
Change Detection in 3D Models Based on Camera Images

Emanuele Palazzolo Cyrill Stachniss

Abstract— 3D models of the environment are used in numer-
ous robotic applications and should reflect the current state of
the world. In this paper, we address the problem of quickly
finding structural changes between the current state of the
world and a given 3D model using a small number of images.
Our approach finds inconsistencies between pairs of images by
reprojecting an image onto the other by passing through the
3D model. Ambiguities about possible inconsistencies resulting
from this process are resolved by combining multiple images
such that the 3D location of the change can be estimated. A
focus of our approach is that it can be executed fast enough
to allow the operation on a mobile system. We implemented
our approach in C++ and tested it on an existing dataset for
change detection as well as on self recorded images sequences.
Our experiments suggest that our method quickly finds changes
in the geometry of a scene.

I. INTRODUCTION

Building 3D models of the environment is a frequently

addressed problem in robotics as they are needed for a wide

range of applications. For most applications that include

autonomous behavior, such models should correspond as

well as possible to the current state of the environment.

In case the environment was substantially changed, existing

models must be updated. For this purpose, the possibility

of directing a mapping or exploring robot directly towards

the possible regions that have changed instead of repeating

the whole mapping process can greatly reduce the required

efforts. Therefore, it is important to reliably identify locations

in the environment or in a 3D model that have changed.

In this paper, we address the problem of finding changes

between a previously built 3D model and its current state

based on a small sequence of images (keyframes) recorded

in the environment, see Fig. 1 for an illustration. Two aspects

are important for us: first, we want to reliably locate changes

in the model and second, the approach should have a limited

computational demand so that it can be executed on a mobile

platform. Our approach seeks to find changes between the

current state of the world and a previously recorded, existing

3D model of the scene. For finding inconsistencies, we do

not build another 3D model from the newly obtained image

data. Instead, we project the currently obtained image onto

the 3D model and then back to a view-point at which another

image of the current sequence has been taken. Through

a comparison between the back-projected images and the

one observed in reality, we can identify possible regions of

change. To eliminate ambiguities, this process is executed

for multiple image pairs. Typically 4-5 keyframe images

All authors are with the University of Bonn, Institute of Geodesy and
Geoinformation, Bonn, Germany.

This work has partly been supported by the DFG under the grant number
FOR 1505: Mapping on Demand.

Fig. 1: Our approach aims at quickly finding changes in the
environment based on an existing 3D model and a sequence of
(currently recorded) images.

are sufficient to find areas of change and then estimate the

3D location where the geometry has changed. Compared to

existing approaches for visual change detection such as the

work by Taneja et al. [13] or Ulusoy et al. [14], our method

is substantially faster towards execution on a mobile robot.

The main contribution of this paper is a new and fast

approach for identifying differences between an existing 3D

model and a small sequence of images recorded in the

environment. Our approach identifies the approximate area

of change fast enough to be executed on a navigating robot,

which sets it apart from several related other techniques. We

identify inconsistencies by comparing the acquired images

to back-projected images that would have been obtained

assuming the 3D model is correct, in combination with a

forward intersection of the potentially inconsistent regions.

Our experiments suggest that our method quickly finds the

approximate location of the change in the scene and is fast

enough to potentially guide an exploring ground robot or

UAV seeking to map the changes in the environment.

We make two key claims: our approach is able to (i)

identify the location of changes in the environment, in the

form of 3D volumes in the world coordinate frame, using a

3D model and a sequence of images, and (ii) it is fast enough

to be executed on a mobile robot, i.e. analyzing a sequence

of keyframe images does not take longer than recording it

(e.g., 10 s for five keyframe images with a size of 1500 by

1000 pixels).

II. RELATED WORK

Building 3D models can be an expensive process as it

requires a good coverage of the environment and potentially

dedicated sensors or equipment. To reduce this cost, it is

important to identify, on an existing model, the parts that

have changed, and direct the exploration towards those loca-

tions. For this reason, 3D change detection is an increasingly

popular topic, see [8].

In the past, several 2D change detection algorithms have

been proposed [9]. Several of such methods are affected by

lighting conditions, seasonal changes, weather conditions,

and other differences that may occur between the recording

of the old and the new images. Moreover, the images often

do not provide information on the actual 3D location of the

change. Sakurada et al. [10] try to overcome these problems

by estimating the probabilistic density of the depth from

the oldset of images and by comparing it with the depth

computed from the new set of images. Eden et al. [3]

compare 3D lines in the images instead of using color or

intensity information. A more recent approach by Alcantar-

illa et al. [1], instead use a deep convolutional neural network

combined with a dense reconstruction technique.

Another approach to 3D change detection is to build a

3D model from the new images through Multi-View Stereo

and then compare the new model with the old one. This is,

however, often a rather time consuming activity, at least when

using cameras. Golparvar-Fard et al. [4] use this approach

combined with a support vector machine classifier to obtain

an updated voxelized model of the environment.

A popular and effective approach is to infer the changes

of the environment using a previously built 3D model and

a sequence of newly acquired images. One way to achieve

this is to maintain a voxelized model of the environment and

detect the probability of change in it by comparing the color

of a voxel and the color of the pixels in the images onto

which it projects. Examples of this approach are the one by

Ulusoy et al. [14] or the one by Pollard et al. [6].

Another relevant strategy that use an existing 3D model

and newly acquired images is to identify changes by re-

projecting images onto each other by passing through the

existing model and compare the inconsistencies in the re-

projection. Taneja et al. [13] use this technique on pairs

of images, and apply a graph cut minimization to label the

changed area in 3D in a voxelized model. In addition, Qin

et al. [7] combine the pairwise detected inconsistencies by

counting the rays that hit every pixel for each image, in order

to get rid of the ambiguities. They stop at the image level

and do not estimate the 3D location of the change.

In this paper, we use a reprojection technique similar

to [13] and [7] to identify the changed regions in the images.

We resolve ambiguities by fusiung multiple images and

introduce a fast way for estimating the rough location of

change in 3D. The whole process takes only a few seconds

for an image sequence. In contrast to that, state-of-the-art

approaches such as [13] or [14] have execution times in the

order of minutes.

(a) Image I1 (b) Image I2

(c) Re-projection of I1 onto I2 (d) Inconsistencies

Fig. 2: A pair of images, the first image reprojected onto the second,
and the inconsistencies between them.

III. FAST IMAGE-BASED CHANGE DETECTION

Our approach aims at spotting areas in an environment that

have changes with respect to a previously built 3D model.

It does so by exploiting a sequence of around five images

through evaluating how the projections of image content

from one image to the model and back to another image

looks like. In terms of computational demands, this process is

substantially more efficient than generating a new, dense 3D

model and comparing it directly with the given one. Note that

we assume a good pose estimate for the robot. We obtain the

(approximate) location of the 3D model and the viewpoint of

the images as described in Sec. III-A below. The first step

is to detect possible inconsistencies of an image with its

neighboring images assuming that the 3D model is correct.

After computing pairwise inconsistency hypotheses, we fuse

them to eliminate the intrinsic ambiguities and estimate the

location of change by triangulation. Given that we look for

inconsitencies between the 3D model and new images, our

approach only finds changes from images where the rays

corresponding to pixels intersect with the 3D model.

A. Camera pose estimate

Our algorithm requires an estimate of the viewpoints of

the images w.r.t. the 3D model. We obtain this through

direct georeferencing fusing GPS, IMU, and visual odometry,

as described in [11]. The approach employs the iSAM2

algorithm, and provides uncertainty information about all

sensor poses in form of a covariance matrix. In case no GPS

information is available, approaches for camera to 3D model

localization such as [2] can be used—although we did not

directly try that here.

B. Inconsistencies Between Images Pairs

To detect inconsistencies between a pair of images consist-

ing of the images I1 and I2, we create a new image I1→2

that represents the content of I1 as seen from view point

of I2 given the 3D model. Given the calibration matrix and

II

r

r r

rX

XX

1 2

1→2

1→21

1 c

x1
x1→2

x1→2
x1

'

'

'

'

'

Fig. 3: Re-projection procedure. The gray rectangle represents the
known 3D model, while the yellow square is a change not present
in the original model. Using two images, a point Xc, not present
in the model, is reprojected onto two pixels x1→2 and x

′

1→2.

the pose at which the camera took I1, we can compute the

projection of a 3D point X onto the image plane resulting

in a 2D point at pixel x1:

x1 = P1X, (1)

where x1 is expressed in homogeneous coordinates and

P1 = K1[R1|−R1t1] is the camera projection matrix

computed from the calibration matrix K1 of the camera and

the rotation R1 and translation t1 that transform the world

coordinates into camera coordinates.

By inverting Eq. (1), we compute the ray from the projec-

tion center of the camera through the pixel to the 3D world.

This allows us to back-project each pixel of I1 onto the 3D

model assuming the known intrinsic parameters (K1) and

the rotation matrix R1 from the extrinsic parameters:

r1 = RT

1K
−1
1 x1, (2)

where r1 is the direction of the ray in world coordinates.

In the next step, we project the intersections X between

the rays and the 3D model onto the image plane of I2 to

obtain I1→2 (see Fig. 2c for a real example):

x1→2 = P2 X, (3)

where P2 is the camera projection matrix corresponding to

image I2. In this way, we obtain a new image I1→2 that can

be compared to I2. Since the exact poses of the cameras are

unknown and the 3D model is not perfect, the point x1→2

has an uncertainty represented by the covariance matrix Σ :=
Σx1→2x1→2

. To overcome this, we compute, for every pixel

of I2 the minimum Euclidean norm of the intensity difference

to each pixel of I1→2 in a neighborhood N around the

projected pixel. We compute the size of this neighborhood

by propagating the pose uncertainty obtained while recording

the images into the image points, see Sec. III-A. In detail,

we search within the 3σ area given by Σ and select the pixel

with the smallest difference:

D1→2(i, j) = min
k,l∈N

||I2(i, j)− I1→2(k, l)||2 , (4)

where i, j, k, l are pixel coordinates and the neighborhood

N is defined as:

N =

{

∀(k, l) ∈ I1→2

∣

∣

∣

∣

∣

[

i− k

j − l

]T

Σ−1

[

i− k

j − l

]

< d2

}

, (5)

II

r

r

r

r

XX

1 2

1→2

1

1

1→2

I3

|||

r3→2
r3

X X

|||

' '' ' '' '''

'''

''' '''

r3

r3→2

Fig. 4: Ambiguity elimination using multiple images. When re-
projecting I1 and I3 onto I2, only one ray (therefore one pixel) is
coincident. The thicker red line represents that coincident ray.

where d2 = 11.82 is the critical value of the χ2
2 distribution

corresponding to a probability of 99.73%, i.e. a 3σ boundary

on the normal distribution. Finally, we normalize D1→2

to values between [0, 1]. Fig. 2d shows the result of this

procedure.

If there is no change in the 3D model between the

acquisition time and the time when the images have been

taken, all pixels in I1 should correctly re-project onto I2.

Therefore, I2 and I1→2 should be identical and D1→2 should

be small or equal to 0 for each pixel. If there is, however,

a change in the model, pixels corresponding to the change

reproject onto the wrong place in I2. Thus, D1→2 allows

us to identify the changes (as long as not all pixels in the

current images have the same RGB value, i.e. represent a

large homogeneous area)

The process, however, leads to ambiguities. As Fig. 3

illustrates, a single point Xc corresponding to a change

in the 3D model generates two pixel locations, x1→2 and

x′
1→2, in D1→2, one corresponding to the change in I1

reprojected onto I2 and one corresponding to the change

in I2 reprojected onto I1. To eliminate this ambiguity, we

use multiple pair-wise image comparisons as described in

the following section.

C. Inconsistency Detection using Multiple Images

The ambiguity produced by the re-projection of an image

onto another one can be eliminated by considering multiple

image pairs. Fig. 4 shows how a pixel belonging to the same

change in a third image I3 re-projects onto I2 at two different

locations. It is important to note that one of the two points

is mapped to the same location as a change detected by re-

projecting I1 onto I2. Thus, the pixels that re-project onto

the same region of I2 from the other images represent the

real change.

To localize the changes, we therefore compare an image

with its m neighboring keyframe images. For each image

It, we store an inconsistency image Dt resulting from the

product of all the inconsistency images obtained from the

neighboring images reprojected onto It:

Dt(i, j) =
∏

s∈S(t)

Ds→t(i, j), (6)

(a) (b) (c) (d) (e)

Fig. 5: (a) The statue (here manually marked in green) is not in the model. (b) Inconsistencies between 2 images (m = 1). (c) Inconsistencies
between 3 images (m = 2). (d) Inconsistencies between 4 images (m = 3). (e) Original image masked with the segmented area obtained
from the inconsistency image with m = 3. (best viewed in color)

where S(t) is the set of m neighboring keyframe images of

It. In our implementation, we typically use the four closest

images in time to It. Fig. 5 depicts the output of Eq. (6), for

m = 1, 2, and 3.

D. Segmentation and Data Association

The procedure explained so far enables us to identify

the pixels in each image where changes occur. For reli-

ably computing the regions of change, we first filter out

the noise with an erosion-dilation procedure, then apply a

standard border following algorithm [12]. We discard all

the regions with a contour shorter than a threshold (in our

implementation 500 px) to filter out noise and changes that

are too small. The next step is to associate the regions from

the images with each other. To do that, we compute and

compare hue-saturation histograms region-wise and perform

standard cross-correlation together with a simple geometric

consistency check using the epipolar lines.

E. Estimating the Location of Change

Once we obtain the segmented 2D regions and the associ-

ation between them, we proceed to estimate the 3D location

of the change.

To simplify the notation in the remainder of this section,

the following equations will refer to a single change in

images, i.e. dropping an index referring to individual regions.

The whole procedure is repeated for every region (of detected

change).

To estimate the 3D volumes in which the changes occur,

we first compute, for every region identified as a change, the

mean location xt and spread in form of the covariance Σt

in the image. We then compute, for each change, a 3D point

X in the 3D world coordinates by triangulating the mean

location in each image. Specifically, we setup a system of

equations in the form

AX = 0, with A =

S(x1)P1

...

S(xn)Pn

, (7)

where A is a 3n × 4 matrix composed by 3 × 4 blocks,

n is the number of images, Pt is the projection matrix

relative to image It, and S(xt) is the skew symmetric

matrix corresponding to the mean pixel xt, in homogeneous

coordinates, i.e.:

xt =

xt

yt
wt

 , S(xt) =

0 −wt yt
wt 0 −xt

−yt xt 0

 . (8)

We solve this system using singular value decomposition

and retrieve X by taking the right-singular vector of A

belonging to its smallest singular value (Fig. 6a). For each

change in the image, we additionally compute the K sigma

points [5] v
(k)
t (k = 1 . . .K) corresponding to xt and Σt

and project the sigma points to the 3D space to estimate the

region of change in 3D. To compute the 3D position of the

sigma points, we define for each image a plane At passing

through X with normal equal to the direction of the ray rt
obtained through Eq. (2) for xt.

We can define the plane in homogeneous coordinates as a

4-dimensional vector:

At =

[

rt
d

]

, (9)

where the last element d = rTt X is the distance between the

camera and X.

The projection of v
(k)
t on At is the intersection V

(k)
t

between the plane and the ray r
(k)
t generated from v

(k)
t . We

compute V
(k)
t by expressing r

(k)
t in Plücker coordinates as

a line L
(k)
t joining the camera projection center Ct and a

point p = Ct + r
(k)
t along the ray:

L
(k)
t =

[

Lh

L0

]

=

[

Ct − p

Ct × p

]

(10)

From L
(k)
t , we compute the transposed Plücker matrix

ΓT(L
(k)
t) =

[

S(L0) Lh

−LT

h 0

]

, (11)

where S(L0) is the skew symmetric matrix corresponding to

L0. Finally, we obtain V
(k)
t as

V
(k)
t = ΓT(L

(k)
t)At. (12)

We repeat this procedure for the sigma points from each

mean and covariance matrix of the same region in every

image. In this way, we can quickly estimate the approxi-

mate 3D location of the change without computing a dense

reconstruction of the scene, see Fig. 6b. The mean and the

covariance of the position of these points represent the 3D

area where the change occurs, see Fig. 6c.

(a) (b) (c)

Fig. 6: (a) Example triangulation with 5 images. The white lines are the backprojected rays and the white point represent the triangulated
point. (b) Sigma points projected in 3D. (c) The result of our algorithm, i.e. the 3D region where the change is. (best viewed in color)

IV. EXPERIMENTAL EVALUATION

The focus of this work is a comparably fast approach to

identify changes in a previously obtained 3D model using a

sequence of new images. Thus, our experiments are designed

to show the performance of our approach and to support the

two central claims that we made in the beginning of the

paper, i.e. that our method: (i) can localize changes in the

environment using a 3D model obtained in the past and a

sequence of new keyframe images, and (ii) can be executed

fast enough to run on an exploring robot, i.e. the average

execution time should be in the order in which the sequence

is recorded, here in the order of a few seconds for around 5

keyframe images.

We perform the evaluations on own datasets,

which we publicly share including the 3D models at

http://www.ipb.uni-bonn.de/data/changedetection2017/, as

well as the dataset used by Taneja et al. [13], which

can be obtained from: https://cvg.ethz.ch/research/change-

detection/Datasets/Structure.zip. Throughout all experiments,

we use a sequence of n = 5 images and for each image of

the sequence, we compute the inconsistencies with m = 4,

i.e. for these sequences all the neighboring images. We

found out that using higher values of m does not improve

the results substantially and that is why we used this value

on all the experiments.

A. Change Identification

The first experiment is designed to illustrate the capability

of our approach to localize a change in 3D given a model and

a small sequence of images. Fig. 7 depicts the results of the

algorithm on 4 different datasets. In all our tests, the localized

3D regions reflect the actual position of the changes. This

information can allow an exploring or mapping robot to

inspect the changed regions in more detail and collect more

observations to update the previously built model. Note that

the exploration itself is not part of this work but this works

enables it.

The ”Playground” dataset shown in Fig. 7c is particularly

challenging. In this dataset, the house, which is not present in

the model, is composed by separate wooden pieces, each one

in a different color. Our algorithm is able to correctly identify

the lamp and the bar as changes, but recognizes the house

TABLE I: Execution time for different datasets. The images in our
datasets have resolution 1504×1000 pixels, the ones by Taneja et
al. [13] have resolution 1072×712 pixels.

Dataset Execution time Execution time
name without uncertainty [s] with uncertainty [s]

A/C Unit 4.598 10.54
Statue 7.486 12.571

Playground 8.529 13.989
Taneja et al. [13] 2.47 5.525

Average time 5.77±2.758 10.656±3.702

as multiple, separate changes. This does not constitute a real

problem, but shows a possible limitation of our approach.

B. Execution time

The next experiment is designed to support the claim

that our approach runs fast enough for processing on an

exploring robot. We therefore measured the execution time

of our approach on a common, lightweight laptop with an

Intel Core i7 processor and an embedded Intel GPU.

Tab. I shows the average execution time needed to process

sequences of 5 images from different datasets as well as

the standard deviation, both with and without taking into

account the uncertainty on the camera poses. The numbers

support our second claim, namely that the computations can

be executed fast enough for operation on an exploring robot.

On our datasets, the whole process, taking into account the

uncertainties, takes about 10 s, which is shorter than the time

needed to record the 5 keyframe images. Even though the

process is clearly not real-time in a strict sense, it is fast

enough to be executed on a real robot at a low frequency to

trigger exploration or additonal mapping actions.

The computation time is influenced by both the number

of images as well as their resolution. This is evident from

our test on the dataset by Taneja et al., which took approxi-

matively half of the time for processing images with a lower

resolution.

C. Comparison to an Existing Approach

Finally, we want to briefly compare our results with those

obtained by Tanjea et al. [13]. The comparison is done based

on the dataset that they provide and report on (Fig. 7d).

Their approach uses a computationally expensive graph cut

labeling on a 3D voxelization of the scene. Their method

typically provides a more accurate estimate of the region

http://www.ipb.uni-bonn.de/data/changedetection2017/
https://cvg.ethz.ch/research/change-detection/Datasets/Structure.zip
https://cvg.ethz.ch/research/change-detection/Datasets/Structure.zip

(a) A/C Unit (b) Statue (c) Playground (d) Dataset by Taneja et al.

Fig. 7: Results of our experiments on 4 different datasets. For each dataset, the top image shows the changes (here manually marked in
green), while the bottom image shows the 3D region, identified by our algorithm, where the changes are. (best viewed in color)

of change (in the order of 25×25×25 cm3 voxels) than our

estimate using the mean and covariance. The disadvantage

of their method, however, is the computational demands as

they require computation times in the order of 1 min per

region, whereas we can process the same dataset in about

5 seconds. Thus, for most robotics applications, where an

online feedback is expected, our approach is better suited.

To summarize, our evaluation suggests that our method can

estimate the 3D localization of changes in the environment.

At the same time, the algorithm is fast enough to be used by

an exploring robot to focus on the areas that have changed.

Thus, we supported all our claims made in the introduction

with this experimental evaluation.

V. CONCLUSION

In this paper, we presented a novel approach to identify

geometric changes between the current state of the environ-

ment and a previously built 3D model using a short sequence

of images. Our approach operates by identifying the changes

in the images by reprojecting them onto each other, passing

through the 3D model. We eliminate the ambiguities about

possible changes by combining the inconsistencies from

multiple pairs of images. We are then able to estimate the

locations of changes in 3D and identify the changed region

through a mean 3D point and a covariance matrix. The com-

putational time of the whole process using multiple images

is in the order of seconds. We implemented and evaluated

our approach on different datasets. The experiments suggest

that our method can correctly identify the changes in the

environment with only 5 images and a total computational

time of around 10 s, which make the algorithm suitable for

running on mobile robots.

As future work, we plan to conduct more effective tests

of our method on different types of datasets and extend the

quantitative comparisons.

ACKNOWLEDGMENTS

We thank Johannes Schneider and Jens Behley for the

fruitful discussions and valuable help during the realization

of our approach. We furthermore thank Tanjea et al. for

sharing their dataset from Zurich.

REFERENCES

[1] P.F. Alcantarilla, S. Stent, G. Ros, R. Arroyo, and R. Gherardi.
Streetview change detection with deconvolutional networks. In Proc.

of Robotics: Science and Systems (RSS), 2016.
[2] T. Caselitz, B. Steder, M. Ruhnke, and W. Burgard. Monocular camera

localization in 3d lidar maps. In Proc. of the IEEE/RSJ Int. Conf. on

Intelligent Robots and Systems (IROS), pages 1926–1931. IEEE, 2016.
[3] I. Eden and D.B. Cooper. Using 3d line segments for robust and

efficient change detection from multiple noisy images. In Proc. of the

Europ. Conf. on Computer Vision (ECCV), pages 172–185, 2008.
[4] M. Golparvar-Fard, F. Pena-Mora, and S. Savarese. Monitoring

changes of 3d building elements from unordered photo collections.
In Proc. of the Int. Conf. on Computer Vision (ICCV) Workshops,
pages 249–256, 2011.

[5] S.J. Julier and J.K. Uhlmann. A New Extension of the Kalman Filter
to Nonlinear Systems. Proc. of the SPIE Conf. on Reconnaissance

and Electronic Warfare System, 3068:182–193, 1997.
[6] T. Pollard and J.L. Mundy. Change detection in a 3-d world. In

Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition

(CVPR), pages 1–6, 2007.
[7] R. Qin and A. Gruen. 3D change detection at street level using mobile

laser scanning point clouds and terrestrial images. ISPRS Journal of

Photogrammetry and Remote Sensing, 90:23–35, 2014.
[8] R. Qin, J. Tian, and P. Reinartz. 3D change detection – Approaches and

applications. ISPRS Journal of Photogrammetry and Remote Sensing,
122:41–56, 2016.

[9] R.J. Radke, S. Andra, O. Al-Kofahi, and B. Roysam. Image change
detection algorithms: a systematic survey. IEEE Transaction on Image

Processing, 14(3):294–307, 2005.
[10] K. Sakurada, T. Okatani, and K. Deguchi. Detecting changes in 3d

structure of a scene from multi-view images captured by a vehicle-
mounted camera. In Proc. of the IEEE Conf. on Computer Vision and

Pattern Recognition (CVPR), pages 137–144, 2013.
[11] J. Schneider, C. Eling, L. Klingbeil, H. Kuhlmann, W. Förstner, and

C. Stachniss. Fast and effective online pose estimation and mapping
for uavs. In Proc. of the IEEE Int. Conf. on Robotics & Automation

(ICRA), pages 4784–4791, 2016.
[12] S. Suzuki and K. Abe. Topological structural analysis of digitized

binary images by border following. Computer vision, graphics, and

image processing, 30(1):32–46, 1985.
[13] A. Taneja, L. Ballan, and M. Pollefeys. Image based detection of

geometric changes in urban environments. In Proc. of the Int. Conf. on

Computer Vision (ICCV), pages 2336–2343, 2011.
[14] A.O. Ulusoy and J.L. Mundy. Image-based 4-d reconstruction using

3-d change detection. In Proc. of the Europ. Conf. on Computer Vision

(ECCV), pages 31–45, 2014.

	Introduction
	Related Work
	Fast Image-Based Change Detection
	Camera pose estimate
	Inconsistencies Between Images Pairs
	Inconsistency Detection using Multiple Images
	Segmentation and Data Association
	Estimating the Location of Change

	Experimental Evaluation
	Change Identification
	Execution time
	Comparison to an Existing Approach

	Conclusion
	References

