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Automated driving requires at all times robust pose estimates. Multiple re-
dundant and complementary localization systems are therefore installed on most
automated vehicles. This work proposes a novel pose fusion approach for com-
bining multiple pose estimates into a single estimate. Our technique is based on
a nonlinear least squares optimization of a pose graph that consists of odometry
and global pose measurements. We provide effective methods to estimate biases
of different pose sources and to fuse correlated pose sources guaranteeing con-
servative estimates. The proposed approaches are evaluated on simulated data as
well as on data gathered with a prototype vehicle. The results suggest that we
can substantially reduce the impact of a time-varying bias on a GPS receiver and
precisely estimate the vehicle poses.

1 Introduction
Advanced driver assistance systems and automated driving functionality rely on robust and
highly available pose estimates. In the past, different localization systems have been proposed
that are usually tailored to a specific sensor set, which typically includes Global Positioning
System (GPS), vision, or lidar sensors. Different types of localization systems and sensors
have individual failure modes such as satellite-denied regions for GPS or darkness for visual
systems, in which the performance degrades substantially or the system fails to provide a rea-
sonable estimate of the vehicle’s pose. We approach this problem by proposing a generic pose
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Figure 1: A coarse localization (GPS, red triangles), a precise but only temporary available
localization (visual localization, blue triangles), and odometry as dead reckoning
trajectory (wheel odometry, blue) are used to estimate the true trajectory (reference
trajectory, red) of a vehicle. The estimated poses are shown as black triangles (pose
fusion): the goal is to approximate the unknown red line as closely as possible with
the black triangles.

fusion approach, which is able to effectively merge several relative and global pose sources.
This enables the combination of orthogonal or redundant pose sources and has the potential to
increase the availability, reliability, and accuracy of the resulting localization. Fig. 1 illustrates
the key idea behind the pose fusion: pose estimates from multiple sources are combined into
a single estimate by formulating the fusion as a joint optimization problem. The optimized
trajectory then provides the fused estimate of the current state.

Besides improving the availability, reliability, and accuracy of the localization, our pose
fusion also enables new use cases. Some localization systems only work in specific areas,
such as GPS in outdoor scenarios or marker-based visual systems in particularly prepared
parking garages, and our proposed pose fusion enables the seamless transition from one area
to the other.

The main contribution of this paper is a generic pose fusion approach, in which we consider
pose fusion as multi-sensor data fusion for pose estimation. We view pose estimation as the
optimization problem of computing the set of recent poses that define the most likely trajec-
tory given odometry and absolute pose measurements. To this end, we propose a nonlinear
least squares estimation implemented in a sliding window fashion for efficient and effective
pose estimation. In this system, the measurements are incorporated in a generic way so as
to allow us to plug in third-party localization modules for which source code is unavailable.
As a consequence, we treat common effects such as biased measurements or correlated noise
between pose sources without knowing their cause. We employ a Covariance Intersection
(CI) framework to handle dependent pose measurements and to prevent overconfidence. For
pose measurements with systematic error components, we develop an online bias estimation
scheme and demonstrate the effective error reduction.

In brief, the key contributions of this paper are:

• the presentation of a pose fusion concept implemented as a sliding window pose graph;

• the conservative treatment of dependent information such as correlated errors between
pose sources by employing a CI framework;

• an online bias estimation technique that is fast, effective, and simple to implement.
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2 Related Work
Multi-sensor data fusion applied to localization enables the integration of observations from
multiple sources to estimate the pose of the system. Algorithms of this field are commonly
designed to fuse a specific set of pose sources, such as GPS and inertial measurement units
(IMU), by conventionally employing a Kalman or particle filter [1–3]. This work differs from
these approaches in that we consider a generic set of pose sources instead of specializing the
fusion for a specific set. Extended Kalman Filter (EKF)-based approaches have also been
proposed for generic pose fusion [4,5]. Filtering approaches are frequently used for online es-
timation problems but we argue in Section 3.2 that we generally expect smoothing approaches
to outperform them due to the possibility of relinearization.

Ranganathan et al. [6] propose a fixed-lag smoothing algorithm for pose estimation. The
technique is based on square root smoothing and allows incorporating delayed and out-of-
sequence measurements in their pose graph representation. The authors model GPS errors as
unbiased Gaussian distributions and discard unsuitable GPS measurements. Sibley et al. [7]
introduce the concept of sliding window filters to estimate surface structure with a stereo
camera during a planetary entry, descent, and landing scenario. We use a similar methodology
but apply it to the problem of generic pose fusion, which leads to different challenges such as
bias estimation and treatment of dependent information.

Bias estimation in the context of localization is treated in the literature primarily for GPS
systems. A common approach consists in augmenting the state vector of a filter to allow for
more sophisticated error models and correcting the bias by a second pose source. Jo et al. [8]
correct systematic GPS errors that change slowly over time by comparing visual observations
of the road structure to a given road map database. Laneurit et al. [9] empirically model
GPS error as an additive Gaussian distribution plus a time-dependent bias and white noise.
They estimate the bias by computing the difference of the sensor fusion result to the GPS
measurement. Significant bias changes are determined by testing whether the prediction based
on the last GPS position lies within the one sigma error ellipse of the current measurement.
Tao et al. [10] construct a first order autoregressive model for GPS error estimation. While this
model captures the autocorrelation of the bias, strong bias variations in the form of position
jumps are only treated by rejecting the corresponding GPS fixes. The authors further compare
visual observations of lane markings to a map in order to correct GPS errors. These approaches
specifically define a second, unbiased pose estimation to subsequently eliminate the GPS bias.
Our bias estimation scheme is inspired by the same idea but we generalize it to work with any
unbiased pose source.

Another challenge besides accounting for biased data in generic pose fusion algorithms is
the treatment of dependent information. Ignoring the effects of correlated noise between pose
sources can be detrimental for any multi-sensor fusion approach because of overconfident es-
timates, corrupt uncertainty estimates, and estimator divergence. Generic pose fusion systems
do not know about the specific source of correlation and have to perform fusion under un-
known correlation. One approach to this is ellipsoidal intersection [11], which maximizes the
common information given that the sources share a common prior. Another method is CI [12],
which combines estimates with unknown error correlations. It provides a conservative esti-
mate of the actual mean square error matrix. CI has been employed for a range of applications,
including graph-based [13] and filtering-based [14] Simultaneous Localization and Mapping
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(SLAM). Reinhardt et al. [15] propose closed-form solutions for two- and three-dimensional
matrices, on top of which we design our treatment of dependent information as detailed in
Section 3.4.

3 Pose Fusion
Our multi-sensor data fusion approach combines pose measurements from multiple pose sources
to compute the current best pose estimate. Odometry and global pose sources have orthogonal
strengths and weaknesses. On the one hand, odometry measurements are usually available
at high frequencies and do not require a priori knowledge about the environment. However,
they accumulate drift with growing distance and they are not globally referenced. On the
other hand, global pose measurements are globally referenced and their error is independent
of the covered distance. However, they are usually only available at low frequency and require
a priori knowledge about or preparation of the environment (such as maps or satellite place-
ment). Combining both types of measurements in our sliding window pose fusion allows us
to estimate a trajectory which is both globally referenced and locally smooth.

This requires merging poses from two different coordinate systems, which are detailed in
Section 3.1. We present the estimation procedure in Section 3.2 and subsequently approach
two specific problems: the online estimation of systematic biases in Section 3.3 and the treat-
ment of correlated noise between input sources in Section 3.4.

3.1 Coordinate Systems
The pose fusion combines measurements in a global coordinate system with odometry mea-
surements in a vehicle reference frame. The global coordinate system of the pose fusion is a
two-dimensional Cartesian coordinate system for which we choose the Universal Transverse
Mercator (UTM) coordinate system. Poses in this coordinate system are dubbed global poses.
We convert different but prevalent global coordinates (such as pairs of latitude and longitude
in the World Geodetic System (WGS)) to UTM to support a wide range of input sources. The
vehicle reference frame is defined according to ISO 8855 [16]. It is also commonly referred
to as body frame or body coordinate system.

3.2 Sliding Window Graph-based Pose Fusion
We formulate the pose fusion as the problem of estimating the most likely trajectory given a
set of odometry and global pose measurements. We assume the noise of these measurements
to be additive, white, and normally distributed with zero mean. In Section 3.3 we detail how to
minimize systematic biases if the mean is not zero. The output of the pose fusion is the most
recent state of the estimated trajectory. The underlying estimation procedure relies on nonlin-
ear least squares optimization. Our approach exploits the state-of-the-art graph optimization
framework g2o [17] and for the most part, we adopt the notation used by Kümmerle et al.

Let x = (x>1 , . . . ,x
>
m)> be the state vector. The key idea in nonlinear least squares es-

timation is that given a set of measurements, where zi,j is the mean and Ωi,j the inverse
measurement covariance matrix of a single measurement relating xi to xj (with C being all
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pairs of indices for which a measurement is available), least squares estimation seeks the state

x∗ = arg min
x

∑
〈i,j〉∈C

e(xi,xj , zi,j)
>Ωi,je(xi,xj , zi,j) (1)

that best explains all measurements given the `2 norm. The vector error function e(xi,xj , zi,j)
measures how well the constraint from the measurement zi,j is satisfied. Solving (1) requires
approximating the solution of the current step and refining it by successive iterations. Only
the states that are currently contained in the state vector can be relinearized and thus refined in
the Gauss-Newton or Levenberg-Marquardt iterations. For more details, we refer the reader
to Kümmerle et al. [17].

Optimizing the entire trajectory is commonly referred to as batch estimation. It leads to
a maximum a posteriori (MAP) estimate over the joint probability of vehicle poses and pro-
duces a statistically optimal result. A drawback of this approach is that the state vector grows
unboundedly over time, thus limiting its online applicability. The EKF approaches this issue
by restricting the state vector to the most recent state, hence collapsing the trajectory estima-
tion into a single pose estimation problem. This, however, prevents relinearization of previous
states as they are already marginalized out. Also, the current state is not relinearized and the
Jacobians are evaluated only once. The Iterated EKF solves this drawback by iterating and
relinearizing the solution of the current state, thus converging to the optimal state estimate.
However, older states are not explicitly available due to the involved marginalization, which
implies that they cannot be relinearized and refined anymore. The Sliding Window Filter [7]
weakens this drawback by extending the state vector to the set of the most recent states. It can
be seen as an Iterated EKF with an augmented state vector because the Iterated Kalman Filter
update is for many problem instances algebraically identical to the Gauss-Newton method [18]
when both the prediction and update steps are iterated [19].

Fig. 2 illustrates the relationship between the (Iterated) EKF, the Sliding Window Filter,
and batch estimation. Motivated by the need for a powerful estimator and constrained by the
requirement of an online solution, we design our pose estimation with the same key concepts
as a Sliding Window Filter.

We represent our nonlinear least square problem using a pose graph. The reduction to a slid-
ing window problem fixes x to the M most recent states such that x = (x>t−M+1, . . . ,x

>
t )>.

This limitation of the number of states results in bounded runtime requirements. Old states
are marginalized out and new ones are appended to the front of the graph. State variables are
represented by hidden nodes. Global pose measurements are encoded in observed nodes and
linked to hidden nodes via edges. Odometry measurements result in edges between hidden
nodes. The joint optimization seeks the set of hidden nodes that best explain all pose and
odometry measurements.

3.3 Estimation of Systematic Biases
As mentioned in Section 3.2, we assume the noise of the input pose measurements for the
pose fusion to be ideally additive, white, and normally distributed with zero mean. However,
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(a) EKF: runs online, but contains only the current state
and does not iterate.
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(b) Iterated EKF: runs online and iterates at the current
timestep, but contains only the current state.
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(c) Sliding Window Filter: runs online and iterates over the
set of the most recent states.
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(d) Batch estimation: iterates over the entire trajectory, but
runs offline and not in constant time.

Figure 2: Comparison of iterative state estimation techniques. The figure is inspired by Bar-
foot [19, p. 145].
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Figure 3: Illustration of the effects of a time-varying bias. The true trajectory (black line) is
measured by an unbiased (blue diamonds) and a biased (red dots) pose source.

a systematic bias in the measurements of a global pose source is common [8–10] and results
in a mean error unequal to zero when compared to the true trajectory. Fig. 3 illustrates the
effects of unbiased and biased pose measurements. Systematic biases of this kind result in
detrimental effects for the pose fusion approach: the mean error of the fused estimate will
generally be unequal to zero and the estimator potentially diverges. We propose an effective
technique to estimate systematic biases online. This estimation enables pose sources to better
satisfy the noise assumptions by reducing the mean error, thus leading to more consistent and
precise estimates.

Systematic biases are often varying over time. The duration, in which a systematic bias stays
roughly constant, depends on the specific sensor, its field of application, and environmental
conditions. A prominent example of a class of global pose sources, which commonly suffers
from time-varying biases, is GPS. Clock errors and multipath effects are common sources for
their biases [8]. The bias might for example stay roughly constant as long as the GPS receiver
sees the same amount of satellites or suffers from the same multipath effects. Other, rather
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sensor-independent, sources of systematic error include calibration and time synchronization
issues.

Our approach does not assume any knowledge about the implementation details of the input
sources, which makes it challenging to eliminate the unknown source of biases. We therefore
propose a generic bias estimation method. To this end, we analyze the global pose measure-
ments zb with inverse measurement covariance matrices Ωb from a biased source and compare
them to a source which is noisy, but produces unbiased measurements zk with inverse mea-
surement covariance matrices Ωk. More formally, we model the noise as

zki = pi + υk
i (2)

zbi = pi + υb
i + cbi , (3)

where pi is the true pose for the i-th measurement, υk and υb are white noise such that
υk ∼ N (0, (Ωk)−1) and υb ∼ N (0, (Ωb)−1), and cbi denotes the bias. Equation (2) is a
common noise model in probabilistic robotics and we will show how to gain knowledge about
cbi by observing the corresponding unbiased pose source.

The key idea of the bias estimation is that the difference of the mean estimates of a biased
source compared to an unbiased source is roughly equal to the respective bias. Estimating the
bias in a sliding window of length s, such that the estimated bias ĉbi (s) for the i-th measure-
ment is a function of s, allows it to adapt to time-varying biases. The estimate of the bias ĉbi (s)
also depends on the unbiased pose source k, but we omit the additional index for the sake of
notational clarity. We refine this method by computing the mean errors as weighted averages
such that pose measurements with higher variances account for less impact. In total, we define
the estimated bias ĉbi (s) accordingly as

ĉbi (s) =
1

s

1∑i
j=i−s Ωk

j

i∑
j=i−s

Ωk
jz

k
j −

1

s

1∑i
j=i−s Ωk

j

i∑
j=i−s

Ωk
jz

b
j (4)

=
1

s

1∑i
j=i−s Ωk

j

i∑
j=i−s

Ωk
j (zkj − zbj). (5)

Fig. 4 illustrates the application of this method. This technique is straight forward and effec-
tive.

A key issue is the determination of the size s of the sliding window. On the one hand, the
estimated bias adapts too slowly to the true time-varying bias if the window size is too large.
On the other hand, we violate the assumption, that the unbiased pose source has a zero-mean
error over the sliding window, if the sliding window size is too small. A sliding window
size that is too small additionally leads to a significant correlation of the error terms of the
biased and unbiased source. In Section 3.4.1 we provide an insight on the order of the error
of the uncertainty estimate given a certain cross-correlation and thus allows us to gauge what
cross-correlation is tolerable.

We formulate the search for the optimal sliding window size s∗ as an offline optimization
over a dataset with L data points per pose source. This dataset contains unbiased measure-
ments zk, biased measurements zb, and ground truth measurements p. The optimal sliding
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Figure 4: Measurement error over time of the unbiased (blue diamonds) and biased (red dots)
pose sources. The difference of their mean errors in a sliding window of 10 s leads
to the computation of ĉbi (s) ≈ 5 m.

window size s∗ is given by

s∗ = arg min
s

1

L

L∑
i=1

∥∥(zbi − ĉbi (s))− pi
∥∥ , (6)

s.t. ρ(zb − p, zk − p) ≤ ρtol, (7)

τ(zk,p, s) ≤ τtol. (8)

The first condition in (7) is true if the errors of the bias-corrected source and the unbiased
source are correlated less than a threshold ρtol. For this, ρ(·, ·) is an auxiliary function
which computes the correlation between two input vectors. The second condition in (8) is
true if the sliding window is large enough to justify the assumption of a zero-mean error of
the unbiased source. For this, τ(·, ·, ·) is an auxiliary function such that 95% of all terms
1
s

∑i
j=i−s

∥∥Ωk
jz

k
j − pj

∥∥ for i = 1, . . . , L are less or equal than its function value. The usage
of the 95% percentile robustifies the function against outliers. As this is an offline optimiza-
tion without timing requirements, we content ourselves to solve (6) with an exhaustive search
over all sliding window sizes of interest.

Fig. 5 shows the output of the optimization over a given dataset. The optimal sliding window
size in terms of mean GPS error should be equal to one because the unbiased source should
be much more precise than GPS. However, this makes the GPS signal equal to the unbiased
signal and yields a maximum correlation ρ(zb − p, zk − p) of their error terms. Also, that
sliding window is too small to justify the assumption of a near-zero mean of the error of the
unbiased source as indicated by the value of τ(zk,p, s). In total, this approach allows for
choosing the optimal tradeoff for the sliding window size s∗.

This approach can easily be extended to incorporate multiple unbiased pose sources by
estimating ĉb(s) for each of these sources. In general, we assume that the majority of sources
are unbiased. We can easily determine whether a source is biased by observing all pose sources
over a certain period of time and performing a simple version of random sample consensus.
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Figure 5: We find the optimal sliding window size by minimizing the mean GPS error (see (6))
while limiting the correlation of the errors of GPS and the unbiased source (see (7)).
These two objectives conflict because the mean GPS error increases (as the adaption
of the sliding window is too slow) and the correlation decreases to random correla-
tions with larger window sizes. Additionally, we ensure that the sliding window is
large enough by inspecting the maximum mean error over all sliding windows (see
(8)).

The search for the optimal sliding window size s∗ takes into account the correlation between
the error of the unbiased and bias-corrected measurements. We highlight the importance of
analyzing this kind of measurement correlation in the next section.

3.4 Correlated Noises between Pose Sources
The noise of different pose sources can in general be correlated. Not accounting for correlated
noise leads to divergent and overconfident pose estimates. Noise is correlated between pose
sources when for example the same sensor or map data is being used in different algorithms or
when the same algorithm runs on two physically different sensors (e.g., two GPS receivers).
Two of the major sources are common process noise and common prior information [15]. Both
lead to common noise that potentially influences all affected sources. Ideally, we would be
able to eliminate the source of the common noise, but as we perform generic pose fusion we
lack the insight what this common source is. Therefore, we try to minimize its impact in the
fusion process by using CI to produce conservative estimates.

In the following, we first elaborate on the optimal fusion which requires knowledge about
the true correlation, subsequently detail the naive fusion which ignores the correlation, and
finally investigate two ways of implementing CI. Fig. 6 motivates why naive fusion is sub-
optimal as its result is overconfident. The true correlation between C1 and C2 is unknown
and randomly drawn positive correlations (displayed in gray) show that the two CI methods
(trace minimization with ω = 0.69 and determinant minimization with ω = 0.29) provide
conservative bounds.
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minimization. True covariance values for randomly chosen positive correlations are
displayed as gray dots. The naive fusion (dashed, red) is overconfident.

3.4.1 Optimal and Naive Fusion of Correlated Estimates

Two normally distributed states x1 and x2 with covariance matricesC1 andC2 can generally
be combined by

x = A1x1 +A2x2 (9)

where A1 and A2 denote quadratic matrices. To ensure that the mean error is equal to zero,
A1 +A2 = I must hold [20]. The variance law of error propagation implies for the resulting
covariance matrix

C =
(
A1 A2

)(C1 C12

C>12 C2

)(
A>1
A>2

)
(10)

= A1C1A
>
1 +A1C12A

>
2 +A2C

>
12A

>
1 +A2C2A

>
2 . (11)

To obtain a fusion with a small covariance matrix, A1 and A2 are set such that C is optimal
in some sense, e.g., minimal trace or determinant. The optimal solution with respect to trace
minimization yields

C =

[(
I I

)(C1 C12

C>12 C2

)−1(
I
I

)]−1

, (12)

see [20]. This is the covariance of the optimal fusion. However, it requires knowledge about
the cross-correlation matrix C12. If it is unknown, the naive approach is to assume C12 = 0.
In that case (12) can be simplified to

C =
(
C−1

1 +C−1
2

)−1
(13)

which corresponds to the Kalman gain [20]. This, however, leads to overconfident estimates
if C12 > 0, as illustrated in Fig. 6. The error of the naive fusion can be estimated from
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(11) by
∥∥A1C12A

>
2 +A2C

>
12A

>
1

∥∥. If the signals correlate with a correlation coefficient
ρ, i.e., C12 = ρI , the error is linear in ρ. If we can find an upper bound for the cross-
correlation, we can decide whether the error is small and tolerable or if we need to take the
cross-correlation into account. In general however, we need a method to produce conserva-
tive uncertainty estimates without knowledge of their correlation. For this, we detail our CI
framework in Section 3.4.2.

3.4.2 Covariance Intersection

CI is the optimal algorithm to fuse two estimates x1,x2 with associated covariance matrices
C1,C2 if the cross-correlations C12 between their errors are unknown [21]. The resulting
covariance matrix Cω and the fused state xω are computed according to

Cω =
(
ωC−1

1 + (1− ω)C−1
2

)−1
(14)

xω = Cω
(
ωC−1

1 x1 + (1− ω)C−1
2 x2

)
(15)

where ω ∈ [0, 1]. The parameter ω is chosen in such a way that the covariance matrix Cω is
minimized regarding a given objective function J such that

ω∗ = arg min
ω∈[0,1]

J(Cω) (16)

in order to minimize the upper bound of the corresponding mean square error matrix. Common
choices for J are the trace and determinant of Cω . We evaluate them on simulated data in
Section 4.1.

Reinhardt et al. [15] derive explicit formulas for the CI optimization using joint diagonal-
ization. We briefly introduce the main concepts here, adopt their notation, and extend their
algorithm for an important yet untreated corner case. The underlying optimization problems
for these closed-form formulas are for determinant minimization given by

ω∗ = arg max
ω∈[0,1]

n∏
i=1

ω + (1− ω)d̄i (17)

and for trace minimization given by

ω∗ = arg min
ω∈[0,1]

n∑
i=1

ai
ω + (1− ω)d̄i

(18)

where the terms d̄i arise in the development of the closed-form solutions [15]. They play a
crucial role as they are used to compute the auxiliary variables d̃i = d̄i

1−d̄i
, from which we can

finally derive the candidate solutions to (16). We refer the reader for further details to Julier
and Uhlmann [12, 14]. It is this definition of d̃i for which we provide an extension for the
corner case of d̄i = 1, where we derive how to compute ω∗.
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3.4.3 Extension of CI to a Corner Case

The closed-form expressions [15] for trace and determinant minimization are derived inde-
pendent of the properties of the covariance matrices to which they are applied. We give a
simple example in which they cannot be applied, briefly highlight the underlying problem,
and show how we can reduce the dimensionality of the optimization problem for both trace
and determinant minimization so that we can again apply the analytic solutions.

The issue is that we can only set d̃i = d̄i

1−d̄i
if d̄i 6= 1. This, however, is not always the case

as the following example shows. Without loss of generality, let

C1 =

(
Σ1 0
0 σ2

)
, C2 =

(
Σ2 0
0 σ2

)
(19)

with σ > 0. We then verify that d̄n = 1. This is the case whenever at least one element of
C1 and C2 is identical. For notational simplicity, we assume in the following that this is the
last element in C1 and C2. This important class of matrices constitutes the corner case of
interest. We will now investigate how to treat the case d̄i = 1 for both trace and determinant
minimization.

First, we are interested in determinant minimization and directly develop (17) to

ω∗ = arg max
ω

n∏
i=1

ω + (1− ω)d̄i (20)

= arg max
ω

n−1∏
i=1

ω + (1− ω)d̄i. (21)

Hence, the dimension of the CI problem can be reduced by one by solving the CI problem for
(Σ1,Σ2) instead of (C1,C2).

Second, we turn to trace minimization and develop (18) to

ω∗ = arg max
ω

n∑
i=1

ai
ω + (1− ω)d̄i

(22)

= arg max
ω

n−1∑
i=1

ai
ω + (1− ω)d̄i

+
an
1

(23)

= arg max
ω

n−1∑
i=1

ai
ω + (1− ω)d̄i

. (24)

Again we observe that this corner case leads to the reduction of the dimensionality of the
problem. The key insight is that this problem is now well-defined and that we can apply our
common set of CI tools to solve it.

This derivation is easily extended to the case that d̄i = 1 for multiple i. This reduces the
set of viable candidates for ω∗ by the amount of i for which d̄i = 1. In the extreme case that
d̄i = 1 for all i = 1, . . . , n it can easily be shown thatC1 = C2, thus ω ∈ [0, 1] can be chosen
arbitrarily.
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4 Evaluation
The experimental section is designed to support our claims that our treatment of unknown
noise correlations between different input sources leads to conservative estimates, that the bias
estimation effectively reduces systematic biases, and that the resulting pose fusion is a precise
pose estimation algorithm. We provide experiments on data gathered on a real prototype
vehicle and on simulated data.

4.1 Correlated Noise between Pose Sources
The first experiment is designed to show that naive fusion produces overconfident estimates
whereas CI produces conservative estimates. To this end, we generate a time series of random
covariance matrices for a fixed cross-correlation ρ = 0.6 by sampling from a normal distribu-
tion, subsequently correlating the noise signals, and finally modifying them to have the desired
mean and variance. With this data, we perform naive fusion, optimal fusion, and both (trace
and determinant minimizing) CI fusions. Fig. 7 shows that the naive fusion is overly confident
whereas CI produces uncertainty estimates equal to or greater than the optimal uncertainty.
In this use case, CI with trace minimization produces similar results as CI with determinant
minimization. The mean covariance of the optimal fusion is equal to σoptimal = 0.90. Both
CI with trace and determinant minimization estimate on average a covariance of σCI = 0.98,
whereas the naive fusion estimates a mean covariance of σnaive = 0.70. The proposed CI
implementation therefore provides conservative estimates.

Furthermore, we evaluate how often the corner case of d̄i = 1 arises, for which we proved
in Section 3.4.3 the reduction of the problem dimension. The frequency of this corner case
depends on the type of data and the threshold for the difference of two floating point numbers
below which we consider both numerically identical. For numerical stability, we choose this
threshold to be 0.01. With typical GPS errors (as simulated this experiment) the corner case
occurs in approximately 2–5% of all measurements.

4.2 Pose Fusion with Bias Removal
The following experiment is designed to show that the bias estimation effectively reduces the
time-varying, systematic bias of GPS data gathered on a real prototype vehicle and that the
pose fusion produces precise estimates. The vehicle is an Audi A6 Avant equipped with two
GPS receivers of different quality, and is able to additionally measure its wheel odometry. The
data was recorded on a route of about 16 km in rural and urban areas in Germany.

The errors of the two GPS receivers are significantly correlated with a factor of ρ = 0.28.
We therefore apply our CI method to combine sources with correlated noises leading to a
single virtual GPS source. However, as the covariance ellipse of the cheaper receiver is always
magnitudes larger than that of the second receiver, the intersection of the covariance ellipses
is equal to the covariance ellipse of the more expensive receiver. Therefore, the solution of CI
degenerates in this special case simply to the estimate of the second receiver.

Subsequently, we fuse the GPS measurements with odometry data. In this process, we es-
timate the bias with the help of the presented sliding window technique by comparing against
a third pose measurement source, which is afterwards ignored for the remainder of the pose
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fusion for the sake of clarity. Fig. 8 shows the position errors over time of the GPS source, the
estimated bias, and the error of the resulting output of the pose fusion.

The GPS signal exhibits a root mean square (RMS) position error of 1.31 m with a standard
deviation of 0.52 m. The pose fusion drastically reduces the RMS position error to 0.57 m
with a standard deviation of 0.33 m, thus showing the effectiveness of the bias estimation.

5 Conclusion
We presented a multi-sensor data fusion approach for pose estimation of an automated vehicle
based on smoothing the most recent part of the trajectory. The underlying optimization prob-
lem is formulated as a sliding window nonlinear least squares minimization of the pose graph
of odometry and global pose measurements. We incorporated these measurements in a generic
way and account for correlated noise between input sources, for which we apply a Covariance
Intersection framework. To minimize the effect of systematic biases, we estimate them online.
We have evaluated these approaches with experiments on a real vehicle and demonstrated
their effectiveness. Our experiments suggest that we can substantially reduce the impact of
the time-varying bias of a GPS receiver by comparing it to an unbiased pose source. The key
ideas of this paper can also be applied to other domains than automated driving.
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