search based approaches are challenged by two problems. The
first is the potentially large number of states in the graph, caused by a high-dimensional state
space. Published paper tend to use a four- or five-dimensional space. Typical choices for the
dimensions are vehicle pose in 〈x, y, θ〉 supplemented with current steering angle ξ and drive
mode d ∈ {forwards, backwards}. The second challenge is how to connect vertices (states)
in the graph. Three approaches exist: Ziegler et al. [20] construct a tree starting with the
current vehicle state and generating neighboring states by forward-predicting the motion model.
The second variant was proposed in [15]. Here the authors transformed the metric system
into (2,4)-chained form, which then spans a regular grid. This technique from control theory



is used to great effect and offers a profound, clean solution. However, care must be taken in
the implementation to avoid singularities in the transformation and also requires substantial
computing resources. The third variant is the construction of a lattice grid, where states are
connected by off-line solving the boundary-value problem of the motion model. Examples for
this approach are [10, 8, 12, 6, 2].

3 System Overview

We aim at building a parking system for an automated car. Our test vehicle is a standard
Mercedes-Benz E-Class equipped with additional sensors, processors and an interface to the
actuators (steering, brakes and acceleration, and drive selection).

The vehicle’s pose is provided by a localisation framework and obstacles are provided by
radar sensors. The localisation method and sensor setup are described in more detail in [13].

The map of the environment and the final parking position are discovered through previous
recordings of paths driven by a user. A set of trajectories is converted to a drivable area using our
previously published approach [17]. The end poses of those user-driven trajectories also provide
us with candidate parking positions. At run-time a user can select one of those parking spots.
The vehicle will then calculate a path towards the selected parking spot and try to execute it. If
new obstacles are sensed, the system will first re-plan around them using the optimisation step.
If that fails, a complete re-planning with an updated environment map is started.

4 Algorithm Description

A complete description of our algorithm must cover both phases: grid search and optimisation.
The grid search uses a regular grid in a three dimensional state space, where the sophistication
lays in the edges. And then the solution is improved by means of convex optimisation.

4.1 Dubins Grid

When constructing a grid for the A* search with a constrained vehicle, such as a car, we must
take care that the graph is well-connected. We chose to use Dubins’ model of a car to generate
edges that model the behaviour of our vehicle.

4.1.1 Vertices

The vertices in the Dubins Grid are configurations (i.e. the state) of the car: Pose in 〈x, y, θ〉.
These are created in regular intervals, although there is no inherent need for this regularity by
the algorithm.

4.1.2 Edges

The edges are what motivates the name Dubins Grid. We connect neighboring vertices by Dubins
Curves. Dubins Curves are the shortest path that a Dubins Car can take between any two states
in an obstacle-free space. The Dubins Car uses a bicycle model with the explicit definition that
it can only go forwards and that it has a minimal turning radius. Dubins [3] showed that the
shortest path his car could take would only ever consist of three basic movements: straight
forward (”S”), full right turn (”R”), or full left turn (”L”). He furthermore showed that the
shortest path between two positions is composed of exactly three of these basic movements and
that there are only six of these so-called words in total: Four with a straight segment in the
middle (RSR, RSL, LSR, LSL) and two with a curved segment in the middle (RLR, LRL).



For our application of Dubins Curves it is important that a closed-form solution for all six
possibilities exist. Finding the shortest of the six can be done through a simple min-operation
or through more sophisticated means [1, 16].

To connect the Dubins Grid, we connect those vertices with edges whose Dubins Curves are
collision-free with the map boundary and obstacles. Finally, we define the Dubins Curves both
for a forwards and a backwards driving car. This means the direction of movement does not
change in an edge. Only in a vertex is a change of direction possible. We connect two states
with the shortest Dubins Curves.

4.1.3 Heuristics

As a heuristic we chose the length of the Dubins Curves between a vertex u and the closest goal
vertex t. It is important to note that this is an inadmissible heuristic as it can overestimate the
cost to the goal. This overestimation occurs when the shortest path includes a change in direc-
tion. Reeds-Shepp Curves [14] are an extension of Dubins Curves, where changes in direction
are possible. As such, they would provide an admissible heuristic but are computationally too
costly.

The Dubins Curve heuristic captures the non-holonomic constraints of the vehicle and pro-
vides a distance metric (if done both forwards and reverse) to the configuration space. The other
heuristic incorporated into the search is often one that captures the map. This is sometimes
called an obstacle-sensitive heuristic. This can either be done through Voronoi graphs [20] or
based on a 2D-Dijkstra search through the map [10]. We chose to implement Dijkstra for its
simplicity. However, in the tested scenarios it did not yield any runtime improvement. This was
even the case in a very long scenario.

The result of the search is a list of 3D states which are connected through Dubins Curves.
To complement the search we run optimisation on the path to smooth it.

4.2 Optimisation

Because the generated path found by the graph search above is composed of concatinated Dubins
Curves, optimisation is highly beneficial to yield smooth and comfortable trajectories. We chose
to implement a cost function and constrains with the following aims. There are two constraints:
(1) The car may not collide with any obstacle or the boundary of the map. (2) The curvature
may not exceed the maximal curvature as imposed by the vehicle constraints.

While a multitude of criteria to optimise are imaginable we concentrated on those that are
necessary in our opinion for a human occupant to appreciate the maneuver. Primarily this is the
change in curvature and the change in orientation. Additionally, we would like our optimised
solution to track the original solution as best as possible.

4.2.1 Constraints

The first constraint is that the vehicle should not hit any obstacles.Second, the path must remain
drivable and thus the curvature must remain below a threshold.

Obstacles We consider two types of obstacles. Real obstacles are provided by extrinsic sensors
– an array of radar or LIDAR sensors which covers the complete surrounding of the vehicle.
These are treated as point-shaped obstacles and updated multiple times a second. The second
type of obstacles is the boundaries of the map. We treat both in the same framework using a
Delaunay triangulation as described in [17]. The gist of our previous work is that through the
triangulation, point obstacles can easily be added and removed.



Moving obstacles are treated as static obstacles and updated at regular intervals. In practise,
this was sufficient for typical low-speed parking maneuvers.

The vehicle is modeled in the same way as in [19] through disks which cover the vehicle as
best as possible. We selected three disks with diameters equal to the vehicle width.

Curvature Constraint We model the vehicle kinematics through the bicycle model com-
monly used for car-like robots. The vehicle is fully described by a base length L, the distance
between the front and rear axle, and a maximal steering angle of the front wheels (ξmax). The

maximal curvature is: Kmax =
tan ξmax

L
.

4.2.2 Objective Function

Our variables for the optimisation are expressed in Frenet coordinates [4]. That is, we only op-
timise the offset to the original path. These offsets are denoted χi. The path is then represented
as χ = {χi} for i = 1..n (n being the number of points on the path.). We express the objective
function as a sum of three separate terms. K(χ) represents the sum of curvature changes along
the path, O(χ) is the sum of orientation changes, and finally, D(χ) expresses the distance to the
original path.

The objective function is then: f(χ) = K(χ) +O(χ) +D(χ)

Curvature Cost In detail we first have K the curvature costs. Those are defined as K(χ) =∑n−1
i=1 d(Ki,Ki+1), where Ki is the curvature at χi and d(·, ·) the Euclidean distance. Ki is

calculated with the points immediately preceding and following point i with Menger’s formula
[9].

Orientation Cost The delta in orientation is O(χ) =
∑n−1

i=1 d(ψi, ψi+1) with ψi being the
orientation in χi. d(·, ·) is again the Euclidean distance except it is computed modulus 2π.

Hausdorff-Distance to Original Path With χi being the signed distance to the initial path,
we reward the optimisation to find a solution close to the initial solution with the following costs:
D(χ) =

∑
i‖χi‖2

4.2.3 Implementation Details

We employ the NLOpt-Library [5] to optimise the initial solution obtained from search using
the above specified costs. All summands from the cost function are differentiable with regards
to χ, so we are using the SLSQP-algorithm [7].

Cursory inspection makes us suspect that the objective function is convex. The optimisation
typically converges after around 10 iterations.

5 Experiments and Evaluation

Results found in the first step through search can be seen in Fig. 1 (p. 2). The scenario shown
in the figures is an actual parking space. We also evaluated our approach on a set of synthetic
scenarios. Those were chosen to cover different situations that a parking car could encounter.
There was a mix of both highly constrained and very large scenarios. We also sought situations
that were very easy (simple forward-driving) and those that were very complicated to park in
(requiring more than three gear changes). The experiments were performed on a 2014 Mercedes-
Benz E-Class.



The effects various parameters have can be seen in figure 2. The length of the determined
path seems reasonably independent of both spacing (resolution) of the grid and the numbers of
headings represented in the grid. On the other hand, longer Dubins Curves as edges improve
the solution.

0.25 0.5 0.75 1

34

36

38

40

42

resolution (m)

so
lu

ti
o
n

le
n

g
th

(m
)

16 32 64 128

headings

2 4 6 8 10 12 14 16 18

max edge length (m)

Figure 2: Resolution and number of headings show no correlation with the solution length.
Maximal edge length in the state lattice clearly correlates with the solution length.

The performance depends most on the number of vertices in the graph, which is a result
of grid resolution. This can be seen in figure 3. Because the planning time increases with the
chosen grid resolution, we select a coarse resolution. As can be seen from figure 2, this does
not effect the quality of solution. Thus an optimal choice of parameters is composed of a coarse
resolution and a long maximal edge length.

101 102 103 104

10−2

100

102

104

Expanded Vertices

P
la

n
n

in
g

T
im

e
(s

)

103 104 105

Vertices in Graph

Figure 3: The number of vertices in the graph and the number of vertices that were expanded
influences the planning time. Triangles (red) are from a longer scenario, circles (blue) from a
shorter one (see Fig. 1).

5.1 Problems

Controllability Maximal steering angles mean that the controller has no leverage to apply
control input. It is therefore difficult to exactly track a computed path. There are two solutions:
Relax the model of the car by giving it a slightly larger turning circle. This would give the
controller some space. Or, by using re-planning such that if the controller does not perfectly
trace the desired path, while on maximal curvature, the path can be updated.

Dubins Curves Dubins Curves have a continuous gradient (C1 continuous) but the curvature
is discrete. This yields provably shortest-length paths but does not allow for dynamics of the
car. Thus for a car to perfectly track the Dubins Curves, it would have to stop in the change



points. We mitigate this problem by optimising the path for dynamic characteristics in the
described second step.

Minimizing gear-changes Directional gear changes always occur on a node, i.e. for a specific
node an incoming edge is in the forward gear and departing edge is in reverse gear. This means
that no cost can be assigned to the gear-change. This in turn means that the path cannot be
optimised for the number of gear-changes.

We would argue that our algorithm is cleaner and simpler because we do not allow these
gear-changes on edges and just in nodes. The Reeds-Shepp Curves could be used as edges if so
desired. A simpler extension would be to make our graph bipartite and split all nodes into a
forward and a backward node. In the forward node the vehicle would be in the forward gear,
and the same for the backward node. Forward and backward nodes at the same position would
then be connected through a gear-changing edge. This way a cost could be assigned to switching
gears and even different costs could be assigned to driving forwards and backwards.

5.2 Future Work

In the future we decided to extend our approach to a four-dimensional space, in order to pe-
nalize directional gear-changes and backwards movement. Also, we are considering re-planning
approaches such as D* [11] to cope with situations where our sensors cannot see far-away ob-
stacles.

6 Conclusion

In this paper we have presented a comprehensive solution to finding paths for an autonomous
parking scenario. We described the two aspects of our solutions: Finding an initial, drivable
path through search in grid connected through Dubins curves and, secondly, improving the
drivable path to allow higher velocities and more comfortable trajectories. The second step is
done through optimisation.

The benefits of our approach is a simplified, yet kinematically correct, discretized search that
is resolution complete. As such, we are guaranteed to find a path if one exists. But we are not
doing more than necessary: Our initially found path is drivable but not smoothly drivable. We
consider a smooth ride optional and clearly favour a non-smooth parking solution to no parking
solution. In practise, optimisation can always improve the path. The optimised path becomes
dynamically-feasible and the vehicle is able to track the path at higher speeds.

References

[1] Gyusang Cho and Jinkyung Ryeu. An efficient method to find a shortest path for a car-like
robot. In Intelligent Control and Automation, pages 1000–1011. Springer, 2006.

[2] Dmitri Dolgov, Sebastian Thrun, Michael Montemerlo, and James Diebel. Path planning for
autonomous vehicles in unknown semi-structured environments. The International Journal
of Robotics Research, 29(5):485–501, 2010.

[3] Lester E Dubins. On curves of minimal length with a constraint on average curvature,
and with prescribed initial and terminal positions and tangents. American Journal of
Mathematics, pages 497–516, 1957.

[4] Jean Frédéric Frenet. Sur les courbes à double courbure. Journal de Mathématiques pures
et appliquées, pages 437–447, 1852.



[5] Steven G. Johnson. The nlopt nonlinear-optimization package, 2011.

[6] Ross Alan Knepper and Alonzo Kelly. High performance state lattice planning using heuris-
tic look-up tables. In 2006 IEEE/RSJ International Conference on Intelligent Robots and
Systems, pages 3375 – 3380, October 2006.

[7] Dieter Kraft. Algorithm 733: Tomp–fortran modules for optimal control calculations. ACM
Transactions on Mathematical Software, 20(3):262–281, 1994.

[8] Rainer Kümmerle, Dirk Hähnel, Dmitri Dolgov, Sebastian Thrun, and Wolfram Burgard.
Autonomous driving in a multi-level parking structure. In IEEE Intern. Conf. on Robotics
and Automation, pages 3395–3400. IEEE, 2009.

[9] Jean-Christophe Léger. Menger curvature and rectifiability. Annals of mathematics,
149:831–869, 1999.

[10] Maxim Likhachev and Dave Ferguson. Planning long dynamically feasible maneuvers for
autonomous vehicles. The International Journal of Robotics Research, 28(8):933–945, 2009.

[11] Maxim Likhachev, David I Ferguson, Geoffrey J Gordon, Anthony Stentz, and Sebastian
Thrun. Anytime Dynamic A*: An Anytime, Replanning Algorithm. In International
Conference on Automated Planning and Scheduling (ICAPS), pages 262–271, 2005.

[12] Mihail Pivtoraiko and Alonzo Kelly. Constrained motion planning in discrete state spaces.
In Field and service robotics, pages 269–280. Springer, 2006.

[13] Matthias Rapp, Markus Hahn, Markus Thom, Jürgen Dickmann, and Klaus Dietmayer.
Semi-markov process based localization using radar in dynamic environments. In IEEE
18th Intern. Conf. on Intelligent Transportation Systems (ITSC), 2015.

[14] J. A. Reeds and L. A. Shepp. Optimal paths for a car that goes both forwards and back-
wards. Pacific Journal of Mathematics, 145(2):367–393, 1990.

[15] Martin Rufli and Roland Siegwart. On the design of deformable input-/state-lattice graphs.
In IEEE Intern. Conf. on Robotics and Automation (ICRA), pages 3071–3077, May 2010.

[16] Andrei M Shkel and Vladimir Lumelsky. Classification of the dubins set. Robotics and
Autonomous Systems, 34(4):179–202, 2001.

[17] Christoph Siedentop, Viktor Laukart, Boris Krastev, Dietmar Kasper, Andreas Wedel,
Gabi Breuel, and Cyrill Stachniss. Autonomous parking using previous paths. In Advanced
Microsystems for Automotive Applications 2015 (AMAA), pages 3–14. Springer, 2016.

[18] Hélène Vorobieva, Nicoleta Minoiu-Enache, Sebastien Glaser, and Säıd Mammar. Geometric
continuous-curvature path planning for automatic parallel parking. In Intern. Conf. on
Networking, Sensing and Control (ICNSC), pages 418–423. IEEE, 2013.

[19] Julius Ziegler, Philipp Bender, Thao Dang, and Christoph Stiller. Trajectory planning for
Bertha—a local, continuous method. In IEEE Intelligent Vehicles Symposium Proceedings,
pages 450–457, 2014.

[20] Julius Ziegler, Moritz Werling, and Jens Schröder. Navigating car-like robots in unstruc-
tured environments using an obstacle sensitive cost function. In IEEE Intelligent Vehicles
Symposium, pages 787–791, 2008.


