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Abstract—The application of autonomous robots in agriculture
is gaining increasing popularity thanks to the high impact it
may have on food security, sustainability, resource use efficiency,
reduction of chemical treatments, and the optimization of human
effort and yield. With this vision, the Flourish research project
aimed to develop an adaptable robotic solution for precision
farming that combines the aerial survey capabilities of small
autonomous unmanned aerial vehicles (UAVs) with targeted inter-
vention performed by multi-purpose unmanned ground vehicles
(UGVs). This paper presents an overview of the scientific and
technological advances and outcomes obtained in the project.
We introduce multi-spectral perception algorithms and aerial
and ground-based systems developed for monitoring crop density,
weed pressure, crop nitrogen nutrition status, and to accurately
classify and locate weeds. We then introduce the navigation
and mapping systems tailored to our robots in the agricultural
environment, as well as the modules for collaborative mapping.
We finally present the ground intervention hardware, software
solutions, and interfaces we implemented and tested in different
field conditions and with different crops. We describe a real use
case in which a UAV collaborates with a UGV to monitor the field
and to perform selective spraying without human intervention.

Index Terms—Robotics in Agriculture and Forestry, Multi-
Robot Systems, Autonomous Vehicle Navigation, Mapping, Com-
puter Vision for Automation

I. INTRODUCTION

Collaborative aerial- and ground-based robotic systems offer
significant benefits to many practical applications, as they can
merge the advantages of multiple heterogeneous platforms.
This is especially useful for precision agriculture scenarios,
where areas of interest are usually vast. For example, an Un-
manned Aerial Vehicle (UAV) allows for rapid inspections of
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Fig. 1. A conceptual overview of the Flourish project. A UAV continuously
surveys a field over the growing season (top left), collecting data about
crop density and weed pressure (top right) and coordinating and sharing
information with a UGV (bottom left) that is used for targeted intervention
and data analysis (bottom right). The gathered and merged information is then
delivered to farm operators for high-level decision making.

large areas, e.g., mapping weed distributions or crop nutrition
status indicators. This information can then be shared with
an Unmanned Ground Vehicle (UGV), which can perform
targeted actions, e.g., selective weed treatment or fertilizer
applications, on required areas, with relatively high operating
times and payload capacities. One of the main objectives of the
Flourish project [1] (see Fig. 1) was to exploit this combined
workflow in an autonomous robotic system for precision
agriculture that achieves high yields while minimizing on-field
chemical applications via targeted intervention.

This paper presents an overview of the scientific and tech-
nical outcomes obtained within the Flourish project, providing
insights and practical details on the lessons learned in several
areas ranging from robot navigation, mapping and coordi-
nation, up to robot vision, multi-spectral data analysis, and
phenotyping.

To develop the experimental robots, we built upon existing
state-of-the-art aerial and ground platforms, extending them in
various aspects (Sec. II), with the installation of a large number
of specific sensors, built-in computing power, and modules for
weed detection, tracking, and removal. We proposed several
novel perception methods and algorithms designed to automat-
ically perform cyclical and exhaustive in-field measurements
and interpretations (Sec. III), such as inference of weed density
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from multi-spectral images, mapping and classification of
crops and weeds, and computation of plant health indica-
tors. Robot positioning and cooperative environment modeling
(Sec. IV) have been addressed proposing novel algorithms
that leverage specific field representations, or building upon
existing methods tailored for the specificity of the environ-
ment, e.g., by integrating multi-spectral imaging in the UAV
mapping algorithms and by exploiting specific environment
priors into the UGV positioning algorithms and the temporal
map registration algorithms. We propose a novel mission plan-
ner that allows the UAV to adaptively map large areas while
respecting battery constraints, while we addressed safe UGV
navigation in a cultivated field by integrating accurate relative
localization, crop row detection, and an ad-hoc controller
(Sec. V); the mission coordination has been assured by a
lightweight task scheduler and communication framework. We
finally present a use case of ground intervention in the field, by
means of accurate weed tracking for precision tool placement,
and the development of a selective spraying and mechanical
weed treatment module that is suitable for commercialization
(Sec. VI). Another important outcome of the project is the
large amount of open-source software modules released and
datasets generated, which we hope the community will benefit
from (Sec. VII).

A. Robotics in Agriculture: An Overview of Recent Projects

Robotic applications in agriculture have a significant poten-
tial to improve field monitoring and intervention procedures.
However, these technologies are still in a development phase,
with many possible uses yet to be explored.

A project similar to Flourish is RHEA [2], that aims at
diminishing the use of agricultural chemical inputs by 75%,
improving crop quality, human health and safety, and reducing
production costs by means of sustainable crop management
using a fleet of small, heterogeneous robots (ground and aerial)
equipped with advanced sensors, enhanced endeffectors, and
improved decision control algorithms. Likewise, the PAN-
THEON project [3] aims to develop a Supervisory Control
And Data Acquisition (SCADA) system for precision farming
in hazelnut orchards using a team of aerial-ground robots.

Other recent projects dealing with the development of
autonomous ground platforms are the GRAPE [4] and the
SWEEPER [5] projects. The former aims at creating agricul-
tural service companies and equipment providers to develop
vineyard robots that can increase the cost effectiveness of their
products as compared to traditional practices. In particular,
the project addresses the market of instruments for biological
control by developing the tools required to execute (semi) au-
tonomous vineyard monitoring and farming tasks with UGVs
and, therefore, reducing environmental impact with respect to
traditional chemical control. The SWEEPER main objective is
to put the first generation greenhouse harvesting robots onto
the market.

UAVs are increasingly used in many agricultural robotics
applications, e.g. for tree 3D reconstruction and canopy es-
timation [6], fruit counting [7], yield estimation [8], and
automated monitoring using light-weight devices [9].

On the industry side, several start-ups have been raised, and
many more expect to be funded. The major services provided
are UGVs for weed removal [10][11][12], and in-season data
analytics or early pest and disease detection from aerial or
satellite imagery.

II. EXPERIMENTAL PLATFORMS

The Flourish project exploited existing state-of-the-art farm-
ing and aerial robots, extending them in various aspects to
improve both autonomous navigation and environment mod-
eling capabilities, and to enable them to perform robust plant
classification and/or selective weed removal operations.

A. Multirotor Used in the Flourish Project

The main UAV platform in the project is a fully sensorized
DJI Matrice 100 (Fig. 2, left). The platform includes an
Intel NUC i7 computer for on-board processing, a NVIDIA
TX2 GPU for real-time weed detection, a GPS module, and
a visual-inertial (VI) system for egomotion estimation. We
employ a VI sensor developed at the Autonomous Systems
Lab. [13], and also tested and integrated a commercially
available sensor, the Intel ZR300, for wider usage.

B. Ground Vehicle

1) The BoniRob Farming Robot: The Bosch Deepfield
Robotics BoniRob (Fig. 2, right) is a flexible research platform
for agricultural robotics. Its four wheels can be independently
rotated around the vertical axis, resulting in omnidirectional
driving capabilities, and are mounted at the end of lever
arms, letting the robot adjust its track width from 1m to
2m. In order to execute complex tasks, the BoniRob carries
a multitude of sensors: GPS, RTK-GPS, a push-broom lidar,
two omnidirectional lidars, RGB cameras, a VI system, hy-
perspectral cameras, wheel odometers, etc. These sensors are
directly connected to a set of on-board PCs that run the Robot
Operating System (ROS) and communicate through an internal
network. The BoniRob’s batteries are complemented by a
backup generator that facilitates long-term field application.

2) Weed Intervention Module: Supporting the target use
case of selective weed intervention, the robot is equipped
with an extension module, the Weed Intervention Module
(Fig. 3). This module consists of a perception system for
weed classification, multi-modal actuation systems, and their
supporting aggregates.

The main design objectives of this unit are high weed
throughput, precise treatment, and flexibility. The weeds are
treated mechanically with two ranks of stampers or chemically
with one rank of sprayers. The weeds are detected and tracked
in real-time with three cameras with non-overlapping Field of
View (FoV).

The perception system of the weed unit consists of three
ground-facing global shutter cameras and three narrow beam
sonars. To protect this perception system from natural light
sources, the weed control unit is covered, and artificial
lights have been installed to control the illumination. A first
RGB+NIR camera is used for weed detection and tracking,
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Fig. 2. The two main robots used in the experiments and demonstrations: a DJI Matrice 100 UAV multi-rotor performing an autonomous flight over a sugar
beet field (top-left); the UAV with highlighted the installed sensors (bottom-left) and the Bosch BoniRob farming UGV (right).

Fig. 3. Bottom: Schematic 3D model of the weed intervention module Top:
An overview of our proposed weed control system that is composed of weed
detection, tracking and predictive control modules. The weeds are tracked
across the cameras and finally fed into a predictive control module to estimate
the time and position of treatment at which they will be approaching the
weeding tools.

while the other two RGB cameras are used for tracking. The
sonars help recover the absolute scale of the camera images.
Further details about the weed intervention module can be
found in Sec. VI-A.

III. DATA ANALYSIS AND INTERPRETATION IN A FARMING
SCENARIO

Precision farming applications aim to improve farm produc-
tivity while reducing the usage of fertilizers, herbicides, and
pesticides. To meet these challenges, in-field measurements

Fig. 4. Example results obtained by our plant classification systems. Left:
UGV-based semantic segmentation into crop, weed, grass-weed. Middle: stem
detection providing accurate location of crops and weeds. Right: UAV-based
semantic segmentation.

of plant vitality indicators and weed density are required. We
addressed both these requirements from a robotic point-of-
view, by proposing a set of methods to accurately detect plants
and to distinguish them as crops and weeds (Sec. III-A and
III-B) and to automatically analyze the nitrogen status of crops
from the multi-spectral aerial images (Sec. III-C).

A. Crop and Weed Detection

A prerequisite for selective and plant-specific treatments
with farming robots is an effective plant classification system
providing the robot with information on where and when to
trigger its actuators to perform the desired action in real-time.

In the Flourish project, we focus on vision-based approaches
for plant classification and use machine learning techniques
to effectively cope with the large variety of different crops
and weeds as well as with changing environmental conditions.
Fig. 4 illustrates results obtained by our plant classification
systems for both UGV and UAV platforms. The further
distinction between weeds and grass-weeds allows our system
to perform different treatments in a targeted manner depending



4

Fig. 5. Top: The BoniRob UGV acquiring images while driving along the crop
row. Our approach [16] exploits an image sequence by selecting those images
from the history that do not overlap in object space; Bottom: Exemplary
prediction of crop plants and weed for the entire image sequence. Note that
the model was trained on data acquired in a different field.

on the type of weed. For example, local mechanical treatments
are most effective when applied to the stem location of the
plants. In contrast, grass-like weeds can effectively be treated
by spraying herbicides to their leaf surfaces.

We developed several data-driven plant classification sys-
tems, ranging from approaches based on handcrafted fea-
tures and Random Forests [14], [15] to deep learning ap-
proaches based on lightweight Fully Convolutional Networks
(FCN) [16]. The latter showed superior performance and better
generalization capability.

To effectively generalize to new conditions (different field,
weather, . . . ), we exploit geometric patterns that result from
the fact that several crops are sown in rows. Within a field
of row crops, the plants share a similar lattice distance along
the row, whereas weeds appear randomly. In contrast to the
visual cues, this geometric signal is much less affected by
changes in visual appearance. We propose a semi-supervised
online approach [17] by exploiting additional arrangement
information of the crops to adapt the visual classifier. We
also successfully tested approaches that operate on image se-
quences obtained along the crop rows, allowing the classifier to
learn features describing the plant arrangement ([16], Fig. 5).
The image sequence reveals that crops grow along the row and
have a similar spacing, whereas the weeds appear randomly
in the field strip. We show that incorporating this geometric
information boosts the classification performance and the
generalization capabilities of the plant classifiers.

The same underlying lightweight FCN structure is deployed
on our UAV systems [18]. Here, we use the FCN in a classical
single image fashion as the larger footprint of the camera
implicitly covers enough information about the plant arrange-
ment. Through our crop and weed classification systems, we
enable UGVs to perform plant-specific high precision in-field
treatments, and transform UAVs into an efficient system for
crop monitoring applications.

B. Automatic Synthetic Dataset Generation
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Fig. 6. An overview of the automatic model based dataset generation
procedure.

High-performing data driven plant classification approaches
usually require large annotated datasets, acquired across dif-
ferent plant growth stages and weather conditions. Annotating
such datasets at a pixel-level is an extremely time consuming
task.

We face this problem by proposing an automatic, model
based dataset generation procedure [19] that generates large
synthetic training datasets by rendering a large amount of
photo-realistic views of an artificial agricultural scenario with
a modern 3D graphic engine. To do so, we randomize a few
key parameters (e.g., size, deformation and distribution of
leaves, structure of plants, type of soil, . . . ) with a bottom-
up procedure (see Fig. 6):

• We model the leaves of the target plants using kinematic
chains on which we apply a few real-world RGB textures;

• We model the plants through radially distributed leaves
layers, where the number of leaves per layer depends on
plant species and the growth stage;

• A virtually infinite number of realistic agricultural scenes
can be then rendered by adding random soil backgrounds
and by sampling random illumination conditions and
plants distributions; the ground truth segmentation masks
are automatically generated by the graphic engine;

• The generated synthetic datasets can be used to effec-
tively train modern deep learning based image segmen-
tation architectures.
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C. Multi-spectral N-Status Detection and Phenotyping

The nutrition status of a crop is linked to yield formation
and to the environmental footprint of agronomy. Well fertilized
crops produce optimal yield and quality and are more stress
resilient. Fertilizer deficiency hampers yield, whereas surplus
supply increases the risk of nutrient loss to the environment
and increases susceptibility to pests and diseases. Nitrogen
plays a prominent role in the management of most crops,
because of the generally high crop N demand and the very
high mobility in the soil. Although sugar beet N demand is
relatively low, yield and quality is strongly dependent on N-
management: too low N-application limits tuber yield, while
high N-application reduces the extractable sugar content in the
tuber [20].

Therefore, it is important to apply N-fertilizer at the right
time, rate and place. These decisions can be supported by
optical remotes sensing tools making use of visible or non-
visible parts of the spectral reflection of crop as used for
N-status detection in Flourish project [21]. It serves as an
example among others for the image-based assessment of
plant traits, which play an increasingly prominent role for the
development of sustainable agronomic practices in precision
farming [22], [23].

To validate the spectral and imaging methodology for sugar
beets, in the Flourish project randomized field trials were
established in commercial sugar beet fields and different
nitrogen input treatments were applied from 2015 to 2017 .
Aerial image spectroscopy was realized with a multi-spectral
Gamaya VNIR 40 camera mounted on a UAV. As ground truth
plant N status, tuber yield and sugar content were measured.
As for other crops, our results show red edge based spectral
indices such as the simple ratio and the normalized difference
red edge ratio [24] indicating the N-status in sugar beets
successfully from the UAV-based sensor, resulting in useful
N-fertilizer application maps.

IV. POSITIONING AND ENVIRONMENT MODELING

The ability to localize and build a model of the surrounding
environment is an essential requirement to support reliable
navigation of an autonomous robot. Such tasks are even more
challenging in a farming scenario, where (a) the environment
is mainly composed of repetitive patterns, with no distinctive
landmarks; (b) multi-spectral information should be included
in the modeling process, to support decision making for
farm management. Moreover, in a multi-robot setup as in
the Flourish project, the UAV and the UGV should be able
to cooperatively build a shared model of the environment.
This section presents the main contributions we proposed to
localize and model cultivated fields by a UAV (Sec. IV-A), a
UGV (Sec. IV-B), and to fuse this information between robots
(Sec. IV-C) and across time (Sec. IV-D).

A. UAV Localization and Mapping

The aim of the UAV perception system is to collect high-
resolution spatio-temporal multi-spectral maps of the field.
This data is critical as it allows for mission planning be-
fore the UGV actually enters the field, thereby optimizing

Fig. 7. Top: Block diagram of our UAV state estimation framework depicting
the sensor suite and major software components. Bottom: Comparison of our
VI-GPS fusion-based state estimation with raw GPS and ground truth.

the time/location of ground intervention procedures without
the risk of crop damage and soil compaction. The percep-
tion pipeline requires two main competencies: (1) motion
estimation and precise localization within the field and (2)
multi-resolution multi-spectral aerial mapping based on the
indicators needed to assess plant health.

Key challenges for on-field vision-based localization are
the homogeneous appearance of crops and the accuracy of
the GPS which, used alone, is not sufficient to construct
maps for defining paths for UGV intervention. To address
this, we develop an on-board state estimation system that
combines data from a synchronized VI sensor, a GPS sensor,
the UAV IMU and, optionally, a laser altimeter, to estimate
the 6 DoF pose. Fig. 7 (top) overviews the system. The
Robust Visual Inertial Odometry (ROVIO) [25] framework is
used to produce a 6 DoF pose output based on raw images
and IMU data from the VI sensor. The Multi-Sensor Fusion
(MSF) framework [26] then combines the ROVIO output and
the UAV IMU data to obtain state estimates passed to our
Model Predictive Controller (MPC) for trajectory tracking.
To improve accuracy and robustness, we integrate our system
with MAPLAB [27], a framework with map maintenance and
processing capabilities. On-field results using an AscTec NEO
and DJI Matrice 100 UAV platforms demonstrate high state
estimation accuracy compared to ground truth from a Leica
Geosystems Total Station (Fig. 7, bottom).
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Fig. 8. Block diagram of our environment modeling framework depicting
the sensor suite and major software components (images courtesy of Intel®,
Pix4D S.A and Ximea).

High-resolution field map models are a key prerequisite
for enabling robots in precision agriculture. To this end, we
develop a UAV environmental modeling framework using
the pose estimate from our localization system, and color
and multi-spectral camera information over multiple flights,
to create spatio-temporal-spectral field models. Fig. 8 shows
our pipeline. Taking raw RGB and multi-spectral images,
and UAV poses as inputs, we radiometrically correct spectral
data to create a spatial field model in the form of a dense
point cloud. For each point, the spectral reflectances in the
multi-spectral wavelength bands are estimated and stored.
The field evolution over time can be viewed through layered
orthomosaics generated from this data through a custom
browser-based visualization module (Fig. 9). We use higher-
quality RGB camera images, recovering high-resolution field
geometry, and use the relative position and orientation between
the RGB and multi-spectral camera to estimate its spectral
reflectance. Importantly, our strategy removes the need for a
separate reconstruction step for each band and the subsequent
alignment step.

B. UGV Global Positioning and Mapping

Currently, most positioning systems used in commercial
farming UGV rely on high-end Real-Time Kinematic Global
Positioning Systems (RTK-GPSs) that, however, are not robust
enough against base station signal loss or multi-path interfer-
ence and cannot provide the full 6D position (translation and
rotation) of the vehicle. We tackle this problem by proposing
a UGV positioning system [28] that effectively fuses several
heterogeneous cues extracted from consumer-grade sensors
and exploits the specific characteristics of the agricultural
context with a few additional constraints. We formulate the
global localization problem as a 6D pose graph optimization
problem. The constraints between consecutive nodes (Fig. 10,
top) are represented by motion estimations (wheel odometry,
visual odometry, . . . ). Noisy, but drift-free GPS and IMU
readings are directly integrated as prior nodes. Driven by the
fact that both GPS and VO provide poor estimates along the
z-axis (i.e., parallel to the gravity vector), we introduce two
additional altitude constraints:

1) An altitude prior, provided by a Digital Elevation Model
(DEM);

2) A smoothness constraint for the altitude of adjacent
nodes.

The integration of such constraints improves the accuracy
of the altitude estimation and also benefits the estimation of
the remaining state components. The optimization problem is
cyclically solved online by using a sliding window strategy
(Fig. 10, middle).

C. Cooperative UAV-UGV Environment Modeling

Building a shared map of the environment is an essential
but challenging task: the UAV can provide a coarse recon-
struction of large areas, that should be updated with more
detailed information collected by the UGV. We introduced
AgriColMap [29], an acronym for Aerial-Ground Collabo-
rative 3D Mapping for Precision Farming, an effective map
registration pipeline that registers heterogeneous maps built
by the UGVs and UAVs.

AgriColMap leverages a multimodal field representation and
formulates the data association problem as a large displace-
ment dense optical flow (LDOF) estimation. The complete
pipeline is schematized in Fig. 11. We assume that both
the UAV and the UGV can generate colored, georeferenced
point clouds of a farm environment, MA and MG, e.g.,
using photogrammetry-based 3D reconstruction. Our goal is
to estimate an affine transformation F : R3 → R3 that
allows to accurately align them by compensating the geo-tags
misalignments and the reconstruction and scale errors. We start
looking for a set of point correspondences, mA,G = {(p, q) :
p ∈ MA, q ∈ MG}, that represent points pairs belonging to
the same global 3D position. Inspired by the fact that points
inMA locally share a coherent ”flow“ towards corresponding
points in MG, we cast the data association problem as a
dense, regularized, matching approach. This problem recalls
the dense optical flow estimation problem for RGB images: we
introduce a multimodal environment representation that allows
to exploit such 2D methods on 3D data, while enhancing
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Fig. 9. Visualization interface for the spatio-temporal-spectral database showing both RGB orthomosaics (left) and corresponding index maps (right) for a
sugar beet field over time. The user can select spectral layers to view a georeferenced reflectance orthomosaic corresponding to a wavelength band, view the
color orthomosaic, and toggle through all available surveys using the timeline.
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both the semantic and geometrical properties of the maps. We
exploit two intuitions:

• A Digital Surface Model (DSM) well highlights the
geometrical properties of a cultivated field;

• A vegetation index can highlight the meaningful parts of
the field and its visual patterns.

We transform MA and MG into 2D grid maps JA,JG :
R2 → R2, where for each cell p we provide the surface height

h and the Excess Green index, ExG(p) = 2gp − rp − bp,
being rp, gp, bp the (average) RGB components of the cell.
To estimate the offsets map, we employ a modified version of
the LDOF Coarse-to-fine PatchMatch framework (CPM) [30].
We apply the visual descriptor of the original CPM method
directly to the ExG channel of JA and JG, while we exploit
a 3D descriptor computed over the DSM to extract salient
geometric information; the matching cost has been modified
accordingly to take into account both descriptors.

The largest set of coherent flows defines a set of matches
mA,G that are used to infer a preliminary alignment F̂ . We
finally estimate the target affine transformation F by exploiting
the Coherent Point Drift registration algorithm [31], over the
point clouds Mveg

A and Mveg
G , that are obtained from MA

and MG by extracting only points that belong to vegetation
with an ExG based thresholding operator.

D. Long-Term Temporal Map Registration

Continuous crop monitoring is an important aspect of
phenotyping and requires the registration of sensor data over
the entire season. This task is challenging due to the strong
changes in the visual appearance of the growing crops and
the field itself. Conventional image registration based on
visual descriptors is typically unable to deal with such drastic
changes in appearance. To address this challenge, we devel-
oped a method for registering temporally separated images by
exploiting the inherent geometry of the crop arrangement in
the field, which remains relatively invariant over the season.
We propose a scale-invariant, geometric feature descriptor that
encodes the local plant arrangement geometry and uses these
descriptors to register the images even in the presence of strong
visual changes [32]. The registration results allow for spatio-
temporal analysis of data collected over the crop season. This
includes applications such as monitoring growth parameters at
a per plant level, as illustrated in Fig. 12.

V. PLANNING, NAVIGATION AND COORDINATION

The UAV and the UGV have different working areas and
roles within each field analysis and targeted intervention
mission. Their action planning and navigation policies should
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reflect these differences. We introduced an ad-hoc UAV nav-
igation module (Sec. V-A) using a planner to effectively
perform field monitoring missions while respecting battery
constraints. Crop row localization and safe in-field UGV
navigation is addressed in Sec. V-B, where the high number
of DoFs of the UGV is used to improve motion efficiency and
smoothness. The inter-robot mission coordination framework
is then introduced in Sec. V-C.

A. UAV Mission Planning and Navigation

A key challenge in agricultural monitoring is developing
mission planning algorithms to define the path for a UAV
to optimally survey the field. The planning module needs

to maximize mapping accuracy given battery life constraints,
taking into account field coverage and scientifically defined
areas of interest. We developed an informative path planning
(IPP) framework for adaptive mission planning to cater for
these requirements [33].

Our framework is suitable for mapping a terrain depending
on the type of data received from an onboard sensor, e.g.,
a depth or multi-spectral camera. In terms of mapping, the
main challenge is fusing the dense visual imagery into a
compact probabilistic map in a computationally efficient way.
To address this, we present a new method for multiresolution
mapping that considers the patterns of the target distributions
on the farm. We use Gaussian Processes (GPs) to encode the
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Fig. 13. Top: Example comparison of our CMA-ES-based approach to
“lawnmower” coverage (left and right, respectively) for mapping in 200 s
missions. The colored lines and spheres represent the traveled trajectories and
measurement sites. Ground truth maps are rendered. Bottom-left: Comparison
of the final map uncertainties (measured by the GP covariance matrix trace) for
various path budgets. Ten CMA-ES trials were run for each budget. Bottom-
right: Comparison of times taken to achieve the same final map uncertainty,
given a fixed CMA-ES budget.

spatial correlations common in biomass distributions. A GP
model is exploited as a prior for recursive Bayesian data fusion
with probabilistic, variable-resolution sensors. In doing so, our
approach enables mapping without the computational burden
of standard GP regression, making it suitable for online, on-
platform applications.

In terms of planning, a fundamental problem we tackle
is trading off image resolution and FoV to find the most
useful measurement sites at different flying altitudes. During a
mission, the terrain maps built online are used to plan trajec-
tories in continuous 3D space that maximize an information-
based objective, e.g., targeted high-resolution mapping of
areas infested by weeds. Our planning scheme proceeds in
a finite-horizon fashion, alternating between replanning and
plan execution. This allows us to create adaptive plans, taking
new sensor data into account online to focus on areas of
interest as they are discovered. For replanning, we leverage
an evolutionary technique, the Covariance Matrix Adaptation
Evolution Strategy (CMA-ES), to optimize initial trajectory
solutions obtained by a course 3D grid search in the UAV
workspace.

Our approach was evaluated extensively in simulation,
where it was shown to outperform existing methods (Fig. 13),
and validated on the field.

B. UGV Position Tracking and Navigation

For autonomous navigation on fields the BoniRob UGV
needs to accurately steer along the crop rows without crushing

any of the value crop. Moreover, to transition between crop
rows, performing tight and accurate turns at the end of the field
is essential. There are three key requirements to achieve this: a
pose estimate relative to the rows, a path along the crop rows
through the field, and smooth velocity commands to precisely
follow this path. To this end, we developed a crop row
detection algorithm, the Pattern Hough Transform [34]. We
first process the input from vision or lidar data by extracting
plant features and projecting them onto a feature grid map
in the local robot frame (see Fig. 14, top left). Then, our
Pattern Hough Transform determines the pattern of parallel
and equidistant lines that is best supported by the feature
map (see Fig. 14, top right). Such a pattern is defined by
the orientation θ, the spacing between adjacent lines s and the
offset of the first line to the origin o as shown in Fig. 14 (top
center). Since our approach takes into account all available
data to detect the crop rows in a single step, it is robust
against outliers like weed growing between the crop rows,
and yields accurate results during turning, i.e., when the robot
is not necessarily aligned with the crop rows.

We integrated the output from our Pattern Hough Transform
into the localization module of the BoniRob. The localization
is based on an Extended Kalman Filter. We use fused odometry
and IMU measurements for the prediction. In the correction
step, we align the detected crop row pattern with a GPS-
referenced map of crop rows to correct the pose estimate of
the robot relative to the field. Since the crop row pattern only
provides lateral and orientation information, i.e., no correction
along the crop rows, we correct the longitudinal position
estimate with GPS signals.

We implemented a global planner based on a state lattice
planner to ensure that the BoniRob finds a path to any
reachable pose in the field. The BoniRob can change its track
width by adjusting the angles of the lever arms to which the
wheels are attached (Fig. 2, right). Thus, whether it can pass
through a narrow gap or over an obstacle depends on the
wheel positions (see Fig. 14 bottom left). We developed a
path planner that considers the lever angles explicitly [35] by
including the arm angles in the state space and adding actions
that allow the planner to change them. Adding the arm angles
greatly increases the size of the state space, which makes
planning with commonly used search algorithms inefficient.
Thus, we introduced a novel method to represent the robot
state with a reduced cardinality, that is, we track valid arm
angle intervals instead of single arm angles in the robot state.

Our local planner translates a pose path from the global
planner into velocities while considering steering constraints.
Any robot with slow-turning independently steerable wheels,
such as the BoniRob, has certain steering constraints. The
most prominent constraints are the limited steering velocity,
non-continuous steering or wheel angle instabilities when
the center of rotation is on a wheel. To avoid violations
of these steering constraints, we presented a new approach
that incorporates steering constraints when generating veloc-
ity rollouts (see Fig. 14 bottom right) [36]. Our approach
leverages the correspondence between the wheel angles and
the instantaneous center of rotation (ICR) of the robot. After
projecting the steering constraints into ICR space, we compute
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Fig. 14. Overview of the UGV navigation system. Top left: The Pattern Hough Transform detects crop rows in lidar or camera data using the extracted
plant features. Top center: A pattern is defined as set of parallel and equidistant lines (red) with orientation θ, offset o and spacing s. Top right: Result
of the Pattern Hough Transform (red) on pointed cabbage (≈ 10cm). Bottom left: Valid arm angle intervals when moving close to an obstacle. Bottom
center: Velocity rollouts in the local planner. The rollouts are color coded with their respective costs. Bottom right: The ICR constraints derived from the
hardware constraints (red) and the maximum steering velocity (green).

a valid ICR path that satisfies the constraints. From this ICR
path, we calculate valid velocity sequences that the robot can
execute smoothly. Real-world experiments show that our local
planner improves efficiency and leads to smoother execution.

C. UAV-UGV Mission Coordination

To unlock the potential of the Flourish robotics system, it
is essential to be able to run coordinated missions between
the robots. Since both robots share information via Wi-Fi,
this information needs to be kept at a minimal level and the
coordination needs to be ensured even when communication
is lost. The only data exchanged are: the UAV pose, the UGV
pose, the coordinates of the areas of interest, the requests from
one robot to the other and their status messages. Because of
the lossy communication, exchanging requests and status is a
reliable way to ensure a message sent by a robot is indeed
received by the other one.

The mission framework used on both robots is based on
ros task manager [37]. This is a task scheduler developed
for ROS particularly easy to use, that allows for combining
multiple behaviors, with elements running in sequence or in
parallel, eventually interrupting each other. This framework
is based on tasks implemented in C++, which are combined
into complex missions implemented in basic Python. Fig. 15
illustrates an example of coordinated mission.

VI. IN-FIELD INTERVENTION: THE COLLABORATIVE
WEEDING USE CASE

The main use case addressed in the Flourish project is the
collaborative weeding application (Fig. 1). The UAV flies over
the field running the navigation and planning algorithms of
Sec. IV-A and V-A, while analyzing the weed pressure by
using the classification algorithms presented in Sec. III-A.
High weed pressure areas are notified to the UGV by using

Fig. 15. Example of a coordinated mission.

the coordination framework described in Sec. V-C. Thus, the
UGV starts to move toward the selected areas, running the
algorithms of Sec. IV-B and V-B. In this section, we describe
the tools (Sec. VI-A) and methods (Sec. VI-B) used for the ac-
tual weed treatment, with possible agronomic impacts reported
in Sec. VI-C. We successfully tested the whole pipeline in a
public demonstration during a dissemination event held near
Ancona (Italy) in May 2018.

A. Selective Weed Removal

The weed intervention module (Fig. 3), whose perception
system was introduced in Sec. II-B, includes further tools
designed to address the targeted weed treatment: a weed
stamping tool and a selective spraying tool (Fig. 3). The
stamping tool is composed of 18 pneumatic stamps arranged in
two ranks. All stamps are individually controllable and a high
precision of the positioning is ensured by only allowing one
degree of freedom for the positioning across to the driving
direction. The spraying tool is positioned in the back. It is
assembled out of nine nozzles, individually controlled by off
the shelf magnetic valves.

Both weeding tools are controlled with a scalable, pro-
grammable logic controller (PLC). Modules requiring more
computational resources, i.e weed detection and tracking, are
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Fig. 16. An example of reconstructed inverse depth map and a 3D point-
cloud of plants and ground surface from our proposed intra-camera tracking
algorithm.

implemented on a computer dedicated to the weed control
running Linux and ROS.

The bolt of the stamps have a 10mm diameter, whereas the
footprint of a sprayer is 30mm when set in the lowest position
as in our experiments. To actually treat a weed while the robot
is moving is a time-critical part of the process because a small
delay can lead to a position error at centimeter-level that is
large enough to miss a small weed. In our experiments, the
decision on which tool is used on which weed is only based
on a size criteria: large weeds are sprayed while small weeds
are stamped.

B. Weed Tracking

The main challenge in the weed tracking with non-
overlapping multi-camera systems (Fig. 3, Sec. II-B2) is to
deal with the high variance delay between the instant when
the image of the first camera is acquired and the one when
a target is detected by the detection system. To address this
issue, a novel tracking system has been developed. The inputs
are the images and the coordinates of the targets given by the
classifier (Sec. III-A) in the images of the detection camera
(see Fig. 3). The outputs are the the trigger time and position
for the actuators. The main steps are illustrated in Fig. 3 (top):

1) The intra-camera tracking module estimates the camera
pose and the 3D scene map using VO direct methods;

2) After receiving delayed classification results and scene
structures, the object initializer and updater module
creates the templates of the received objects, propagates
their updated poses, and accumulates their labels;

3) To prevent destroying a misclassified crop, a naive Bayes
classifier (NBC) validates its classification based on the
accumulated labels;

4) Once a new weed object moves into the tracking camera
FoV, inter-camera tracking performs illumination-robust
direct tracking to find its new pose and creates a new
template for intra-camera tracking;

Fig. 17. Top: experiments in real environment for spraying evaluation, in real
field with fake weeds for stamping evaluation. Bottom: treatment rates results
both for stamping and spraying in rough and flat environment.

5) After repeated intra-camera tracking, updating, and
inter-camera tracking, the weed finally approaches the
endeffector, where the control algorithm predicts the
trigger time and position of actuation for intervention.

The novelty in this module resides in intra- and inter-camera
tracking [38] (Fig. 16).

Intra-camera tracking: unlike conventional multi-object
tracking algorithms, our proposed VO approach recovers the
3D scene structure before obtaining object information, then
formulates each template as a combination of trimmed image
and inverse depth map for later tracking upon arrival of
classification results. This strategy guarantees a constant-time
operation despite the change of the amount of tracked objects.

Inter-camera tracking: taking advantage that only the 2D
positions of weeds in image space is of interest, we extract
the small frame template of each weed combined with a global
illumination-invariant cost to perform local image alignment.
Then, the weed center and its template boundary are trans-
formed into the current frame using the pose estimate, which
is used to generate a new template for intra-camera tracking.
To be robust to changes of viewpoint, the retrieval of weeds
objects is achieved by using 3D-2D direct template-based
matching.

To evaluate the mechanical weed removal, real leaves with
an average radius of 10mm are chosen as targets, counting
the successfully stamped ones. To evaluate selective spraying,
we set up a webcam to monitor targets after spraying. These
experiments and the results are illustrated in Fig. 17, in which
we can observe that the successful treatment rate is almost
invariant with the speed in both flat and rough field ground.

C. Agronomic Impacts in Sugar Beet Crops

The potential impacts of the Flourish methodologies have
been investigated through a 3-years field campaign carried out
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in Italy. We compared traditional full-field herbicide treatments
with a chemical weeding system, targeting the areas with
higher weeds density and therefore simulating the Flourish
selective intervention. We performed four trials on sugar
beet experimental plots grown under the same agronomic
conditions and on the same site. For each year, four 10m2

plots (one plot per trial) have been used; in 2017 and 2018
each trial was replicated three times.

For each trial, different pre-emergence treatments (PRT)
and post-emergence treatments (POT) were performed be-
fore and after the seedling emergence, using dicotyle-
dons/monocotyledons herbicides. Tab. I reports the percent-
ages of plot subject to treatment (PRT and POT columns).

At the end of each crop cycle, sugar beets roots of each
plot were harvested and weighed. Representative samples
from each plot were delivered to ASSAM laboratories for
the refractometric estimation of the average root sucrose
content (Brix degrees). The amount of sucrose produced in
each experimental plot was then computed and then related
to the agronomic surface unit (tons of sucrose per hectare).
Results are reported in Tab. I. The 2017 and 2018 results
were calculated for each trial by averaging the results of the
3 replicates.

TABLE I
TREATMENTS AND TONS OF SUCROSE PER HECTARE PRODUCED IN THE

2016-2018 TRIALS.

Trials PRT POT 2016 2017 2018

Trial A 100% 100% 15.2 8.4 10.1
Trial B 100% 30% 12.3 8.5 11.5
Trial C 100% 0 11.7 4.9 11.2
Trial D 0 0 11.0 3.4 6.6

Results suggest that sugar beet selective POT (Trial B),
when associated to an ordinary PRT, represents a sustainable
alternative to conventional POT full-field-treatments (Trial A),
as it allows to achieve comparable sucrose production levels
while reducing chemical inputs. In fact, compared to Trial
A the average sucrose production of Trial B was just 3.9%
lower over the three years. At the same time both selective
and full-field POT turned out to be an effective support to
production, especially in the case of crops subjected to marked
grass-weeds pressure. Traditional full-field PRT was essential
in controlling weeds (mainly dicotyledons) in a slow-growing
sugar beet crop (Trial D average production 24.5% lower than
Trial C).

Besides the impacts on production and environment, the
introduction of precision agriculture technologies into ordinary
cultural practices could also have a larger-scale effect on
the farming sector. To support this intuition, a participatory
evaluation (Metaplan model and SWOT analysis) carried out
within the project and involving a panel of 17 stakeholders
professionally operating in the farming sector, highlighted that
the application of such technologies would be able to poten-
tially improve the efficiency, efficacy and safety of farming
operations, to reduce the labor cost, to provide more infor-
mation on crops, field structure, and meteorological events, to

increase farming environmental sustainability and food safety.

VII. OPEN-SOURCE SOFTWARE AND DATASETS

Many of the methods presented above have been released
as open-source software, with download links reported in the
corresponding papers. A short-list is given here:

• A modified version of DJI Onboard ROS Software De-
velopment Kit (SDK) [39];

• Plant stress phenotyping dataset and analysis soft-
ware [40] (Sec. IV-A).

• The IPP framework (Sec. V-A) for terrain monitoring
[33]1;

• MCAPS (Sec. IV-B) [28];
• AgriColMap (Sec. IV-C) [29];
• Algorithms for synchronizing clocks2.
We also created and made publicly available several novel

datasets:
• Sugar Beets 2016: a novel, vast long-term dataset of a

sugar beet field [41].
• Flourish Sapienza Datasets [42]: a collection of datasets,

with related ground truths, acquired from farming robots;
• A dataset of 4-, 5-channel multi-spectral aerial images

dedicated to plant semantic segmentation [18], [43];
• A pixel-wise ground truthed sugar beet and weed datasets

collected from a controlled field experiment [18]3;
• WeedMap dataset [43], contains high-fidelity, large-scale,

and spatio-temporal multi-spectral images.

VIII. CONCLUSIONS

The main goal of the Flourish research project was to
develop an adaptable robotic solution for precision farming by
combining the aerial survey capabilities of a small autonomous
UAV with a multi-purpose agricultural UGV. In this paper, we
presented an overview of the custom-built hardware solutions,
methods and algorithms developed in the project, which are
tailored for cooperation between aerial and ground robots. We
demonstrate a successful in-field intervention task integrating
the various modules.

We believe that the proposed solutions represent, from
several points of view, a step forward in the state-of-the-art of
robotic systems applied to precision agriculture, with solutions
that are easily applicable to a wide range of robots, farm
management activities, and crop types.
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[14] P. Lottes, M. Höferlin, S. Sander, and C. Stachniss, “Effective Vision-
based Classification for Separating Sugar Beets and Weeds for Precision
Farming,” Journal of Field Robotics, vol. 34, pp. 1160–1178, 2017.

[15] P. Lottes, R. Khanna, J. Pfeifer, R. Siegwart, and C. Stachniss, “UAV-
based Crop and Weed Classification for Smart Farming,” in Proc. of the
IEEE International Conference on Robotics and Automation (ICRA),
2017.

[16] P. Lottes, J. Behley, A. Milioto, and C. Stachniss, “Fully convolutional
networks with sequential information for robust crop and weed detection
in precision farming,” IEEE Robotics and Automation Letters, vol. 3,
no. 4, pp. 3097–3104, 2018.

[17] P. Lottes and C. Stachniss, “Semi-supervised online visual crop and
weed classification in precision farming exploiting plant arrangement,”
in Proc. of the IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), 2017.
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J. Nieto, and R. Siegwart, “Build your own visual-inertial drone: A
cost-effective and open-source autonomous drone,” IEEE Robotics &
Automation Magazine, vol. 25, no. 1, pp. 89–103, 2018.

[40] R. Khanna, L. Schmid, A. Walter, J. Nieto, R. Siegwart, and F. Liebisch,
“A spatio temporal spectral framework for plant stress phenotyping,”
Plant Methods, vol. 15, 2019.

[41] N. Chebrolu, P. Lottes, A. Schaefer, W. Winterhalter, W. Burgard,
and C. Stachniss, “Agricultural robot dataset for plant classification,
localization and mapping on sugar beet fields,” Journal of Robotics
Research, vol. 36, no. 10, pp. 1045–1052, 2017.

[42] “Flourish Sapienza Datasets [Online],” in
https://www.dis.uniroma1.it/~labrococo/fsd/.
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