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Unsupervised Pre-Training

for 3D Leaf Instance Segmentation
Gianmarco Roggiolani Federico Magistri Tiziano Guadagnino Jens Behley Cyrill Stachniss

Abstract—Crops for food, feed, ber, and fuel are key natural
resources for our society. Monitoring plants and measuring their
traits is an important task in agriculture often referred to as plant
phenotyping. Traditionally, this task is done manually, which
is time- and labor-intensive. Robots can automate phenotyping
providing reproducible and high-frequency measurements. To-
day’s perception systems use deep learning to interpret these
measurements, but require a substantial amount of annotated
data to work well. Obtaining such labels is challenging as it
often requires background knowledge on the side of the labelers.
This paper addresses the problem of reducing the labeling effort
required to perform leaf instance segmentation on 3D point
clouds, which is a rst step toward phenotyping in 3D. Separating
all leaves allows us to count them and compute relevant traits
as their areas, lengths, and widths. We propose a novel self-
supervised task-specic pre-training approach to initialize the
backbone of a network for leaf instance segmentation. We also
introduce a novel automatic postprocessing that considers the
difculty of correctly segmenting the points close to the stem,
where all the leaves petiole overlap. The experiments presented in
this paper suggest that our approach boosts the performance over
all the investigated scenarios. We also evaluate the embeddings
to assess the quality of the fully unsupervised approach and see
a higher performance of our domain-specic postprocessing.

Index Terms—Agricultural Automation, Robotics and Automa-
tion in Agriculture and Forestry, Semantic Scene Understanding

I. INTRODUCTION

O
UR society heavily relies on crop production for provid-

ing food, feed, ber, and fuel. The demand for biomass

is constantly increasing and is expected to grow even further

over the next decades. This causes serious challenges to the

agricultural systems to meet such demands and simultaneously

produce biomass in a sustainable manner.

Agricultural robots have the potential to change crop pro-

duction by automating processes, enable ne-grained and high-

resolution monitoring, and executing targeted intervention

tasks. In recent years, many studies have been published

analyzing applications in the context of agricultural robotics,

intending to increase yield and reduce human labor and agro-

chemical inputs [1]. Robotic systems can realize sustainable
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weeding [2], control pesticide usage [3], detect fruits for yield

prediction [4], realize selected harvesting [5], and perform

phenotyping [6][7].

Phenotyping refers to measuring the observable traits of an

organism. It plays a crucial role in crop production and plant

breeding, where monitoring the appearance and performance

of different varieties is key; today, this task still involves lots

of human labor. This poses a limit on the number of measures

and the time required to analyze them. Estimating the number

of leaves of individual plants and their size is a typical task

in this context. In particular, the number of leaves and their

area can provide information about the yield [8], health [9],

and need for nutrients or pesticides [10].

The phenotyping task has been addressed in the 3D sce-

nario using supervised networks on point clouds from 3D

LiDAR sensors or multi-view images. Most of these ap-

proaches build on general-purpose instance segmentation ap-

proaches [11][12]. Thus, the initial struggle to gather the plant

traits is still present in order to build a training dataset. To

fully automate the phenotyping process, the robot needs a

robust perception system able to acquire phenotypic traits in

an automated and repeatable fashion.

In this paper, we aim to reduce the amount of labeled

data needed to achieve state-of-the-art performance on leaf

instance segmentation via a novel self-supervised pre-training

approach. Supervised pre-training on point clouds [14] is still

far behind compared to the image-based scenario, where it

is common practice to pre-train networks on general-purpose

datasets like ImageNet [15] or MS COCO [16]. Unsupervised

3D pre-training is less common and usually application-

specic [17], we also make our pre-training domain-specic

and also task-specic.

The main contribution of this paper is a 3D self-supervised

pre-training to differentiate each leaf of each plant. We design

domain-specic augmentations and exploit task and domain

knowledge to build a more specic self-supervised loss. We

ne-tune on labeled data to show the improvement achieved

thanks to our pre-training. We also propose novel automatic

postprocessing of the self-supervised output, taking into con-

sideration the difculties of differentiating individual leaves

— especially in the stem region — and reducing the impact

on the nal performance. In sum, we show that: (i) our task-

specic pre-training improves the performance on leaf instance

segmentation and reduces the amount of labeling required;

(ii) distance information and number of points are more

important than the use of a second view as in common con-

trastive learning; (iii) increasing the embedding size boosts the

performance of our pre-training more than the performance of
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Fig. 1: Overview of our pipeline. In the preprocessing (left), we build the point cloud P from UAVs images using bundle adjustment and
segment P using the method by Nelson et al. [13] into single clouds Pi. These are the inputs of our network, which learn representations
computing the loss L on per-point embeddings e. In the postprocessing (right) we exploit domain-specic knowledge to cluster the embeddings
and distinguish each leaf, starting from outer points and progressively assigning points closer to the center.

the randomly initialized network; and (iv) our novel automatic

domain-specic postprocessing achieves better performance

with respect to common state-of-the-art methods.

II. RELATED WORK

The problem of instance segmentation of leaves has often

been addressed in the 2D domain, i.e., on RGB images, mainly

using neural networks. Different works proposed convolu-

tional neural networks (CNN) based on classical instance-

segmentation architectures such as Mask-RCNN [18] and

ERFNet [7]. In the 3D domain, there are two main paradigms:

geometric approaches [19][20], which try to exploit the

knowledge about the plants’ structure, and learning-based

approaches [12][21].

As for the rst paradigm, Miao et al. [22] propose to extract

the skeleton of the plant, run a rst coarse segmentation,

and then perform a ne segmentation based on morphological

features. Jin et al. [23] follow a similar approach, using a

growing algorithm to segment the stem after removing the

ground points. The main disadvantage of purely geometric

pipelines is that they cannot infer what is occluded and usually

fail to distinguish close leaves.

Ao et al. [24] propose a two-stage approach based on

PointCNN [25] to extract stem points used to t 3D cylin-

ders. Single leaves are extracted through a density-based

algorithm [26] and postprocessed according to morphological

characteristics. The approach of Ao et al. is in between the two

main paradigms, since they rely on a deep learning approach

to segment the stem, reducing the assumptions about the plant

species and growing orientation. This means that they do

not require ne annotations for the leaf instance to train the

network, but also that they rely solely on the points’ positions

for clustering the leaves, making it hard to separate the leaves

when occlusions or overlaps occur.

Han et al. [27] instead propose to use a deep learning

approach to solve the whole problem, directly predicting

instances whose instance can be computed via the mean-shift

clustering algorithm [28]. Han et al. indicate as crucial for their

success both, the ltering step in their preprocessing and the

double supervision of the network, which aims to achieve seg-

mentation and completion of the point cloud simultaneously.

Compared to the previous approaches, end-to-end training like

this one requires a lot of labeling effort.

A common way to reduce this effort is the pre-training of the

network in a self-supervised fashion, such that it can converge

faster and with less labeled data. Lately, self-supervised learn-

ing has focused on contrastive approaches [29][30], which

augment the input to produce different views with the goal

of producing features that are close for views coming from

the same sample. Xie et al. [31] adapt the contrastive learning

paradigm used for images [29][30] to the point cloud domain.

After generating the two views, they nd one positive example

for each point and propose a new contrastive loss based on the

InfoNCE loss [32]. Zhang et al. [33] also use a contrastive

approach but rely on a momentum encoder to use more

negative examples. They transform the two views into different

input formats – points or voxels – and output a feature vector

for each one to use in the contrastive loss. In contrast to

these approaches, Wang et al. [34] provide a pre-text task

to the network. They simulate occlusions erasing subsets of

points and require the network to reconstruct the missing

section. Alliegro et al. [35] also use a pre-text self-supervised

task, a 3D puzzle. This auxiliary task makes the model more

precise and robust also for out-of-domain generalization. The

same results are obtained by Achituve et al. [36] with their

deformation reconstruction, in which they dislocate points

of the input and the network needs to predict the original

locations.

Our work belongs to the class of self-supervised learning-

based approaches, we dene our loss in the feature space,

and do not use a pre-text task. As all of the self-supervised

methods, we aim to reduce the labeling effort by exploiting

unlabeled data and our knowledge about the plant structure to

better initialize a network for the leaf instance segmentation
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task. We address the task in 3D to make it more suitable to

extract leaves’ length, width, and shape, that are essential for

phenotyping [37] and are harder to extract from images due

to the leaves curl and curvature. The main contributions of

this work are a spatially-informed unsupervised approach for

pre-training and a novel automatic postprocessing.

III. OUR APPROACH

We propose a new unsupervised approach to pre-train a

deep neural network for leaf instance segmentation in 3D point

clouds. The network is part of the pipeline shown in Fig. 1.

The preprocessing computes a point cloud from UAVs images

of the eld and then extracts single plants leveraging the

geometric approach explained in Sec. III-A. We do not only

make our pre-training domain- and task-specic, we also

apply agriculture-specic augmentations to the single point

clouds before feeding them into the backbone. In the following

sections, we refer to the augmented point clouds as views and

show that our approach works both with one or two views. The

backbone takes as input a sparse tensor I ∈ R
N×6, where

N is the number of points in the point cloud and 6 is the

features’ dimension, 3 for the point position and 3 for the

color. The backbone outputs per-point embeddings, which we

can use to compute the unsupervised loss L, to perform a

fully unsupervised bottom-up leaf instance segmentation or as

features to be rened by ne-tuning using labeled data. In the

latter case, we load the pre-trained weights to initialize the

backbone. It is usually followed by other layers to compute

the nal predictions used to obtain the instances.

A. Preprocessing

We use RGB images of sugar beets collected by a UAV

plus GPS information to build a dense point cloud P of the

eld via bundle adjustment [38]. The approach estimates 3D

points locations and camera orientations that minimize the

total reprojection error, then combines them into a single

point cloud, with color information by projecting the color

information from the corrisponding image pixel.

To separate the point cloud P into individual plants Pi, we

use Ground Density Quickshift++ by Nelson et al. [13], pre-

serving the color. The algorithm rst uses Quickshift++ [39] to

initialize the clusters looking only at the x and y coordinates,

and then renes these results considering the z-component.

This two-step approach ensures that we do not separate stem

points because of their different heights, and that leaves in

the same area of the xy-plane are separated. We refer to the

original paper [13] for more details.

B. Augmentations

Our pipeline augments the individual input point clouds Pi

via different transformations, which is crucial in unsupervised

training because it helps the network to focus on relevant

features. We use 3D versions of common 2D augmentations –

rotation, translation, adding noise, and erasing points – and the

below explained domain-specic augmentations to simulate

leaf occlusion and distortion. These augmentations are applied

(a)

distortion

(b)

Fig. 2: Results of the augmentation proposed in Sec. III-B. Figure (a)
generates leaf occlusion as all points in the generated ellipse with
center µk, and axes ak, bk are removed. Figure (b) generates a leaf
distortion and the dotted circles highlight corresponding areas at
different distances from p̄.

during the unsupervised pre-training to obtain better weights

for the network. If we use these weights to perform a fully

unsupervised leaf instance segmentation, we need to discard

them at inference time or preserve the information about the

rotation applied, in order to correctly use our post-processing

as described in Sec. III-D.

1) Leaf Occlusion: this augmentation aims to cut out of

the point cloud all the points falling into K 2D ellipses

k(x, y) =
(x− µk,x)

2

a2k
+

(y − µk,y)
2

b2k
− 1, (1)

where ak and bk are the two axes of the ellipse k, and

µk = (µk,x, µk,y)
> is its center. This simulates the occlusion

caused by the leaves of adjacent plants. We consider it a

domain/specic variant of CutOut [40]. In our work, we use

K = 2, since the plants are grown in rows and thus the

occlusions are usually caused by plants in the same row. We

randomly select either a or b to be the major axis, with the

same probability to be selected. Then, we compute µk as

the furthest point in direction of the selected major axis with

respect to the center of the plant p̄i =
1

|Pi|


q∈Pi

q.

We sample the dimensions of ak, bk ∼ U{0, δ} from a

uniform distribution U , where δ ∈ R
2 is a parameter dening

the maximum length and width of the leaves according to the

growth stage of the plant. We project the point cloud onto the

xy-plane and remove all the points falling inside the ellipses.

In the case of non-row-crops, we can change the parameters to

have randomly spaced centers. The result of this augmentation

is shown in Fig. 2 (a).

2) Leaf Distortion: this augmentation rotates the points

to imitate the movement of the leaves caused by the wind.

Instead of the classical rotation of the entire point cloud, we

rotate each point according to its distance to the estimated

plant center p̄.

Given maximum rotations θmax = (αmax, βmax, γmax)
>

about the x-, y- and z-axes, we randomly sample their values

θ = (α, β, γ)>, i.e., α, β, γ ∼ U{0, 1}. For each point

p ∈ Pi, we compute dp = ||p− p̄i||2 and dene the per-point

Euler angles θp = (αp, βp, γp)
> for the rotation as

θp =
dp

maxq∈Pi
dq

θ × θ
>
max. (2)
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(a) (b)

Fig. 3: In (a) p1 belongs to one leaf, while p2 andp3 belong to
another. If we only use the euclidean distances, p2 will have an
embedding more similar to p1 than to p3. In (b) we show the
graph built over the down-sampled point cloud using k = 7 nearest
neighbors and τ = 2 cm.

We can build for each point its rotation matrix

Rp(αp, βp, γp) = Rz(γp)Ry(βp)Rx(αp), (3)

where Ra(θ) is the rotation matrix around axis a with angle θ.

We apply the distortion as Rp p, which leads to a distance-

dependent rotation of points. Results of this augmentation are

shown in Fig. 2 (b) and (c).

C. Unsupervised Loss

We aim to learn per-point embeddings

evj ∈ R
D, with j ∈ {0, ..., N}, where N is the number

of points and v is the view, to assign each point to one leaf.

In particular, we want that the embeddings of the same point

in the different views are identical.

In standard contrastive learning [29][30], we normalize the

embeddings along the feature dimension as êj =
evj

||ev
j
||2

and

compute the cross-correlation between each pair of points. The

loss can be expressed as

L =

N∑

i,j=0

Ii,j − ê0i ê
1
j

>
, (4)

where I ∈ R
N×N is the identity matrix.

Since we aim to perform a bottom-up instance segmentation,

we want to include spatial information and push the embed-

dings of close points to be similar.

To do so, we need to remove the identity matrix and use

a matrix that carries the information about how similar each

cosine similarity should be. This new loss function will be

L =

N∑

i,j=0

Si,j − ê0i ê
1
j

>
, (5)

where Si,j ∈ R
N×N species how similar each pair of points

should be given their distance. This means the loss can be used

also with just one view. To include the spatial information we

investigate Euclidean and graph distances. Since we augment

the point clouds with translations and rotations, distances must

be computed on the same view to be comparable.

For the Euclidean distance between points pr,pc ∈ Pi, we

simply set Dr,c = ||pr − pc||2. This makes the embeddings of

points close in space similar, but when leaves overlap it can

happen that points of different leaves are led to have more

similar embeddings than points from the same leaf, as shown

in Fig. 3(a).

To overcome this limitation, we propose to compute the

graph distance on the plant. To do so, we need to create a

graph G = (V,E), where V are the points and E the edges

given by the k-nearest neighbor graph—i.e. each point has

edges to the k closest points if their distances are smaller than

a threshold τ . We build the graph with k = 7 and a maximum

distance of τ = 2 cm between connected points. The result

of this operation is shown in Fig. 3(b). We then initialize a

distance matrix D̃ as

D̃r,c = D̃c,r =

{
||pr − pc||2 , if (r, c) ∈ E

∞ , otherwise.
(6)

Afterwards, we use the Floyd-Warshall [41] algorithm to

traverse the graph and ll the whole matrix. Each element of

row r and column c in D is computed from D̃ as

Dr,c = Dc,r = min
k

(D̃r,k + D̃k,c). (7)

In the end, D has a null diagonal, positive values if two

nodes are connected, and ∞ otherwise. After lling up the

matrix D, we compute the similarities as

Sr,c =
1

Dr,c + 
, (8)

where  is an arbitrarily small value used to avoid numerical

instability. We normalize the similarities as Sr,c =
Sr,c

max(S) .

Thus, all points with zero distance will have a similarity

of 1, and all other values will have a similarity inversely

proportional to the distance between the points.

D. Postprocessing

Instance segmentation tasks can be solved by predicting

embeddings to cluster, or centers for each instance and offsets

to their center for each point in the instance. Since it is hard to

supervise the predictions of centers in the absence of labels,

our pre-training produces embeddings. Thus, to evaluate the

fully unsupervised approach, we need an embedding-based

clustering postprocessing.

In the agricultural setting, points close to the center of

the plant are more complex to assign correctly since many

different leaves connect to the same stem. Considering this

problem, we propose a novel automatic postprocessing that

starts clustering the leaves from the outer points. When not

specied, we cluster via agglomerative clustering [42], and

use the cosine similarity to compute the similarity referred to

as sim. Our postprocessing consists of two steps:

1) Dene radiuses to cut. We compute the center of the

plant p̄ and the distances to the farthests points on the x and

y axes as

dx = max
q∈Pi

|qx − p̄x| and dy = max
q∈Pi

|qy − p̄y|. (9)
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We then dene the initial radius of the area to cut as

rinit =
min(dx, dy)

2
, (10)

which allows us to distinguish the tips of the leaves as a

starting point.

2) Radius-decremental clustering. At each step we de-

crease the size of the radius as

r = rinit −
rinit

S
, (11)

where S is the number of steps we want to make in the

postprocessing operations. We cluster only the embeddings of

non-clustered points with distance from p̄ greater than r. For

each of the new M clusters Ĉk with k ∈ {1,M}, we compute

the maximum similarity with respect to the existing clusters

C using the embeddings mean, i.e.,

ŝ = max
i

sim


 1

|Ĉk|

∑

m∈Ĉk

em,
1

|Ci|

∑

j∈Ci

ej


 . (12)

If ŝ is higher than a threshold γ, we merge the clusters,

otherwise, we create a new cluster. We iterate this step until

r = 0 and all points are assigned.

IV. EXPERIMENTAL EVALUATION

The main focus of this work is a novel self-supervised

task-specic approach to pre-train neural networks for leaf

instance segmentation. The results of our experiments also

support our key claims, which are: (i) our task-specic pre-

training improves the performance on leaf instance segmenta-

tion and reduces the amount of labeling required; (ii) distance

information and number of points are more important than

the use of a second view as in common contrastive learning;

(iii) increasing the embedding size boosts the performance of

our pre-training more than the performance of the randomly

initialized network; and (iv) our novel automatic domain-

specic postprocessing achieves better performance with re-

spect to common state-of-the-art methods.

A. Experimental Setup

Datasets. We recorded 3 566 images using a UAV on a

50m×46m eld. We compute the point cloud of the eld via

bundle adjustment. The results of our experiments are reported

on a test set, made of 58 point clouds. For pre-training, we use

2 616 point clouds of plants, extracted via the preprocessing

steps described in Sec. III-A.

Training details and parameters. In all experiments, we

use AdamW [43] with weight decay 10−6 and initial learning

rate 2 ·10−3 for 100 epochs. We use a batch size of 48, thanks
to gradient accumulation. We build the graph using k = 7
nearest neighbors and a maximum distance of τ = 2 cm. We

ne-tune on labeled data with the conguration of the ofcial

code by Jiang et al. [11], from now on called PointGroup, and

Marks et al. [44].

Metrics. We evaluate the leaf instance segmentation using

the mean Average Precision (mAP) [45], which is a common

choice for instance segmentation tasks.

TABLE I: Results for the leaf instance segmentation with different
pre-training approaches and embedding size D = 3.

Pre-training # views mAP [%]

none — 36.8
point-to-point 2 41.2
euclidean 2 41.8
graph 2 42.0
graph 1 44.3

TABLE II: Results for the ablations on the graph pre-training on
the number fo points used, and on the computation of the distances
with the Floyd-Marshall (FW) algorithm versus the distance matrix
provided by the k-nearest neighbor (kNN) algorithm.

# views # points
mAP [%]

kNN FW
2 7 000 36.3 42.0
1 7 000 36.0 40.2
1 10 000 39.9 44.3

B. Spatially Informed Pre-training

The rst experiment compares our different pre-training

approaches and shows that a spatially informed pre-training is

a better initialization for our target task. We refer to point-to-

point in Tab. I as the approach following Eq. (4). It makes no

use of spatially information and only enforces that the point

has the same embedding in the two augmented views. We

can see that this pre-training already boosts the performance

compared to the random initialization of the network. When

including spatial knowledge the performance is even better,

conrming that the spatial informed pre-training is more

aligned with the leaf instance segmentation task. Using graph

distances obtains the best result, as expected considering the

limitations of the Euclidean distances presented in Sec. III-C.

Results suggest that, when the graph is representative of the

point cloud, the graph distance is a good approximation of the

geodesic distance on the surface of the plant. This provides

a better initialization for the network that then needs fewer

iterations or labels to outperform other approaches.

C. Best Use of Distances and Views

In the second experiment, we investigate if computing the

distances on the graph, even if computationally demanding,

improves the performance. We also show that the number

of points used in the loss computation is crucial to obtain a

good initialization, more than using a second augmented view.

We compare the pre-training with the distances computed

via the Floyd-Warshall algorithm and the pre-training without

running the algorithm, i.e., D̃ from Eq. (6). Tab. II shows

that using one or two views does not impact the improvement

gained from the computation of the distances on the whole

graph, we gain approx. 4% of mAP in both cases. Using

just one view performs worse if all the other parameters stay

the same, but decreases the GPU usage, allowing us to use

more points in the loss computation. Increasing the number of

points closes the gap between the one-view and the two-views

approach, outperforms the latter, and shows that using more

points is more benecial than using a two-views approach.

It is important to notice that using two views prevents us to
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Fig. 4: The plot of the mAP ne-tuning with different amounts of
labels for the two approaches [11], [44]. In black we highlight the
difference in labels from the best results without pre-training.

Fig. 5: Results obtained using the work by Marks et al. [44] pre-
trained with our method and ne-tuned on 50% of the labeled data.

increase the number of points due to the memory usage of

the second view and all its embeddings. The nal outcome of

the experiment is that, using the Floyd-Warshall algorithm is

worth its computational cost, and that, considering the memory

usage of each point and its embedding, using only one view

with more points provides a better network initialization.

D. Label Requirement Reduction

This experiment aims to show the capability of our approach

to reduce the required amount of labeled data for the leaf

instance segmentation task. We initialize the backbones with

our pre-training and use progressively less labels when ne-

tuning. The results in Fig. 4 show that we can boost the

performance when using all the available data, and we obtain

a similar or better mAP using 45% of the labeled data or

more. We also include some qualitative images obtained after

ne-tuning on 50% of the labeled data in Fig. 5.

E. Embedding Size Scalability

The following experiments investigate which embedding

size is most suitable for the task and if the unsupervised

pre-training consistently improves the results. Increasing the

embedding size gives us more representational power but also

more memory usage for each point.

Fig. 6: The plot of the mAP ne-tuning different pre-trainings and
number of points used in the loss, with embedding size D = 3. The
curve shows a linear dependency before saturation occurs.

TABLE III: Results for the mAP on the leaf instance segmentation
with different pre-training approaches and embedding sizes D.

D # points
mAP [%]

without euclidean graph
pre-training pre-training pre-training

3 10 000 36.8 41.8 44.3

24 10 000 45.7 49.3 60.2

48 8 000 56.8 61.0 74.2

Approach # points D mAP [%]

DepthContrast 10 000 96 65.8
SegContrast 20 000 128 67.2

1) Number of Points or Embedding Size: Fig. 6 shows

the results of the ne-tuning, after pre-training with the same

embedding size and different number of points in the loss com-

putation. We can see that for the rst half of the plot, the more

points we use, the better the performance is. However, using

more than 10 000 points does not further increase the nal

mAP. This can also be due to the number of available points

for each input point cloud Pi, when |Pi| < 10 000 the loss

would use less points, not impacting the nal performance.

2) Increasing the Representational Power: Tab. III shows

the result of the ne-tuning with different embedding sizes for

our graph approach, the Euclidean distance-based approach,

and the randomly initialized network. We use the same number

of points for embedding sizes 3 and 24 to make a fair

comparison. The highest embedding size prevented us from

using 10 000 points because of the higher memory usage. We

are condently sure that if a more powerful GPU is available,

using 10 000 points for the last experiment would improve a

bit the performance. However, Tab. III shows the best results

we could obtain using the same machine. We can see that

using the graph distances is consistently better for all the

embedding sizes. Increasing the embedding size yields higher

mAP for all the approaches due to the greater representational

power. However, we notice that the gap between the graph

pre-training and the other approaches is also increasing with

the embedding size. This suggests that the graph pre-training

is able to learn the plant structure from the points positions,

thus providing a better initialization.

F. Domain-Specic vs. Representational Power

In this experiment, we aim to evaluate our pre-training

against state-of-the-art methods, which are not trained on the

domain-specic data but have more representational power.
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Fig. 7: The mAP [%] of the four postprocessings with increasing
noise magnitude (the values stand for the maximum noise allowed)
with respect to perfect embeddings.

DepthContrast [33] uses an embedding size of 96 and 10 000

points for pre-training, while SegContrast [46] uses an em-

bedding size of 128 and 20 000 points. The results in the

second part of Tab. III shows that even if the pre-trainings

have a higher representational power — twice more for

DepthContrast and even more for SegContrast — and use more

points — 2 000 and 12 000 respectively — they both fall short

if compared to our best result.

G. Automatic Postprocessing

In the last set of experiments, we evaluate the embeddings

we get from our pre-training without ne-tuning. Firstly, we

evaluate three different postprocessing algorithms on perfect

embeddings (labels) and we progressively add noise, to show

how the nal mAP degrades. We use DBSCAN [26] and

HDBSCAN [47] as baselines. We compare them with our

postprocessing, as explained in Sec. III-D, and with a second

algorithm implemented by us and based on graph cuts [48].

This variant uses the same Step 1 of our postprocessing. In

Step 2 we use the graph cut operation to separate one leaf from

the rest of the plant. This must be repeated for each cluster,

i.e., leaf, found in the rst step. Step 3 merges the clusters

into the nal prediction.

After assessing the performance of the different postpro-

cessings, we evaluate the fully unsupervised approach.

1) Postprocessings Evaluation: Fig. 7 shows the results

for the four postprocessings using perfect embeddings and

adding noise. We conduct two experiments, adding (1) random

noise over all the samples or (2) gaussian-shaped noise with

a higher magnitude near the center of the plants, according

to what we discussed in Sec. III-D. Both of our postpro-

cessings outperform the baselines (approximately +50% of

mAP over DBSCAN and +35% over HDBSCAN), especially

when adding Gaussian-shaped noise. We can see that using

graph cut performs slightly better (approximately +0.6% of

mAP), but the need to build the graph does not scale well

for high-resolution point clouds. The results suggest that our

postprocessings are more robust to the expected noise than

usual clustering algorithms.

2) Fully Unsupervised Embeddings Evaluation: In Tab. IV

we report the results for the postprocessing algorithms on

the embeddings predicted from our unsupervised approaches,

TABLE IV: Evaluation of the postprocessings with different embed-
ding sizes and pre-training approaches. The numbers in parenthesis
represent the difference with respect to HDBSCAN run on the 3D
positions only (no network).

post embedding mAP [%]

processing size euclidean pt graph pt

DBSCAN 24 5.7 (+2.9) 6.9 (+4.1)
HDBSCAN 24 6.9 (+4.1) 11.3 (+8.5)

ours 24 7.9 (+5.1) 12.2 (+9.4)
ours + graph cut 24 9.3 (+6.5) 12.4 (+9.6)

DBSCAN 48 6.3 (+3.5) 10.9 (+8.1)
HDBSCAN 48 7.5 (+4.7) 11.3 (+8.5)

ours 48 8.1 (+5.3) 12.3 (+9.5)
ours + graph cut 48 11.3 (+8.5) 13.6 (+10.8)

both Euclidean and graph-based. In the parenthesis, we pro-

vide the difference with respect to the results obtained from

HDBSCAN on the points position, which we consider the

most basic geometric baseline. Our best performance is less

than 10% worse than DBSCAN on the noisy but perfect

embeddings. The results conrm that the graph approach

extracts more meaningful features and that our postprocessing

has better performance than state-of-the-art approaches. This

set the mAP for the task, without the use for labels, from 2.8%

of mAP to 13.6%.

V. CONCLUSION

In this paper, we presented a novel approach to pre-

train a neural network in a domain- and task-specic self-

supervised fashion for leaf instance segmentation, and we

proposed an automatic embedding-based postprocessing. Our

method exploits the large amount of data that is easy to

collect and tries to reduce the labeling effort required to obtain

state-of-the-art performance on the leaf instance segmentation

task. The approach relies on domain-specic data augmenta-

tions and a task-specic loss, plus domain-specic automatic

postprocessing. We implemented and evaluated our approach,

provided comparisons to other pre-training approaches, and

supported all claims made in this paper. The experiments

suggest that our graph pre-training is a better initialization

for the target task and it boosts the nal performance over

all the scenarios. We achieve better performance when using

the same amount of data and computational power, and we

can achieve the same performance using fewer resources. The

results show that our automatic domain-specic postprocessing

outperforms common state-of-the-art clustering algorithms,

being also more robust to both uniform noise and Gaussian-

shaped noise expected from the task. Our approach will enable

robotic systems to perform crop monitoring in a more efcient

way, reducing the requirements for labels and improving the

task performance.
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