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Abstract— 3D models of the environment are used in numer-
ous robotic applications and should re ect the current state of
the world. In this paper, we address the problem of quickly
nding structural changes between the current state of the
world and a given 3D model using a small number of images.
Our approach nds inconsistencies between pairs of images by
reprojecting an image onto the other by passing through the j
3D model. Ambiguities about possible inconsistencies resulting
from this process are resolved by combining multiple images §
such that the 3D location of the change can be estimated. A
focus of our approach is that it can be executed fast enough
to allow the operation on a mobile system. We implemented
our approach in C++ and tested it on an existing dataset for
change detection as well as on self recorded images sequences .
Our experiments suggest that our method quickly nds changes
in the geometry of a scene.

I. INTRODUCTION

Building 3D models of the environment is a frequentlype " )

; . (o 2L WA
addressed problem in robotics as they are needed for a w R
range of applications. For most applications that includ S . :
autonomous behavior, such models should correspond REig. 1: Our approach aims at quickly nding changes in the
well as possible to the current state of the environmengnvironment based on an existing 3D model and a sequence of
In case the environment was substantially changed, existifg'™e"ty recorded) images.

models must be updated. For this purpose, the possibilifte syfcient to nd areas of change and then estimate the
of directing a mapping or exploring robot directly towardszp |ocation where the geometry has changed. Compared to
the possible regions that have changed instead of repeatiggsting approaches for visual change detection such as the
the whole mapping process can greatly reduce the requirgghrk py Taneja et al. [13] or Ulusoy et al. [14], our method
efforts. Therefore, it is important to reliably identify locations;s sypstantially faster towards execution on a mobile robot.
in the environment or in a 3D model that have changed.

In this paper, we address the problem of nding changes . e . -
between F; Ereviously built 3D rr?odel and its cu?rent stgatgpproaCh for identifying differences between an existing 3D

based on a small sequence of images (keyframes) record1é'8deI and a small sequence of images recorded in the

in the environment, see Fig| 1 for an illustration. Two aspect%nvwonment. Our approach identi es the approximate area

of change fast enough to be executed on a navigating robot,

are important for us: rst, we want to reliably locate changeg ich sets it apart from several related other techniques. We
in the model and second, the approach should have a Iimit(l%!;ntify inconsistencies by comparing the acquired ima. es
computational demand so that it can be executed on a mob{ e back-projected imageg that ?NOU% have geen obtai?led

platform. Our approach seeks to n_d changes betwee_n .thagssuming the 3D model is correct, in combination with a
current state of the world and a previously recorded, existi ; : . . . .

3D model of the scene. For nding inconsistencies, we d rward |nFersect|on of the potentially |nconS|s_tent regions.
not build another 3D model from the newly obtained image ur experiments suggest that our method quickly nds the

data. Instead, we project the currently obtained image onengLoxr:n:gte (IJ(t)eCr?':ilng of J?dee Cgr?ngxe Ilcr;ritr?e S?:Sf darnodbéi foarst
the 3D model and then back to a view-point at which anoth»e-LrJ gh o p y 9 P 9ar
hAV seeking to map the changes in the environment.

image of the current sequence has been taken. Throug
a comparison between the back-projected images and the/Ve make two key claims: our approach is able to (i)
one observed in reality, we can identify possible regions dflentify the location of changes in the environment, in the
change. To eliminate ambiguities, this process is executé@m of 3D volumes in the world coordinate frame, using a

for multiple image pairs. Typically 4-5 keyframe images3P model and a sequence of images, and (ii) it is fast enough
to be executed on a mobile robot, i.e. analyzing a sequence

All authors are with the University of Bonn, Institute of Geodesy andgf keyframe images does not take longer than recording it
Geoinformation, Bonn, Germany.
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The main contribution of this paper is a new and fast



Il. RELATED WORK

Building 3D models can be an expensive process as [{f
requires a good coverage of the environment and potentia§
dedicated sensors or equipment. To reduce this cost, it §§
important to identify, on an existing model, the parts thag
have changed, and direct the exploration towards those log
tions. For this reason, 3D change detection is an increasing
popular topic, see [8]. (@) Imagel 1

In the past, several 2D change detection algorithms hayg
been proposed [9]. Several of such methods are affected
lighting conditions, seasonal changes, weather conditio
and other differences that may occur between the recordi
of the old and the new images. Moreover, the images oftd
do not provide information on the actual 3D location of thes
change. Sakurada et al. [10] try to overcome these proble
by estimating the probabilistic density of the depth from

the oldset of images and by comparing it with the depth. L _ _

computed from the new set of images. Eden et al. [ |g.2.A_pa|rof_|mag(_as, the rstimage reprojected onto the second,
. - . . . nd the inconsistencies between them.

compare 3D lines in the images instead of using color or

intensity information. A more recent approach by Alcantar- 1. FAST IMAGE-BASED CHANGE DETECTION

illa et _al. [1], _instead use a deep con\_/olutional_neural network Our approach aims at spotting areas in an environment that
combined with a dense reconstruction techmqqe. . have changes with respect to a previously built 3D model.
Another approach to 3D change detection is to build § 4565 50 by exploiting a sequence of around ve images
3D model from the new images through Multi-View Stereqy, o gk evaluating how the projections of image content
and then compare the new model with the old one. This ig,,m one image to the model and back to another image
however, often a rather time consuming activity, at least whg,y jike. In terms of computational demands, this process is
using cameras. Golparvar-Fard et al.' [4] use Fh's appro"’,‘%ﬁbstantially more ef cient than generating a new, dense 3D
combined with a support vector machine classi er to obtaify,qqe| and comparing it directly with the given one. Note that
an updated voxelized model of the environment. we assume a good pose estimate for the robot. We obtain the
A popular and effective approach is to infer the changegynproximate) location of the 3D model and the viewpoint of
of the environment using a previously built 3D model anghe jmages as described in SEC. TII-A below. The rst step
a sequence of newly acquired images. One way t0 achie}e o detect possible inconsistencies of an image with its
this is to maintain.e_l voxelized mc_)d(_al of the envi_ronment a”ﬂeighboring images assuming that the 3D model is correct.
detect the probability of change in it by comparing the colopfier computing pairwise inconsistency hypotheses, we fuse
of a voxel and the color of the pixels in the images ont@hem to eliminate the intrinsic ambiguities and estimate the
which it projects. Examples of this approach are the one Rycation of change by triangulation. Given that we look for
Ulusoy et al. [14] or the one by Pollard et al. [6]. inconsitencies between the 3D model and new images, our
Another relevant strategy that use an existing 3D mOd@pproach only nds changes from images where the rays

and newly acquired images is to identify changes by rexorresponding to pixels intersect with the 3D model.
projecting images onto each other by passing through the

existing model and compare the inconsistencies in the ré. Camera pose estimate

projection. Taneja et al. [13] use this technique on pairs Qur algorithm requires an estimate of the viewpoints of

of images, and apply a graph cut minimization to label théhe images w.r.t. the 3D model. We obtain this through

changed area in 3D in a voxelized model. In addition, Qiglirect georeferencing fusing GPS, IMU, and visual odometry,

et al. [7] combine the pairwise detected inconsistencies 3 described in [11]. The approach employs the iISAM2

counting the rays that hit every pixel for each image, in ordeglgorithm, and provides uncertainty information about all

to get rid of the ambiguities. They stop at the image levelensor poses in form of a covariance matrix. In case no GPS

and do not estimate the 3D location of the change. information is available, approaches for camera to 3D model
In this paper, we use a reprojection technique similapbcalization such as [2] can be used—although we did not

to [13] and [7] to identify the changed regions in the imagesdirectly try that here.

We resolve ambiguities by fusiung multiple images and ) ) ]

introduce a fast way for estimating the rough location of: Inconsistencies Between Images Pairs

change in 3D. The whole process takes only a few secondsTo detect inconsistencies between a pair of images consist-

for an image sequence. In contrast to that, state-of-the-ang of the imaged; and|,, we create a new imagl, »

approaches such as [13] or [14] have execution times in thiat represents the content bf as seen from view point

order of minutes. of I, given the 3D model. Given the calibration matrix and

(c) Re-projection ofl 1 ontol» (d) Inconsistencies



Fig. 3: Re-projection procedure. The gray rectangle represents the
known 3D model, while the yellow square is a change not presefig. 4: Ambiguity elimination using multiple images. When re-
in the original model. Using two images, a poiXt, not present projectingl: andlz ontol,, only one ray (therefore one pixel) is
in the model, is reprojected onto two pixels; » andx?, ». coincident. The thicker red line represents that coincident ray.

the pose at which the camera tobk we can compute the whered? = 11:82 is the critical value of the 3 distribution
projection of a 3D pointX onto the image plane resulting corresponding to a probability of 99.73%, i.e3aboundary

in a 2D point at pixelx: on the normal distribution. Finally, we normaliZB;, »
X, = PiX: o) to values betweerO; 1]. Fig. shows the result of this
procedure.
where x1 is expressed in homogeneous coordinates andIf there is no change in the 3D model between the
P1 = Ki[Ri Riti] is the camera projection matrix acquisition time and the time when the images have been

computed from the calibration matrik; of the camera and taken, all pixels inl; should correctly re-project ontb,.
the rotationR; and translatiort; that transform the world Therefore), andl » should be identical anB, » should
coordinates into camera coordinates. be small or equal to O for each pixel. If there is, however,
By inverting Eq. (1), we compute the ray from the projec-a change in the model, pixels corresponding to the change
tion center of the camera through the pixel to the 3D worldeproject onto the wrong place itp. Thus,D1, » allows
This allows us to back-project each pixel laf onto the 3D us to identify the changes (as long as not all pixels in the
model assuming the known intrinsic parameteéfs; and current images have the same RGB value, i.e. represent a
the rotation matrixR; from the extrinsic parameters: large homogeneous area)
ri o= RIK,xu @ The process, howeV(_ar, leads to ampiguities. As Flg. 3
illustrates, a single poiniX . corresponding to a change
wherer is the direction of the ray in world coordinates. in the 3D model generates two pixel locationg; , and
In the next step, we project the intersectiofisbetween x? ,, in Dy, 2, one corresponding to the change lip
the rays and the 3D model onto the image pland 0to  reprojected ontd, and one corresponding to the change
obtainly, » (see Fig[ Zc for a real example): in 1, reprojected ontd 1. To eliminate this ambiguity, we
X1 2 = PoX: 3) use muItipIe pair-_wise image comparisons as described in
the following section.
whereP, is the camera projection matrix corresponding to
imagel ;. In this way, we obtain a new imade, » that can c
be compared td,. Since the exact poses of the cameras are
unknown and the 3D model is not perfect, the point » The ambiguity produced by the re-projection of an image
has an uncertainty represented by the covariance matrix ~ onto another one can be eliminated by considering multiple
x1 »x1 »- TO overcome this, we compute, for every pixelimage pairs. Fid.]4 shows how a pixel belonging to the same
of I , the minimum Euclidean norm of the intensity differencechange in a third imagk; re-projects ontd, at two different
to each pixel ofl; » in a neighborhoodN around the locations. It is important to note that one of the two points
projected pixel. We compute the size of this neighborhooid mapped to the same location as a change detected by re-
by propagating the pose uncertainty obtained while recordimojectingl, onto I,. Thus, the pixels that re-project onto
the images into the image points, see $ec. |ll-A. In detaithe same region of, from the other images represent the
we search within th& area given by and select the pixel real change.
with the smallest difference: To localize the changes, we therefore compare an image
CEN i i (i T with its m neighboring keyframe images. For each image
Du (1) = m'an 23y ta 2(ki i “) I¢, we store an inconsistency ima@hs resulting from the

wherei, j , k, | are pixel coordinates and the neighborhoodPrOdUCt of all the inconsistency images obtained from the
N is ?e ned as: neighboring images reprojected orito

i K T i K ) o Y o
N = 8(kl)2ly » ; | ! ; | <d? ;) Di(izj) = ()Ds! (i ); (6)
s2S (t

. Inconsistency Detection using Multiple Images
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Fig. 5: (a) The statue (here manually marked in green) is not in the model. (b) Inconsistencies between Dinzat)¢s(¢) Inconsistencies
between 3 imagesr( = 2). (d) Inconsistencies between 4 images £ 3). (e) Original image masked with the segmented area obtained
from the inconsistency image wittn = 3. (best viewed in color)

whereS(t) is the set ofm neighboring keyframe images of coordinatesz,, i.%.:

_It. In our ir_nplementgtion, we_typically use the four closest Xq 2 0 W Vi 3

images in time td.. Fig.[§ depicts the output of Eq.|(6), for g0= 4y 5 (%)= 4w 0 x5 : @)
m=1;2;and 3 W Ve Xt 0

D. Segmentation and Data Association We solve this system using singular value decomposition

] ) “and retrieveX by taking the right-singular vector of
The procedure explained so far enables us to identifya|onging to its smallest singular value (Fig] 6a). For each

the pixels in each image where changes occur. For rel&hange in the image, we additionally compute Kesigma
ably computing the regions of change, we rst lter out points [S]Vt(k) (k = 1:::K) corresponding to; and |
the noise with an erosion-dilation procedure, then apply gng project the sigma points to the 3D space to estimate the
standard border following algorithm [12]. We discard a"region of change in 3D. To compute the 3D position of the
the regions with a contour shorter than a threshold (in O%rigma points, we de ne for each image a plahe passing
implementation 500 px) to Iter out noise and changes tha{hrough)? with normal equal to the direction of the ray
are too small. The next step is to associate the regions frof;-icaq through Eq[]2) fox, .
the images with each other. To do that, we compute and \ye can de ne the plane in homogeneous coordinates as a
compare hue-saturation histograms region-wise and perforinyimensional vector:
standard cross-correlation together with a simple geometric
consistency check using the epipolar lines. A = ; 9)

o

E. Estimating the Location of Change where the last element= 7

~—

X is the distance between the

Once we obtain the segmented 2D regions and the asscedmera an.d?_ i . . B
ation between them, we proceed to estimate the 3D location 1h€ Projection ofv;™" on At) is the |ntersect|8(r)1vt
of the change. between the plane and the re& generated fronv;"’. We

k . k) . o .

To simplify the notation in the remainder of this section,CompUt?xg ) by expressing{) in Pliicker coordinates as
the following equations will refer to a single change ina line L; Jomln% the camera projection cent€; and a
images, i.e. dropping an index referring to individual regiongpointp = C; + rE ) along the ray:

The whole procedure is repeated for every region (of detected L c
x) _ Ln _ t P
change). L’ = Lo -~ Ci p (10)

To estimate the 3D volumes in which the changes occur, )
we rst compute, for every region identi ed as a change, the From L§ ), we compute the transposediBker matrix
mean locatiorX; and spread in form of the covariancg L L
; . _ Ty = So) Ln . 11
in the image. We then compute, for each change, a 3D point (L) = LT o0 ° (11)

X in the 3D world coordinates by triangulating the mean ) ) ) )
location in each image. Speci cally, we setup a system ogwhereS(L o) is the skew symmetric matrix corresponding to

. . k
equations in the form Lo. Finally, we obtainv ) as
k k
NGOG Vi o= TLA (12)
AX =0; with A = ﬁ : : ) We repeat this procedure for the sigma points from each
S(X .)P mean and covariance matrix of the same region in every
n n

image. In this way, we can quickly estimate the approxi-
where A is a3n 4 matrix composed by8 4 blocks, mate 3D location of the change without computing a dense
n is the number of imagesP; is the projection matrix reconstruction of the scene, see 6b. The mean and the
relative to imagel;, and S(X;) is the skew symmetric covariance of the position of these points represent the 3D
matrix corresponding to the mean pix&l, in homogeneous area where the change occurs, see [Fif. 6c.
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Fig. 6: (a) Example triangulation with 5 images. The white lines are the backprojected rays and the white point represent the triangulated

point. (b) Sigma points projected in 3D. (c) The result of our algorithm, i.e. the 3D region where the change is. (best viewed in color)
IV. EXPERIMENTAL EVALUATION TABLE I: Execution time for different datasets. The images in our

datasets have resolution 1502000 pixels, the ones by Taneja et

The focus of this work is a comparably fast approach tal. [13] have resolution 1072712 pixels.

identify changes ina previously obtained .3D model using Dataset Execution time Execution fime
sequence of new images. Thus, our experiments are designed  name without uncertainty [s]| with uncertainty [s]
to show the performance of our approach and to support the A/SC Unit 471-222 1120.55741

i ; . tatue . .
two central claims that we made in the_ beginning o_f the Playground 8.529 13989
paper, i.e. that our method: (i) can localize changes in the Taneja et al. [13] 247 5525
environment using a 3D model obtained in the past and @ Average time 5.77 2.758 10.656 3.702

sequence of new keyframe images, and (ii) can be executed . . .
fast enough to run on an exploring robot, i.e. the avera s multiple, separate changes. This does not constitute a real

execution time should be in the order in which the sequen oblem, but shows a possible limitation of our approach.
is recorded, here in the order of a few seconds for aroundg Eyecution time
keyframe images.

We perform the evaluations on own
which we publicly share including the 3D models a

datasets The next experiment is designed to support the claim
tthat our approach runs fast enough for processing on an

http:/Awww.ipb.uni-bonn.de/data/changedetection2017/, g,_?ploring robot. We therefore measured the execution time
well as the dataset used by Taneja et al. [13], whicf" our approach on a common, lightweight laptop with an
can be obtained from: https://cvg.ethz.ch/research/c:handg'—[eI Core i7 processor and an embedded Intel GPU.

detection/Datasets/Structure.zip. Throughout all experiments, 120- | Shows the average execution time needed to process
we use a sequence af= 5 images and for each image of sequences of 5 images from different datasets as well as
the sequence, we compute the inconsistencies mith 4 the standard deviation, both with and without taking into

i.e. for these sequences all the neighboring images. count the uncertainty on the camera poses. The.numbers
found out that using higher values of does not improve support our second claim, namely that the computations can

the results substantially and that is why we used this valfi€ €xecuted fast enough for operation on an exploring robot.
on all the experiments. On our datasets, the whole process, taking into account the

uncertainties, takes about 10 s, which is shorter than the time

needed to record the 5 keyframe images. Even though the

process is clearly not real-time in a strict sense, it is fast
The rst experiment is designed to illustrate the capabilityenough to be executed on a real robot at a low frequency to

of our approach to localize a change in 3D given a model artdgger exploration or additonal mapping actions.

a small sequence of images. Fig. 7 depicts the results of theThe computation time is in uenced by both the number

algorithm on 4 different datasets. In all our tests, the localizeof images as well as their resolution. This is evident from

3D regions re ect the actual position of the changes. Thisur test on the dataset by Taneja et al., which took approxi-

information can allow an exploring or mapping robot tomatively half of the time for processing images with a lower

inspect the changed regions in more detail and collect moresolution.

observations to update the previously built model. Note that _ o

the exploration itself is not part of this work but this worksC: Comparison to an Existing Approach

enables it. Finally, we want to brie y compare our results with those
The "Playground” dataset shown in Fig. 7c is particularlyobtained by Tanjea et al. [13]. The comparison is done based

challenging. In this dataset, the house, which is not presentam the dataset that they provide and report on (Fig. 7d).

the model, is composed by separate wooden pieces, each dieir approach uses a computationally expensive graph cut

in a different color. Our algorithm is able to correctly identifylabeling on a 3D voxelization of the scene. Their method

the lamp and the bar as changes, but recognizes the hotyggically provides a more accurate estimate of the region

A. Change Identi cation



(a) A/IC Unit (b) Statue

Fig. 7: Results of our experiments on 4 different datasets. For each dataset, the top image shows the changes (here manually marked in

(c) Playground (d) Dataset by Taneja et al.

green), while the bottom image shows the 3D region, identi ed by our algorithm, where the changes are. (best viewed in color)

of change (in the order of 2525 25cm?® voxels) than our of our approach. We furthermore thank Tanjea et al. for
estimate using the mean and covariance. The disadvantai®ring their dataset from Zurich.

of their method, however, is the computational demands as
they require computation times in the order of 1 min per
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