
Long-Term Robot Navigation in Indoor Environments
Estimating Patterns in Traversability Changes

Lorenzo Nardi1,2 Cyrill Stachniss1

Abstract— Nowadays, mobile robots are deployed in many
indoor environments such as offices or hospitals. These en-
vironments are subject to changes in the traversability that
often happen following patterns. In this paper, we investigate
the problem of navigating in such environments over extended
periods of time by capturing and exploiting these patterns to
make informed decisions for navigation. Our approach uses a
probabilistic graphical model to incrementally estimate a model
of the traversability changes from the robot’s observations and
to make predictions at currently unobserved locations. In the
belief space defined by the predictions, we plan paths that trade
off the risk to encounter obstacles and the information gain
of visiting unknown locations. We implemented our approach
and tested it in different indoor environments. The experiments
suggest that, in the long run, our approach leads robots to
navigate along shorter paths compared to following a greedy
shortest path policy.

I. INTRODUCTION

Over the last decade, many mobile robots have been
deployed in indoor environments such as offices, hospitals,
and shopping malls. Most robot navigation systems rely on
static representations of the environment such as occupancy
grid or topological maps for planning and navigating to
targeted locations. In reality, robots are often employed in
environments where the traversability changes continuously.
Traditional navigation systems avoid obstacles by performing
reactive strategies [6] or planning local deviations [24]. These
approaches are effective to tackle unforeseen obstacles but
have no memory about previous experiences. Thus, when
encountering the same situation multiple times, robots may
perform every time the same sub-optimal behavior.

In indoor environments, there are many changes in the
traversability that are correlated or happen following certain
patterns. For example, the doors in an environment could be
open or closed at the same time according to certain patterns.
In the environment illustrated in Fig. 1a, the offices’ doors are
typically open (green) while people are working. Whereas,
if the kitchen is open, it is likely that people are enjoying
a coffee and so that the offices’ doors are closed (red),
see Fig. 1b. When deploying a robot in such environments
over a longer period of time, it can observe these patterns
and exploit this knowledge to navigate along shorter paths,
thus increasing the efficiency of its operations.

In this paper, we investigate the problem of (i) modeling
and predicting the patterns of change in the environment
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(a) Working state. (b) Coffee break.

Fig. 1: Patterns in traversability changes on the topological map of
an office. The red circles are the nodes and the blue solid lines are
the traversable connections among them.

traversability and (ii) planning paths that exploit the pre-
dictions to reduce the risk of encountering blocked passages.
While existing approaches propose to make decisions accord-
ing to periodic patterns of change [5], we focus on modeling
spatial patterns that are independent of time information.

The main contribution of this paper is a novel system for
robot navigation over extended periods of time in indoor en-
vironments where the traversability changes following spatial
patterns. We consider a topological map of the environment
like the one illustrated in Fig. 1, where the nodes are the
locations of interest and the edges are the passages between
these locations. We incrementally model how the traversabil-
ity of the edges changes using the robot’s observations during
traversal. We use a probabilistic graphical model to repre-
sent this knowledge and to predict the traversability in the
environment. We exploit the predictions to plan navigation
strategies that account for the risk to encounter blocked
passages and, at the same time, for the information gain of
making observations to improve the model.

As a result of that, our approach is able to (i) learn
incrementally a model of the patterns of change in the en-
vironment traversability from robot’s observations; (ii) make
predictions about the traversability at unobserved locations;
(iii) plan paths that exploit the predictions to realize antici-
patory strategies for navigation. Over time, our system leads
the robot to encounter a reduced number of blocked passages
and, thus, to navigate along paths that are on average shorter
than following greedy-reactive strategies.

II. RELATED WORK

In the literature, several approaches have been proposed
to model changing environments for robot navigation. For



example, Stachniss and Burgard [25] map the typical con-
figurations of low-dynamic areas of the environment for im-
proving localization. Conditional transition maps [13] learn
the motion patterns of objects on a grid-based representation.
Dynamic Gaussian process occupancy maps [20] map long-
term dynamics with a spatially-continuous representation
that provides occupancy estimates. Fremen [10] enhances
a topological map with a spectral model that allows for
predicting the traversability of the edges as a function of
the time of day. Fentanes et al. [5] use this model for
planning paths that take into account the temporal periodicity
of changes in the environment. In contrast to that, we use
a probabilistic approach to learn a time-agnostic model of
the traversability changes on the edges of a topological
representation of the environment.

Representing the full joint probability over the traversabil-
ity of the edges is intractable even for relatively small
environments. In the context of SLAM, FAB-MAP [3] uses
the Chow-Liu tree approximation for modeling the joint
distribution of a set of visual features. For traffic prediction,
Furtlehner et al. [8] use a factor graph representation to
model and predict the road traffic from a probe vehicle. We
consider a similar model based on factor graphs [12] that can
capture the correlation between traversability changes and
exploit this correlation to make probabilistic predictions.

Planning paths in the belief space defined by the predic-
tions can be formulated as a partially observable Markov
decision process (POMDP). However, POMDPs are in prac-
tice intractable for real-world environments [21]. The re-
active planning problem [16] considers a set of possible
configurations and plans policies that guarantee the robot
to reach the goal. Murphy et al. [18] samples the edge
costs from a probabilistic costmap, generates a list of paths
using A∗ and selects the most frequent path. RAG search [2]
plans risk-aware paths on a graph where the edge costs are
unknown by trading off exploration and exploitation. In the
Canadian traveler problem (CTP) [22], an agent aims at
traveling along the shortest path in a road network where
some roads, unknown to the agent, are blocked. Lim et
al. [15] introduce a variant of the CTP in which the roads’
traversability may be correlated. The CTP is a PSPACE-
complete problem [7], however different approximations
have been proposed. Nikolova and Karger [19] approximate
the CTP by considering graphs that consist only of disjoint
paths. Whereas, CTP-UCT [4] is a Monte-Carlo search
algorithm that computes policies by taking the uncertainty of
the predictions into account. We extend this approach to plan
paths that lead the robot to collect informative observations
for improving the model of the environment traversability
and its predictions.

Krause et al. [11] use a criterion based on mutual in-
formation for collecting information about the environment.
Meliou et al. [17] plan informative paths by selecting the
locations that maximize the mutual information. We use
the mutual information for planning paths that trade off the
exploration of informative locations and the exploitation of
the traversability predictions to navigate along short paths.

III. PROBLEM DEFINITION AND ASSUMPTIONS

We consider a robot that navigates in indoor environments
where the traversability changes according to certain pat-
terns. Initially, these patterns are completely unknown to
the robot. However, during navigation, it can observe which
passages are frequently blocked at the same time.

Our robot navigation system relies on a topological map
of the environment G = (V , E ), where E are the edges
representing possible passages and V are the set of nodes
representing their intersections. We refer to each navigation
task performed by the robot as a run. At every run, the
traversability of the environment may change. We represent
the traversability of the i-th edge at a run t as the binary
random variable eti that is 0 if the edge is blocked or 1 if
the edge is free. We refer to the state of all the edges of
the topology during run t as the environment configuration
Et = {et1, . . . , et|E|}.

In this work, we make the following key assumption:
1) when the robot starts a new run, it has no knowledge

about the current environment configuration except for
its previous observations;

2) during each run, the environment configuration does not
change. This means that we account only for the low-
frequency dynamic changes in the environment;

3) the environment configuration is independent on the
temporal order of the runs, i.e., the configuration at run t
has the same degree of dependence to the configuration
at run t+ 1 than to the one at t+ k;

4) when reaching one of the nodes v ∈ V , the robot can
observe all the adjacent edges to v.

IV. ESTIMATING PATTERNS IN TRAVERSABILITY

To make informed decisions for navigating in changing
environments, we aim at learning a model of the patterns
of change to predict the traversability at unknown loca-
tions. We use the robot’s observations during traversal to
incrementally learn a probabilistic model that captures the
correlation among the edges’ traversability and that exploits
this correlation to make predictions during navigation.

A. Modeling Environment Configurations

During navigation at run t, the environment presents a
configuration Et of which the robot typically observes only
a subset of edges Zt ⊆ Et. To plan reliable routes, we aim
at predicting the traversability of the currently unobserved
edges U t, with Et = Zt ∪ U t. We formulate this as
the problem of estimating the probability of the unobserved
edges U t to be traversable conditioned on the partial obser-
vation of the environment configuration Zt:

p(U t | Zt) =
p(U t, Zt)

p(Zt)
, def. cond. prob. (1)

= η p(Et), Et = Zt ∪U t (2)

where η is a normalizer given the current observations Zt

and p(Et) is the joint probability distribution over the
traversability of the edges in the environment.



(a) Example topology. (b) Indep. variables approx. (c) Chow-Liu tree approx. (d) Our factor graph approx.

Fig. 2: Graphical model (GM) representations (b-d) of the joint probability over the edges in the example topology (a).

The distribution p(Et) defines a probability function over
the space of possible configurations. It captures the correla-
tion among the traversability of edges and, thus, its knowl-
edge is essential to make predictions about the environment
configuration. In general, p(Et) is a distribution without a
special structure and the space required to represent it is ex-
ponential in the number of edges. Therefore, representing the
joint distribution over the edges becomes quickly intractable.

There exist different approaches to compute a tractable ap-
proximation of the joint probability distribution. The simplest
one is to consider each edge to be independent of all others
as illustrated in Fig. 2b for the example topology in Fig. 2a.
This representation is efficient to store and compute, but it is
not able to capture the correlation among the edges. A more
advanced approach is the Chow-Liu tree approximation [1]
that represents the joint probability using a tree-structured
Bayesian network as the one depicted in Fig. 2c. Chow-
Liu representation requires quadratic space and is able to
capture some correlation among edges. However, it requires
training data and typically does not deal with incremental
and partial data that characterize our problem. To deal
with our requirements, we propose to approximate the joint
probability distribution over the edge traversability by using
a flexible but bounded factor graph representation.

B. Our Factor Graph Model

A factor graph is a probabilistic graphical model that
allows for representing a general factorization of a function.
It is structured as an undirected graph with two kinds of
nodes: the variable nodes that correspond to the random
variables and the factor nodes that represent local functions
of the adjacent variable nodes.

We use a factor graph representation in which the variable
nodes are the edges E of the topology. We model the
correlation among the traversability of the edges by defining
one unary factor node φ for each edge and one binary factor
node ψ for each pair of topology edges, as in the factor
graph illustrated in Fig. 2d. Considering this representation,
we assume that we can approximate the joint distribution
over the edges as:

p(Et) ≈ pφψ(E
t) = η

∏
i

φi
∏
j

ψij . (3)

This factor graph representation allows for approximating
the probability over the environment configurations by cap-

turing some of the correlation between the edge traversability
while storing only |E|(|E| − 1)/2 + |E| low-dimensional
factors. Therefore, our representation requires only quadratic
space in the number of edges rather than exponential as in
the case of the full joint probability distribution.

C. Computing Factors From Observations

Given our factor graph representation, we need to provide
a definition of the factors φ and ψ such that the model
corresponds to the robot’s observations collected in the
previous runs and we can efficiently update the model in an
incremental manner as the robot acquires new observations.

The belief propagation algorithm [23] allows for perform-
ing inference on factor graphs. We use the BP algorithm
to make predictions from current data (see Sec. IV-D) but
also to estimate the model parameters from the robot’s
observations. Furtlehner et al. [8] introduce an approach to
estimate the factor nodes from the marginal probabilities by
using the fixed points of belief propagation. We use this
approach to define the unary factors and binary factors of
our factor graph as:

φi = p(ei), (4)

ψij =
p(ei, ej)

p(ei) p(ej)
, (5)

where p(ei) and p(ei, ej) are respectively the unary and
binary joint probabilities of the edges to be traversable
or blocked. Note that Eq. (5) has an analogy with the
mutual information between ei and ej that is non-zero
for p(ei, ej) 6= p(ei) p(ej). This gives an intuition that such
definition of the factors allows for modeling the correlation
between edges.

This definition of factor nodes allows for computing the
approximated joint probability distribution in Eq. (3) as:

pφψ(E
t) = η

|E|∏
i

p(ei)

|E|∏
j

p(ei, ej)

p(ei) p(ej)
. (6)

We compute the unary and binary joint probabilities,
p(ei) and p(ei, ej), from the robot’s observations in the
previous runs Z1:t-1. We achieve this by maintaining a
counter of the number of observed occurrences of each
unary and binary configurations. To prevent probabilities
to take extreme values of 0 or 1 on a single observation,
we initialize them with a uniform prior by assigning to



each configuration an equal positive number of occurrences.
After each run, we update the counters based on the robot’s
observations and recompute the probabilities. Dealing with
unary and binary joint probabilities allows us to update only
the probabilities corresponding to the observed edges. Using
this procedure, we can incrementally and efficiently compute
the model’s parameters from the robot’s observations. The
other key advantage of this procedure is that it allows for
easily incorporating partial observations of the environment.
For instance, in the example illustrated in Fig. 2a, if the robot
observes the edges a and b but not c and d, we update p(a),
p(b), and p(a, b), but not p(a, c) and p(b, d).

D. Predicting Traversability of Edges

Our factor graph model maintains a tractable approxima-
tion of the joint probability distribution over the traversability
of the edges and provides us a tool for predicting the
traversability of currently unknown edges. The belief prop-
agation algorithm implements a message passing procedure
in the graph to estimate the MAP environment configuration
and the marginal probabilities of each edge to be traversable.

We predict the traversability of the unobserved edges U t at
run t by fixing the observed edges Zt to the observed values
in the factor graph and by performing belief propagation.
This procedure allows for computing a belief about the
environment configuration that estimates p(U t | Zt).

V. PLANNING EXPLOITING PREDICTIONS

We aim at exploiting the traversability predictions pro-
vided by our factor graph model to plan anticipatory be-
haviors that lead the robot to encounter a reduced number
of unforeseen obstacles during navigation in the long run.
To achieve this, we explore the belief space of possible
environment configurations and plan paths that trade off
travel distance and information gain to improve the edge
traversability model.

A. Minimizing Travel Distance From Predictions

We minimize the travel distance to reach the goal in a
partially observed environment by exploring the belief space
of the possible environment configurations defined by the
predictions. We search the belief space by using an approach
based on CTP-UCT [4]. CTP-UCT is a Monte-Carlo search
algorithm based on the upper confidence bounds applied to
trees [9] that allows for computing approximate solutions for
the Canadian traveler problem.

Given a prediction of the environment configuration, we
approximate the belief space of possible configurations by
performing a sequence of rollouts. A rollout randomly sam-
ples a configuration according to the current belief and
simulates robot navigation on this configuration. The robot
has no initial knowledge about the sampled configuration
but it can make observations during traversal. In CTP-UCT,
the robot selects locations for navigation that led to the goal
through short paths and have been selected less often in the
previous rollouts. To this end, at each step of the rollouts, we
consider a state s composed by the robot’s current location,

the set of known traversable and blocked edges, and the set
of unknown edges. Let ρ = {s0, s1, . . . , s} be the current
sequence of states at the k-th rollout, we select the next
state s′ that maximizes the UCT formula:

s′ = argmax
s′

B

√
logRk-1(ρ)

Rk-1(ρ′)
− dist(s, s′)− Ck-1(ρ′), (7)

where ρ′ = {ρ, s′} is the new sequence of states, B > 0 is
a parameter that biases the exploration in the belief space,
dist(s, s′) is the travel distance to move from s to s′,
Rk-1(ρ) is the number of previous rollouts that start with ρ,
and Ck-1(ρ) is the average travel distance to the goal in the
previous rollouts that start with ρ.

After performing a number of rollouts, CTP-UCT selects
the path P that minimizes:

costCTP−UCT(P) = length(P), (8)

where length(P) is the average travel distance to the goal
along P during the rollouts. We extend this cost function to
plan paths that, in the initial runs, lead the robot to collect
information about the traversability in the environment for
improving the model and the predictions in the subsequent
runs.

B. Collecting Informative Observations

A common approach to collect information about the envi-
ronment is to make observations at locations that maximize
the mutual information about the non-observed regions. The
mutual information, also called information gain, between
two discrete random variables a and b is defined as:

I(a, b) = H(a)−H(a | b), (9)

=
∑

a∈a, b∈b

p(a, b) log
p(a, b)

p(a) p(b)
, (10)

where H(·) and H(· | ·) are respectively the entropy and the
conditional entropy.

Given the current set of unobserved edges U t, we can
bias the robot’s behavior to collect informative observations
by selecting paths that maximize the information gain:

I(P , U t) = H(P )−H(P | U t), (11)

where P is the set of edges along the path P .
Computing the entropy over P requires the knowledge

of their joint probability. However, our factor graph model
does not provide direct access to it. Therefore, we ap-
proximate I(P , U t) with the sum of the pairwise mutual
information between the edges along the path P and the
unobserved edges U t:

I(P , U t) ≈ Î(P , U t) =
∑

ut∈Ut

max
p∈P

I(p, ut), (12)

where I(p, ut) is computed using Eq. (10). This approxima-
tion involves only unary and binary joint probabilities that are
directly available from our factor graph model. Furthermore,
we make sure that the mutual information for the same edge
is not counted multiple times by considering the maximum
mutual information for each unobserved edge ut.



C. Exploration vs. Exploitation

We aim at computing paths that trade off exploration and
exploitation to minimize the travel distance in the long run.
To this end, we perform a sequence of rollouts as in the
original CTP-UCT but we replace Eq. (8) by selecting paths
that minimize:

cost(P) = length(P)− γ#runs
[
ζ Î(P , U t)

]
, (13)

where length(P) is the estimated travel distance of P to
the goal from the rollouts, Î(P , U t) is an approximation
of the information gain along P , γ ∈ [0, 1] is a parameter
that controls the exploration term, and ζ is a constant that
normalizes information gain and travel distance.

The exploratory behavior of the robot is determined by
the parameter γ that decays exponentially with the number of
runs performed by the robot. Initially, when few observations
are available, γ leads the robot to favor exploratory behaviors
for improving the model of the traversability of the edges. As
the robot performs more and more runs and acquires several
observations of the environment, the model and its ability
to make predictions improve and the exploration becomes
less prominent. When the learning process of the model
converges, our problem becomes similar to a CTP in which
the traversability of the edges is correlated. At this point,
the exploratory term in Eq. (13) has a low weight and the
robot can exploit the predictions similarly as in the original
CTP-UCT to navigate along short paths.

VI. EXPERIMENTAL EVALUATION

The main focus of this work is on robot navigation
over extended periods of time in environments where the
traversability changes by following patterns and on how
the knowledge about such patterns can be obtained and
exploited. Our experiments are designed to illustrate that our
approach is able to (i) model and make predictions about the
traversability changes in the environment from the robot’s
incremental observations; (ii) plan paths that exploit the
predictions to make decisions for navigation; (iii) navigate
along paths that are on average shorter than following greedy
shortest path strategies in the long run.

In our experiments, we consider different topologies de-
fined over real-world environments. Many approaches exist
to build topological maps, for example, Kuipers et al. [14].
On these topologies, we simulate correlated traversability
changes. To this end, we use a mixture of M template config-
urations computed by randomly sampling the traversability
of the edges. At each run, we generate an environment
configuration by sampling uniformly one of the M templates
and applying random noise.

A. Predicting Environment Configurations

We designed the first experiment to show the capabilities
of our approach to model the traversability changes and
to make predictions about the environment configurations.
In this experiment, we consider a relatively small topology
composed by 9 nodes and 13 edges and assume that the
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Fig. 3: Avg. ratio of wrong predictions for low and high correlated
environment configurations using different models.

robot observes at each run the whole environment. These
assumptions allow for computing the full joint distribution
over the traversability of the edges despite its exponential
space complexity to use for comparison. We additionally
compare our approach with a model that assumes each edge
to be independent of all others, like the one illustrated
in Fig. 2b. To investigate the performance of our approach,
we consider two different cases: one in which the environ-
ment configurations are highly correlated (small M ) and one
in which the correlation is low (large M ).

We compare the capabilities of each model to predict the
edge traversability for 10000 partial configurations after the
robot observed 10, 100, 1000, and 10000 configurations.
In Fig. 3, we illustrate on average the ratio of wrong
predictions for the three approaches. In cases in which
the configurations are highly correlated (solid lines), our
approach (blue) provides good predictions already after a few
observations. The predictions improve incrementally as the
robot makes more observations similarly as if using the full
joint probability distribution (green). Instead, assuming the
edges to be independent (red) cannot capture the correlation
between edges and leads to worse predictions. In cases in
which the configurations have low correlation (dotted line),
the three approaches provide similar predictions. Therefore,
also in situations with low correlation, our approach does
not reveal worse performance than the model assuming
independence among edges.

B. Navigation Exploiting Predictions

The second experiment is designed to show that our
approach is able to exploit the predictions of the environment
configurations to plan anticipatory strategies that lead the
robot to navigate along shorter paths over time. In this ex-
periment, we consider four different environments described
in Tab. I. To evaluate the improvement over time, we repeated
a fixed sequence of navigation of 25 tasks and configurations
for a total of 500 runs in each environment. We compare our
approach to the theoretical optimal path computed assuming
to known the ground truth environment configuration (in
practice unknown to the robot) and to an optimistic shortest
path policy called SPO. This strategy plan paths using A∗ by
assuming that every edge of the environment is traversable
unless the robot observes the opposite and re-plans. SPO
does not take into account the predictions of the environment
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TABLE I: Environments considered in our experimental evaluation.

Environment Dimensions Nodes Edges

Small office 25 × 20 m 16 18
Medium office 30 × 30 m 20 30
Large office 50 × 30 m 18 37
Hospital 125 × 35 m 40 55

configuration and, thus, independent of the number of runs,
makes the same decisions as if navigating for the very first
time. In our approach, we perform 50 rollouts per decision
and set the parameter that regulates the exploratory term of
the cost function to γ = 0.95.

The performance of our approach over the number of
runs in the four environments are illustrated in Fig. 4. We
evaluate the average difference in the travel distance to
the theoretical optimum with ground truth knowledge avail-
able (0.0) normalized with respect to the SPO solution (1.0).
Initially, when the robot collected little information about the
environment, the predictions on the traversability are weak
and the robot following our approach performs similarly as
following SPO. After 100 runs, our approach starts discov-
ering patterns in the traversability changes and plans paths
leading the robot to the goal along shorter paths. Over time,
when the robot collects more and more observations about
the environment, the learning process of the traversability
model converges and, after 500 runs, the robot following
our approach navigates along paths that are on average 30%
shorter than following an optimistic shortest path strategy.

C. Planning Performance Comparison

Besides the baselines discussed in the previous section, we
compare the performance of our approach to other planners.
For comparison, we consider the original CTP-UCT [4] that
searches for the shortest path in the predicted belief as
described in Sec. V-A. We compare our approach also to
a strategy inspired by Lim et al. [15] called SPD. SPD
makes a most likely assumption on the belief about the
edge traversabilities and plans the shortest path using A∗

on the ‘determinized’ environment configuration. When the
robot makes an observation incompatible with the current
determinized configuration, SPD computes a new prediction
and re-plans.
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Fig. 5: Avg. distance traveled by the robot following different
planning approaches. CTP-UCT and SPD use our factor graph
model for computing the predictions.

It is important to note that CTP-UCT and SPD do not
provide an approach to model and make predictions of
the edge traversability in the environment. Therefore, we
compute the predictions using our factor graph model also
for these approaches.

The performance of the approaches after 50, 250, and
500 runs for navigating in the environments introduced in
the previous section are illustrated in Fig. 5. SPO (orange)
reveals a constant trend over time as it does not take the
predictions into account. Taking into account the predictions,
SPD (green) leads the robot to navigate along shorter paths
over time. However, the determinization of the predicted
configurations may cause the robot to follow paths that
are distant from the optimal ones. CTP-UCT (red) consider
a weaker approximation of the belief defined by the pre-
dictions by performing rollouts. Thus, it is able to make
more informed decisions than SPD that lead the robot along
shorter paths. Our approach (blue) extends CTP-UCT by
considering an exploratory term that allows the robot to
collect informative observations that explicitly improve the
model and so the predictions about the traversability of the
edges. The exploratory behavior leads initially to slightly
longer travel distances than CTP-UCT but, in the long run,
it allows the robot to navigate along shorter paths than
following other approaches in our evaluation.

VII. CONCLUSION

In this paper, we investigate robot navigation over ex-
tended periods of time in environments where the traversabil-
ity changes happen following patterns. We present an ap-
proach that learns a probabilistic model of the traversability
changes from the robot’s incremental observations during
navigation. Our model exploits the estimated correlation
between the traversability in the environment to predict
the traversability at unknown locations. We exploit these
predictions to make informed decisions that lead the robot
to navigate encountering a reduced number of unforeseen
obstacles in the long run.

Although our approach presents higher complexity com-
pared to traditional planning systems, in environments where
the traversability changes following patterns, it has the po-
tential to automatically lead to navigate robots along shorter
paths over time increasing the efficiency of their operations.
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