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Fig. 1: Our method is able to build a multi-resolution panoptic map (top) of a challenging commercial greenhouse environment online
using a mobile horticultural robot equipped with RGB-D cameras (left). Furthermore, our method manages to jointly estimate the complete
shape and pose of each fruit in the panoptic map (bottom).

Abstract— Monitoring plants and fruits at high resolution
play a key role in the future of agriculture. Accurate 3D
information can pave the way to a diverse number of robotic
applications in agriculture ranging from autonomous harvesting
to precise yield estimation. Obtaining such 3D information is
non-trivial as agricultural environments are often repetitive and
cluttered, and one has to account for the partial observability
of fruit and plants. In this paper, we address the problem
of jointly estimating complete 3D shapes of fruit and their
pose in a 3D multi-resolution map built by a mobile robot.
To this end, we propose an online multi-resolution panoptic
mapping system where regions of interest are represented with
a higher resolution. We exploit data to learn a general fruit
shape representation that we use at inference time together
with an occlusion-aware differentiable rendering pipeline to
complete partial fruit observations and estimate the 7 DoF
pose of each fruit in the map. The experiments presented in
this paper, evaluated both in the controlled environment and
in a commercial greenhouse, show that our novel algorithm
yields higher completion and pose estimation accuracy than
existing methods, with an improvement of 41% in completion
accuracy and 52% in pose estimation accuracy while keeping
a low inference time of 0.6 s in average.

I. INTRODUCTION

To feed an ever-growing world population, the whole
agricultural sector needs to increase its productivity while re-
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ducing its negative impact on the environment. Autonomous
robots have the potential to support addressing both is-
sues. For example, robots can automate labor-intensive tasks
such as harvesting [2], [11], weeding [18], or pruning [3].
They can also provide plant-specific treatment of herbicides
and pesticides [1] reducing the required amount of agro-
chemicals. Thus increasing the likelihood of meeting the
population demands in producing food, feed, fiber, and fuel
and at the same time decreasing the use of agro-chemicals.

Robots can continuously monitor orchards or arable fields
to detect early stages of plant stress [34], support phenotyp-
ing activities [36], and provide detailed yield estimates [9].
Robots working in arable fields or horticulture environments
can seldomly observe the whole scene due to the cluttered
nature of the environments. This means that data obtained
with any agricultural robot is partial and incomplete. In this
paper, we address the problem of building multi-resolution
3D maps of such scenes and estimating the non-visible parts
of fruit to obtain more complete 3D models. Fig. 1 depicts
an example of the resulting map together with the 3D shape
and pose estimated for each fruit.

To recover the shapes of occluded objects, a typical
solution is the usage of templates whose deformations are
able to represent different instances of the same category. A
template can be represented as a 3D triangular mesh [14] or
encoded in the weights of a neural network [24]. In recent
years, templates have been used to recover shapes of human
bodies [4] and hands [31], but also in the agricultural context
to estimate shapes of fruits [15] and plants [17].
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Fig. 2: Overview pipeline of the proposed mapping system: the input to the mapping system is a stream of the RGB-D images collected
by the horticultural mobile robot. We predict the fruit instance using Mask R-CNN [8]. Then we conduct panoptic volumetric mapping
by tracking the instance lables as the temporal consistent submap IDs. For each fruit submap, we jointly estimate the complete shape and
pose from the submap points and the corresponding images using offline learned shape prior and the differentiable rendering pipeline.

The main contribution of this paper is a novel method to
jointly estimate the 3D shape of fruits and their pose. We
build multi-resolution maps in which we place the predicted
3D shapes of fruits correctly posed in a globally consistent
representation. Additionally, we exploit high-resolution 3D
data to encode a general fruit representation into the weights
of a neural network. In this way, we can recover details of
the fruit’s shape with a low inference time during operations.

In sum, we make three key claims: our approach is able to
jointly (i) predict the 3D shape of fruits even under substan-
tial occlusions in real commercial greenhouse environments
and (ii) estimate the pose of each fruit in the 3D map. (iii)
Additionally, our multi-resolution map representation yields
substantial improvement in the shape completion task over
fixed-resolution maps. These claims are backed up by our
experimental evaluation.

Our open-source implementation is publicly available at:
https://github.com/PRBonn/HortiMapping.

II. RELATED WORK

In recent years, agricultural robotics has become an in-
creasingly popular research area due to the aforementioned
challenges and the prospect of deploying such robots for
more efficient and sustainable agri- and horticulture. More
specifically, in the horticulture context we have seen de-
ployed robotic systems for monitoring [30] and harvest-
ing [2], [11]. In both cases, a fundamental build block of such
robots is an instance segmentation network [8] that can ro-
bustly segment fruits [6], [19], peduncles [27], and plants [5],
often starting from 2D images. Neural networks can also be
used to estimate ripeness [7] and poses [32] of fruits. Based
on such networks, it is possible to build semantically-aware
3D maps [25]. However, in the agricultural context, classical
volumetric mapping pipelines, such as KinectFusion [21] or
Voxblox [22], yield incomplete fruits representations as they
do not deal explicitly with the presented occlusions. Instead,
we build upon a multi-resolution map from prior work [23],
[28] and propose a pipeline to jointly estimate the pose and

the complete shape of fruits in the 3D map resulting in a
complete and better representation of fruits.

Recently, a variety of works tackle the problem of estimat-
ing the shape of non-visible fruits parts of plants or fruits.
Such works can be generally divided into three categories:
geometry-based, mesh-based, and deep learning-based ap-
proaches. In the first category, a closed-form geometric
model is fit into the collected data. Marangoz et al. [16]
use such an approach for fruit monitoring, while Lehnert et
al. [12] show that fitting a superellipsoid improves robotic
grasping performances. These approaches estimate complete
shapes quickly but the model used cannot represent details
in the 3D shapes.

In the second category, the model is represented by a
3D mesh that represents the general appearance of a target
object. We used this approach to estimate the shapes of
plants [14] and leaves [17]. While such methods can provide
precise reconstructions, a shortcoming is the high inference
time required for obtaining the final mesh. This is often not
practical for real-world operations.

In the last category, the general appearance of an object
is encoded in the weights of a neural network that produces
either point clouds [35] or triangular meshes [24]. In our
previous work [15], we use DeepSDF [24] to learn a prior
over fruits shapes and map a single RGB-D frame to the
network’s latent space to avoid the online optimization.
While such approaches provide plausible 3D shapes at a low
inference time, they lack the ability to estimate 7 degrees
of freedom (DoF) poses and the performance declines when
processing the fruits with non-canonical poses in the real
world. The effectiveness of DeepSDF-based methods [15]
on in-the-wild settings is thus limited by the requirement of
having the input partial shapes in the same canonical pose
and scale as in the training set.

Inspired by the recent works in the computer vision
community including Frodo [26] and DSP-SLAM [33] we
propose a novel method to jointly estimate the shape and
the pose of fruits with a low inference time. We combine
a completion network based on a neural shape prior and
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an occlusion-aware differentiable rendering pipeline. In this
way, the shape completion and reconstruction are still con-
ducted in the canonical pose of the fruit with high quality
while obtaining the transformation to the world coordinate
system and allowing for its embedding in a 3D model of the
greenhouse and its plants.

III. OUR APPROACH TO FRUIT MAPPING

In this paper, we study the problem of panoptic volumet-
ric mapping for horticultural applications while estimating
complete 3D shapes including scale and 7 DoF pose of fruits
from a sequence of RGB-D frames.

As shown in Fig. 2, we build a panoptic volumetric
map that decomposes the scene into the background and
individual foreground submaps. The background submap
is represented at a lower resolution than the foreground
submaps to ensure accurate and high-fidelity reconstructions
of the fruits. Based on the foreground submaps integrating
partial observations, we estimate complete shapes and 7
DoF poses of each individual fruit using a deep neural
network that jointly estimates the shape of the fruit in a
canonical coordinate system and a transformation into the
world coordinate frame.

A. Multi-resolution Panoptic Mapping

The input to our mapping system is a stream of the RGB-D
images collected by a horticultural mobile robot. The pose of
the robot can be estimated by wheel odometry or a tracking
camera and refined online with a standard RGB-D odometry
system. We train a Mask R-CNN [8] model to perform online
instance segmentation of the fruits based on the RGB infor-
mation resulting in per-fruit instance masks M. In line with
Panoptic Multi-TSDFs [28], we assign a submap S to each
panoptic entity, either the thing (fruit) instance or the stuff
(background). For each submap, we apply a non-projective
TSDF integration [23] as well as a mesh reconstruction based
on marching cubes algorithm [13] incrementally using the
RGB-D image stream and the estimated robot’s poses.

Meanwhile, we track the segmented instances as temporal
consistent submap IDs through a data association. We project
the mesh vertices of active submaps within the visual frustum
onto the image planes to generate submap masks for newly
collected image frames. Based on the intersection over
union (IoU) ratio between the rendered and predicted masks
and the difference between the rendered and measured depth,
we either assign a segmented instance to an existing submap
or allocate a new submap for it.

As shown in Fig. 3, our volumetric mapping allows the
fruits to be reconstructed at a small voxel size (3 mm) and
with high accuracy, while using larger voxel sizes (1 cm)
to efficiently map the background or less relevant classes
such as leaves and stems. Therefore, the final panoptic map
consists of a low-resolution submap for the background and
high-resolution submaps for each fruit instance.

Once a fruit submap is not observed for G frames con-
secutively, it is not updated anymore, marked as frozen, and
used for joint shape completion and pose estimation.

multi-resolution model
low resolution

high resolution

Fig. 3: On the left, we show an example of our multi-resolution
volumetric map consisting of a lower resolution background (with
larger voxel size) and several higher resolution fruit submaps (with
smaller voxel size). On the right, we zoom in to show the high
resolution submap representing a fruit.
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Fig. 4: On the left, we show examples of the sweet pepper models
with a canonical pose measured using a sub-millimeter precision
laser scanner. On the right, for one example sweet pepper, we show
both the close-to-surface sample points and the uniform free space
sample points with their color representing the SDF value label.
We use these sample points and their SDF value labels to train
the DeepSDF model and learn the shape prior of the specific fruit
species (in this case the sweet pepper).

B. Fruit Completion and Pose Estimation in the Wild
By exploiting the fruit shape prior of a pre-trained

DeepSDF [24] model and an occlusion-aware differentiable
rendering technique, for each frozen fruit submap S from
the panoptic volumetric map in Sec. III-A, we aim to jointly
estimate its latent shape code z and 7 DoF transformation
Tow ∈ Sim(3) from the world coordinate system to the
fruit’s canonical coordinate system. Tow is represented by an
homogeneous transformation matrix with s ∈ R, R ∈ R3×3,
t ∈ R3 representing the scale, rotation, and translation,
respectively. We sample a point cloud PS from the mesh of
each instance submap S. Additionally, from all the images
in which S is visible, we get the 2D mask M predicted
by Mask R-CNN, the extended 2D bounding box B with a
padding of h pixels on each side.

DeepSDF pretraining: The DeepSDF [24] model takes
as input a query position x ∈ R3 and a latent shape code
z ∈ RC , and predicts the SDF value v ∈ R at x through
a decoder network Dθ as: v = Dθ(x, z). With a pre-
trained DeepSDF decoder Dθ and optimized shape code
z, we compute a dense SDF volume by querying it at a
regular 3D grid of points, which we use for a complete mesh
reconstruction via marching cubes [13].

In line with Magistri et al. [15], we aim at having an
accurate and complete model of the fruits predicted by Dθ

for which we use high-resolution 3D laser scans collected in
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Fig. 5: Geometric relationships for the joint optimization of the
shape z and the pose Tow of a target fruit using the submap
point cloud in the world frame w and the image collected in the
camera frame c. The black points represent the sampled points
from the point cloud PS of the target fruit submap. The orange
points represent the sample points on each ray corresponding to
each sampled pixel. The red, blue, and purple squares represent
the sampled pixels from the masked foreground region M, the
unmasked background region in the extended bounding box B and
the potential occluded background region, respectively.

a controlled laboratory environment using a sub-millimeter
accurate Perceptron V5 laser scanner and a Romer Infinite
measuring arm. We train a DeepSDF model for each type
of fruit using the measured 3D scans and instead of only
sampling points close to the surface along the normal direc-
tion [24], [15], we also sample points uniformly in a sphere
surrounding the object as shown in Fig. 4. By doing so, the
model better represents the free space, which is beneficial
for differentiable rendering and pose estimation. Regarding
model training, we adopt a latent code size of C = 32 and
adhere to the network architecture and hyperparameter con-
figurations specified in the original work of DeepSDF [24].

Surface consistency loss: Our first objective is to achieve
precise alignment between the reconstructed fruit and the
fused 3D observations from the RGB-D sensor. To accom-
plish this, as shown in Fig. 5, we aim to keep the points
from the target fruit submap’s point cloud PS close to the
iso-surface of the SDF predicted by Dθ, which minimizes
the following surface reconstruction loss Ls given by:

Ls =
1

|PS |
∑

pw∈PS

D2
θ (Towpw, z) . (1)

Occlusion-aware differentiable rendering: As we use
depth images and instance segments, we additionally propose
a depth rendering loss and a mask rendering loss using
differentiable SDF rendering. As shown in Fig. 5, for each
image corresponding to a visible fruit submap, we sample Gf
foreground pixels Ωf from the maskM and Gb background
pixels Ωb from the unmasked region B \M in the extended
bounding box B. For each sampled pixel u ∈ Ω = Ωf ∪Ωb,
we calculate the corresponding ray r in the camera coor-
dinate system. We then sample N + 1 points with a fixed
interval ∆d on each ray, resulting in per sample depths di:

di = dmin + (i− 1)∆d, i = 1, . . . , N + 1, (2)

along the ray r from the projection center to the fruit, where
dmin and ∆d are determined by the distance from the camera
to the submap’s bounding box center and the approximate
fruit size. By transforming each sample point to the world
coordinate system, we obtain:

pwi = Twc
(
diK
−1u

)
, (3)

where K and Twc are the camera intrinsic and extrinsic
matrices, respectively. Then, the SDF prediction vi at the
sample point pwi is given by:

vi = Dθ(Towpwi , z), (4)

which can then be converted to an estimated occupancy
probability oi by a logistic function with a surface noise
threshold σ:

oi =
1

1 + evi/σ
. (5)

Then, the so-called ray termination weight αi for each
sample point can be calculated from the occupancy proba-
bility as:

αi =

{
oi
∏i−1
j=1 (1− oj) i = 1, . . . , N∏N

j=1 (1− oj) i = N + 1.
(6)

Note that
∑N+1
i=1 αi = 1 always holds. We can then get

the rendered mask M̂ and depth D̂ by integrating over all
the samples along the ray as:

M̂ =

N∑
i=1

αi, D̂ =

N+1∑
i=1

αidi. (7)

The depth rendering loss Ld and mask rendering loss
Lm for K image frames observing the fruit submap are
calculated by comparing the rendered result D̂ and M̂ with
the depth camera’s measurement D and the binary mask M
of the target fruit for each of the G sampled pixels as:

Ld =
1

KG

∑
k

∑
u∈(Ωk\Ωk

o)

(
D̂u −Du

)2
, (8)

Lm =
1

KG

∑
k

∑
u∈(Ωk\Ωk

o)

(
M̂u −Mu

)2
. (9)

For background pixels, if D̂u −Du > do, where do is a
small threshold, the pixel is regarded as lying in a potential
occluded region of the fruit caused by leaves or other fruits,
as shown in Fig. 5. Such occluded pixels Ωo ⊂ Ωb are not
taken into account in the rendering loss Ld and Lm. For the
rest of background pixels Ωb \Ωo, we take the termination
depth dmax = dmin+N∆d as the virtual depth measurements
for depth rendering loss calculation so that we can enforce
the silhouette consistency at the target fruit.

C. Optimization

With an additional shape code regularization term
Lr = ‖z‖2, we use as our final loss function:

L = wsLs + wdLd + wmLm + wrLr, (10)

where ws, wd, wm, wr are the weights for each loss term.



Our goal is to solve ξ∗ow, z
∗ = argminL, where ξow ∈

R7 is the corresponding sim(3) Lie Algebra of Tow. Instead
of using first-order optimization such as gradient descent,
we use Levenberg-Marquardt with analytical Jacobians for
faster and more stable convergence. The latent shape code
z is initialized as 0C while ξow is initialized as an identity
rotation, scaling of 1, and a translation from the bounding
box center of the submap point cloud to the origin. For each
iteration, with a damping parameter λ, the increment δx to
the estimated parameter vector [ξow, z]

T is given by:

δx = [δξow, δz]
T

= (H + λdiag(H))−1g (11)

The approximate Hessian matrix is given by H = JTPJ
and the gradient of the target function is g = JTPb, where
J , P, b are the Jacobian matrix, weight matrix and residual
vector, respectively.

Since both, the submap point cloud and the camera depth
measurements are noisy, we apply a Huber robust kernel
for the surface reconstruction and depth rendering residual
resulting in the weight whi for each observation:

whi =

{
1 , if |ei| ≤ τ
τ/ |ei| , otherwise

, (12)

where ei and τ are the corresponding residual and kernel
threshold, respectively. The weight matrix is formulated as
P = diag

(
wsw

h
1 , · · · , wdwhn

)
with both the loss specific

weight ws, wd and the Huber weight wh.
The residual and Jacobian of the surface reconstruction

term for each submap point is given by:

bs = −Dθ (po, z) , Js =
∂Dθ (po, z)

∂ [ξow, z]
T
. (13)

Applying the chain rule, we obtain the derivative of ξow:

∂Dθ (po, z)

∂ξow
=
∂Dθ (po, z)

∂po
∂po

∂ξow
, (14)

∂po

∂ξow
=
∂(Towpw)

∂ξow
=
[

I3×3 −po× po
]
, (15)

where × refers to the skew symmetric matrix of a vector.
Note that both, ∂Dθ(po,z)

∂po and ∂Dθ(po,z)
∂z can be obtained

through automatic differentiation of the DeepSDF model Dθ.
The residuals of the rendering term for each sampled pixel
are simply:

bd = D̂ −D, bm = M̂ −M, (16)

and the Jacobians can also be obtained using the chain rule:

Jd =

N∑
i=1

∂D̂

∂oi

∂oi
∂vi

∂Dθ (poi , z)

∂ [ξow, z]
T
, (17)

Jm =

N∑
i=1

∂M̂

∂oi

∂oi
∂vi

∂Dθ (poi , z)

∂ [ξow, z]
T
, (18)

(a) (b) (c) (d)

(e)

Fig. 6: Example from our greenhouse dataset: (a) shows the image
of two sweetpeppers with the ID #1 and #2. (b) shows the point
cloud generated from the camera of the robot by offline bundle
adjustment. (c) shows the ground truth complete shape models with
the ground truth pose manually aligned with the bundle adjusted
point cloud. (d) and (e) show the ground truth shape models
of sweetpepper #2 and #1 obtained by harvesting the fruits and
scanning them in the laboratory with a high-precision laser scanner.

in which
∂Dθ(poi ,z)
∂[ξow,z]

T is in the same form as Js and the other

three derivative terms are derived as:

∂D̂

∂oi
=

∆d

1− oi

N∑
j=i

j∏
k=1

(1− ok), (19)

∂M̂

∂oi
=

N∏
j=1,j 6=i

(1− oj) , (20)

∂oi
∂vi

=
oi(1− oi)

σ
. (21)

Lastly, the residual and Jacobian of the shape code regu-
larization term are:

br = −z (22)

Jr =
[

∂z
∂ξow

∂z
∂z

]
=
[

01×7 11×C
]

(23)

With all Jacobians and residuals available, we are able to
solve Eq. (11) and update:[

ξ(t+1)
ow , z(t+1)

]T
=
[
ξ(t)ow, z

(t)
]T

+ δx(t), (24)

until convergence. After convergence, the complete fruit
model can be reconstructed using marching cubes with the
optimized z∗ at 3D grid queries in the fruit’s canonical co-
ordinate system. The reconstruction can then be transformed
into the world coordinate system using T∗ow = exp(ξ∗ow).

IV. EXPERIMENTAL EVALUATION

The main focus of this work is a pipeline for multi-
resolution mapping in orchard environments including fruits
shape completion and pose estimation. We present our ex-
periments to show the capabilities of our method. The results
of our experiments also support the claims that our approach
is able to jointly (i) predict the 3D shape of fruits even
under substantial occlusions in real commercial greenhouse
environments and (ii) estimate the pose of each fruit in
the 3D map. (iii) Additionally, our multi-resolution map
representation yield substantial improvement in the shape
completion task over fixed-resolution maps.



Fig. 7: Qualitative results of the panoptic mapping with fruit shape completion and pose estimation in a sweet pepper greenhouse. Our
method successfully achieves convincing reconstructions and poses, even with partial observations and despite heavy occlusions. We also
show a failure case in the orange box on the right, where noisy partial input leads to wrong pose of the sweet pepper on the top.

TABLE I: Reconstruction results in the commercial greenhouse. The ↓ and ↑ indicate that lower or higher values mean better performance.

Approach DC [mm] f-score [%] precision [%] recall [%] Erot [deg] Etran [mm] inference time [s]
↓ avg ↑ avg ↑ avg ↑ avg ↓ avg ↓ avg ↓ avg

CPD [20] 25.38 3.09 8.10 1.92 26.79 27.74 0.57
PF-SGD [17] 9.28 35.03 37.32 33.21 29.61 19.73 30.21

DeepSDF [24] 9.33 35.24 32.38 38.77 7 7 16.01
CoRe [15] 6.90 41.47 43.17 41.64 7 7 0.004

Ours 5.29 58.56 61.28 56.26 11.48 11.20 0.62

A. Experimental Setup
To showcase the capability of our proposed pipeline, we

consider two typical and challenging crops, sweet pepper and
strawberry, both of which have irregular shapes.

Dataset: For training and testing our shape completion
network in a controlled environment we use the strawber-
ries and sweet peppers dataset also used in our previous
work [15]. We, additionally, collected a sweet pepper dataset
with the robot shown in Fig. 1 in a greenhouse near Bonn,
Germany, that we use for testing and evaluating our proposed
solution in real conditions. This dataset contains RGB-D
frames collected with the robot using an Intel RealSense
d435i camera with a framerate of 15 Hz. We then harvested
about 50 sweet peppers present in the greenhouse and
scanned them with a high-precision handheld LiDAR system
as in Schunk et al. [29]. In this way, after manually aligning
the fruit point cloud obtained with the two different sensors,
we obtain the ground truth shape of each sweet pepper and
also ground truth poses with respect to the fruit canonical
pose, i.e., with the peduncle pointing upwards. See Fig. 6
for a visual impression of our greenhouse dataset.

Metrics: To evaluate our shape completion solution, we
use the Chamfer distance DC, i.e., the average symmetric
squared distance of each point to its nearest neighbor in the
other point cloud. We, additionally, use the f-score, precision,
and recall at a fixed threshold (ρ= 5 mm in our experiments)
as proposed by Knapitsch et al. [10]. To evaluate the pose

estimated by our approach we report separate metrics for
translations and rotations. We report the average translation
error Etran, i.e., the Euclidean distance between the predicted
and the ground truth center, for each fruit. We define the
rotation error Erot as the the intersection angle between
the z-axis of predicted and ground truth pose. This metric
ignores rotations around the fruit main axis as our target
fruits are almost symmetric around it. Additionally, we report
the average inference time needed to obtain the complete 3D
shape with the estimated pose. In our experiments, we used
an NVIDIA Quadro RTX A4000 GPU.

Parameter settings: We tune the hyperparameters of our
system for better performance. We set the weight for each
loss term in Eq. (10) as ws = 1.0, wd = 0.05, wm = 0.0002,
wr = 0.0005 to ensure that the Hessian matrices of every
loss term have the same order of magnitude. We set the
damping factor λ = 0.1 in Eq. (11). To balance the efficiency
and the performance, we sample |PS | = 2, 000 points from
each fruit submap. For each fruit instance on the image, we
sample Gf = 300 and Gb = 300 pixels from the foreground
and the background, respectively. For each ray, we sample
N = 30 points on it. We set the occlusion and surface noise
thresholds to do = 3 cm and σ = 1 mm.

B. Shape Completion and Pose Estimation

The first experiment evaluates the performance of our
approach and supports the claims that our approach can



TABLE II: Reconstruction results in controlled environment. The ↓ and ↑ indicate that lower or higher values mean better performance.

Approach
Sweet Pepper Strawberry

learning poseDC [mm] f-score [%] precision [%] recall [%] time [s] DC [mm] f-score [%] precision [%] recall [%] time [s]
↓ avg ↑ avg ↑ avg ↑ avg ↓ avg ↓ avg ↑ avg ↑ avg ↑ avg ↓ avg

CPD [20] 12.36 39.84 76.68 27.07 15.62 5.13 57.93 94.09 42.34 0.57 7 3
PF-SGD [17] 3.97 68.95 71.20 66.94 17.48 2.71 86.08 88.82 83.90 8.10 7 3

DeepSDF [24] 29.78 37.12 32.96 46.06 44.13 3.61 74.01 83.76 68.32 36.84 3 7
CoRe [15] 7.83 52.85 47.38 60.00 0.004 2.67 86.01 87.97 84.85 0.004 3 7

Ours 3.16 80.86 82.14 79.72 0.60 2.42 92.81 94.38 91.53 0.53 3 3

TABLE III: Results of different maps in the greenhouse. The ↓ and ↑ indicate that lower or higher values mean better performance.

Approach DC [mm] f-score [%] precision [%] recall [%] Erot [deg] Etran [mm] inference time [s] Online Map↓ avg ↑ avg ↑ avg ↑ avg ↓ avg ↓ avg ↓ avg

Bundle Adjustment 4.70 67.71 69.07 66.52 10.23 8.71 0.66 7

RGB-D Single Frame 9.62 40.56 41.98 39.52 25.91 18.21 0.16 3
Fixed-Resolution Map 7.29 44.22 46.29 42.62 17.48 16.02 0.75 3

Multi-Resolution Map (Ours) 5.29 58.56 61.28 56.26 11.48 11.20 0.62 3

predict the 3D shape of fruits under substantial occlusions
and can estimate the pose of each fruit in the 3D map. The
qualitative results are shown in Fig. 7. We report in Tab. I the
metrics regarding shape completion and fruit pose estimation
in real greenhouses. Our approach yields better performances
in all metrics except for the inference time where we can still
estimate poses and shapes of two fruit per second. The most
competitive baselines for shape completion [15], [24] provide
Chamfer distance performances of 1.6 mm and 4.0 mm worse
than our approach and can not estimate fruit poses, thus
limiting their applicability in this scenario. On the other
hand, the best baseline that can estimate both shape and pose
provide a Chamfer distance of about 4 mm, a rotation error
of 10◦ and a translation error of about 8 mm worse than ours.

For a deeper comparison with the baselines and for testing
our approach on a different fruit species, we evaluate the
shape completion accuracy in a controlled environment in
the laboratory where we estimate shapes of sweet peppers
and strawberries, see Tab. II. Our approach yields better
reconstruction performances on both species with an f-score
of 80.86% on the sweet pepper and of 92.81% on the
strawberry, while the closest baseline [17] reaches 68.95%
and 86.08% respectively. In terms of execution time, our
approach can estimate the 3D shape of roughly two fruit per
second, note that the baseline [15] with lower inference time
produce worse 3D shapes.

C. Influence of Map Representation on Completion Results

The second experiment evaluates the effects of the map
representation on estimating shapes and poses of fruits. This
experiment illustrates that our multi-resolution map represen-
tation yield substantial improvement in the shape completion
task over fixed-resolution maps. In Tab. III, we compare
the shape completion results obtained with using our multi-
resolution mapping strategy (1 cm / 3 mm voxel size) against
the results of fixed-resolution maps (1 cm voxel size) and sin-
gle RGB-D frames. Note that our multi-resolution mapping
system can run in real-time. We additionally report the shape
completion results obtained with a map obtained offline
using bundle-adjustment software. For the Chamfer distance,
our map yields a 28% improvement over fixed-resolution

TABLE IV: Ablation studies on the loss terms

Loss DC [mm] f-score [%] Erot [deg] Etran [mm]
↓ avg ↑ avg ↓ avg ↓ avg

No Ls 8.17 38.71 15.80 17.99
No Ld 8.93 36.12 17.11 19.78
No Lm 10.09 35.89 19.16 23.34
No Lr 7.64 40.24 15.42 12.34

All Loss (Ours) 5.29 58.56 11.48 11.20

map and a 45% improvement over single RGB-D frame.
Considering the poses, using our map yields an improvement
of 6◦ and 5 mm with respect to fixed-resolution map and an
improvement of 14◦ and 7 mm for over single RGB-D frame.
Notably, by using our online mapping strategy, we obtain
competitive results with respect to using an offline map
built by photogrammetric bundle adjustment. Our completion
results are only 0.6 mm less accurate than the one obtained
by using the offline method. Similarly, our predicted pose is
around 1◦ and 3 mm less accurate.

D. Ablation Study

We ran several ablation studies to evaluate the impact of
each loss term in Eq. (10). From the metrics in Tab. IV,
it is clear that our loss design with all four terms yields
the best performances in both shape completion and pose
estimation. As expected, the regularization term Lr has the
lowest impact in the final results. Instead, the biggest impact
on the performances is given by the mask term Lm defined
in Eq. (9). Without this term, the f-score drops to 35.89%
instead of 58.56%, the rotation error increases from 11.48◦ to
19.16◦ and the translation error from 11.20 mm to 23.34 mm.

V. CONCLUSION

We presented a novel approach for panoptic mapping in
real agricultural greenhouses using a mobile robot equipped
with RGB-D cameras. We build a multi-resolution map to
represent fruits with higher resolution and jointly estimate
complete 3D shapes of fruits and their pose in the 3D map.
Our method exploits high-precision 3D scanning to learn
a general fruit shape prior that we use at inference time
together with an occlusion-aware differentiable rendering
pipeline. This allows us to successfully complete partial fruit
observations and estimate the 7 DoF pose of each fruit in



the map. We solve the joint shape and pose optimization
efficiently with analytical Jacobians, allowing for its applica-
tion online. We evaluated our approach on different datasets
and provided comparisons to other existing techniques and
supported all our claims made. The experiments suggest that
the proposed approach yields higher shape completion and
pose estimation accuracy than existing baselines. It provides
precise and complete fruits models, allowing farmers to
assess the status of the orchard. Furthermore, our map
providing fruits shape and pose explicitly can serve as a basis
for planning autonomous fruit harvesting missions.
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