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Abstract— Plant phenotyping, i.e., the task of measuring
plant traits to describe the anatomy and physiology of plants,
is a central task in crop science and plant breeding. Standard
methods often require intrusive or time-consuming operations
involving a lot of manual labor. Cameras or range sensors,
paired with 3D reconstructions methods, can support pheno-
typing but the task yields several challenges in practice such as
plant growth over time. In this paper, we address the problem
of finding correspondences between plants recorded at different
points in time to track phenotypic traits in an automated
fashion. Our approach makes use of semantic segmentation
and unsupervised clustering to compute keypoints from plant
point clouds. We extract a compact representation of the
considered scan that encodes both, topology and semantic
information. Through our approach, we are able to tackle the
data association problem for 4D point cloud data of plants
effectively. We tested our approach on different 3D plus time,
i.e., 4D, sequences of plant point clouds of different plant
species. The experiments presented in this paper suggest that
our 4D matching approach allows for non-rigid registration
of the plants that change over time. Moreover, we show that
our method allows for tracking different phenotyping traits
at an organ level, forming a basis for automated temporal
phenotyping.

I. INTRODUCTION

High-resolution monitoring of plants is important in mod-
ern agriculture, for crop breeding, and in crop science in
general. It forms the basis for analyzing the crop perfor-
mance and can also provide an indicator for plant stresses.
Measuring how individual plants develop and grow over time
is a time-consuming process and may even require invasive
methods that harm the crop. For example, today’s standard
approach to measuring leaf areas is to cut off the leaves
and scan them with a flatbed scanner. New measurement
technologies for measuring and tracking phenotyping fea-
tures employing robots and robotic sensors can open up new
possibilities to support farmers, breeders, and researchers to
measure plant performances [5], [6].

In robotics, LiDARs and RGB-D cameras are common
sensors to perceive static and dynamic environments in the
context of SLAM [23] as well as many other tasks. Extending
such approaches to the agricultural setting, however, is not
straightforward. One of the challenges in this context is to de-
velop techniques that can robustly deal with growing objects,
changing appearance, the development of new organs causing
changes in the topology as well as non-rigid deformations
caused by external factors such as sunlight, wind, gravity
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Fig. 1. 3D scans of the same plant recorded at different points in time. We
aim at finding correspondences between temporally separated point clouds
by computing meaningful keypoints to obtain a minimal representation of
the considered scan to simplify data association and non-rigid registration.

and so forth. From our perspective, especially the task of
finding correspondences over time between different scans
of plants is challenging. Fig. 1 depicts an example of two
3D point clouds of plants recorded with a laser scanner as
well as correspondence information.

However, by exploiting standard learning techniques, it is
possible to compute a minimal representation of the plant to
capture its topology and semantics. In the computer graphics
community, the problem of computing a minimal representa-
tion of an object is often referred to as skeletonization and it
is used to create animation adapting its textures based on an
interpolation scheme. This is a non-trivial problem that has
been extensively studied, see Tagliasacchi et al. [25]. Most
skeletonization approaches also do not include any semantic
information, while using only classification methods is often
not sufficient to apply non-rigid registration techniques.

The main contribution of this paper is a fully automatic
4D data association algorithm of plant point clouds. We
achieve this leveraging a keypoint extraction pipeline, based
on successive learning stages. Starting with a classifier, we
classify each point as a leaf or stem point. Then we apply a
clustering approach to compute the individual leaf instances.
Given the segmented point cloud, we employ self-organizing
maps [12] to extract the keypoint of each plant. At this stage,
it becomes possible to register point clouds at different points
in time casting the task as a minimization problem and to
track phenotyping traits such as leaf area index (LAI), leaf
length, stem diameter, and stem length over time.



In sum, our approach is able to (i) extract a set of keypoints
encoding both, semantic and topology of different plant
species at different growth stages, (ii) perform a temporal
non-rigid registration of the point clouds effectively, and
(iii) enables us to track different phenotyping traits at an
organ level. These claims are backed up by the paper and
our experimental evaluation.

II. RELATED WORK

Registering point clouds is a common problem in robotics
and variants of ICP are part of most laser-based or RGB-
D-based SLAM systems [15], [23], [29]. Several approaches
exist of register deformable objects such as humans [8], often
assuming a given topology of the deformable object [9], [7],
[19]. The problem becomes even more difficult if the object
changes its appearance and topology over time.

A closely related approach to our work is the recently
proposed one by Chebrolu et al. [3]. It uses a hidden
Markov model for 4D data associations and registration but
requires a given, minimal representation of the plants in
the form of a consistent skeleton. This is different to the
methods proposed in our paper, which computes this minimal
representation explicitly. We address the computation of a
minimal representation to register temporally separated point
clouds, with the goal of encoding both the topology and the
semantic of the plant.

For building such a representation, semantic informa-
tion about plants is helpful. While the agricultural robotics
community produced a large literature about classification
algorithm for 2D images, the number of approaches in this
domain that operate on 3D point clouds is rather small.
Paulus et al. [17] propose an SVM-based classifier that
relies on a surface histogram to classify each point in a
3D point cloud as leaf or stem. The recent approach by
Zermas et al. [28] uses an iterative algorithm called randomly
intercepted node to tackle the same problem. Sodhi et al. [21]
use 2D images to extract 3D phytomers, namely fragments of
the stem attached to a leaf for leaves detection. Shi et al. [20]
propose a multi-view deep learning approach inspired by Su
et al. [24] to address the organ segmentation problem, while
Zermas et al. [27] uses a skeletonization approach to segment
leaf instances. Our approach builds upon the work of Paulus
et al. [17] and additionally groups the leave points with an
unsupervised clustering algorithm to extract leaf instances.
In this way, we achieve an organ segmentation exploiting
labeled data for the leaves. We use this in turn as the basis
for our two-stage registration approach across plant point
clouds.

The semantic information turns out to be useful to compute
a plant skeletonization and the data association. Concerning
skeletonization, Tagliasacchi et al. [25] propose the notion of
a generalized rotational symmetry axis of an oriented set to
extract skeletons from incomplete point clouds, while Huang
et al. [11] adapted L1-medians locally to a point set to obtain
similar skeletons. Wu et al. [26] uses a Laplacian point cloud
contraction to extract skeletons of maize point clouds. We
compute the skeleton points individually for each detected

organ based on a self-organizing map (SOM). This leads to
an unsupervised approach for computing our keypoints.

The last step before being able to track phenotyping
traits over time is to find correspondences between different
point clouds recorded at different points in time. Li et
al. [14] and Paproki et al. [16] analyze time-series point
cloud data to detect topological events such as branching,
decay and track the growth of different organs. The above-
mentioned approach of Chebrolu et al. [3] performs a non-
rigid registration based on an HMM model for finding the
data association. In further work on UAV-based field analysis,
Chebrolu et al. [2], [4] propose scale-invariant 2D descriptors
to register crop rows in fields over time. Carlone et al. [1]
estimate crown radius and height for each plant in a field,
from a set of dense 3D reconstructions. In contrast, we use
a two-step hierarchical approach. First, we match different
organs to each other. In the second step, we register the
keypoints inside the pair of organs. We solve this assignment
task using the Hungarian method [13], a general method to
assign a set of n jobs to a set of m machines. Although it
was initially designed for problems with n = m, it can be
generalized to non-squared problems [22].

III. OUR APPROACH

Our approach takes as input a time-series of 3D point
clouds from a plant and aims at finding correspondences
between temporally separated scans. The correspondences
then allow for registering the clouds in a non-rigid ap-
proach [3] and to track different phenotypic traits such as leaf
area index, leaf length, stem diameter, and stem length over
time. Our input data consist only of several unordered 3D
point clouds, without inside-outside information nor RGB or
intensity data. Our approach uses the following main steps,
which are detailed in the sections below: (i) point cloud seg-
mentation, (ii) plant keypoint extraction, and (iii) hierarchical
matching over time.

A. Point Cloud Segmentation

The first step of our approach for temporal registra-
tion of plant point clouds is to classify each point of a
single point cloud as stem or leaf. To achieve this, we
use a standard support vector machine (SVM) classifier
extending each xyz-coordinates with the fast point feature
histograms (FPFH) [18] yielding an m-dimensional feature
vector. The FPFH computes a simplified histogram of di-
rections for a query point and its neighbors, thus describing
surface properties in a compressed form.

With such feature vectors as inputs, the SVM can classify
each point of a plant point cloud into stem and leaf points.
The SVM operates successfully, even in different growth
stages. Considering only the points classified as leaf points,
we perform a clustering step in order to find the individual
leaves, i.e, the instances. We achieve this in two steps.
For each plant scan, we apply the unsupervised clustering
algorithm DBSCAN using only xyz-coordinates to obtain an
initial segmentation. The second step is to discard small



clusters and to assign each discarded point to one of the
remained clusters based on a k-nearest neighbor approach.

B. Plant Registration

Once each point in a plant point cloud is assigned to
one organ, namely to the stem or to one leaf instance, we
can learn keypoints for each organ using self-organizing
maps (SOM) [12]. Standard approach to skeletonization
provides less reliable results when the geometry of the object
presents inhomogeneities, instead SOMs can easily adapt
to different geometries. SOMs are unsupervised neural net-
works using competitive learning instead of backpropagation.
They take as input a grid that organizes itself to capture
the topology of the input data. Given the input grid G and
the input set P , the SOM defines a fully-connected layer
between G and P . The learning process is composed of two
alternating steps until convergence. First, the winning unit is
computed as the argmini ||x−wi||, where x is a randomly
chosen sample from P and wi is the weight vector more
similar to x, also called best matching unit. The second
step consists of updating the weights of each unit according
to wn = wn + η β(i) (x−wi), where η is the learning rate
and β(i) a function, which weights the distance between
unit n and the best matching unit.

In our case, the grid for each organ is an n×1 chain of 3D
points that will form the keypoints for that organ. The length
of the chain n is proportional to the size of the organ, such
that the keypoints are expected to have a minimum distance
between 2 cm and 7 cm among each other. In this way, it is
possible to obtain a skeleton-like structure for each plant that
we considered. Fig. 2 shows a graphical explanation of the
SOM.

Once the keypoints are computed for each organ, we
aim at finding correspondences between pairs input point
clouds. For determining the correspondences between the
individual point clouds, we adopt a two-step registration
approach. As a preprocessing step, we align the emerging
point of the stem for both point clouds, in this way we have
a rough initial guess to start our data association procedure.
Here, we first find correspondences between whole organs
at a low resolution. This is achieved by computing the best
assignment between the mean of each organ in the scan
recorded at ti and the mean of each organ in the scan
recorded at ti+1, giving higher priority to order organs. We
define a cost matrix M as Mi,j = ||mi−nj ||, where mi is
the mean of organ i in the first scan and nj is the mean of
organ j in the second scan. Given this cost matrix, we can
compute the optimal assignment using the Hungarian method
by Kuhn [13].

Once we have the organ assignment, we perform a key-
point matching inside each organ to register the points of
each organ with its corresponding ones in the other scan.
The cost of an assignment within an organ is given by the
cost matrix W:

Wi,j = ||pi − qj ||, (1)

Fig. 2. Illustration of our approach for keypoint extraction using SOMs. An
input chain (left) and a point cloud (right) are the inputs of the algorithm.
After convergence, the chain arranges itself on the point cloud. The points
of the chain on the could form the keypoints inside each organ of the plants.

where Wi,j is the Euclidean distance between node i in the
first scan and node j in the second one. Then we minimize
the following assignment problem:

X∗ = argmin
X

||W ◦X||F (2)

s.t.
n∑
i

Xi∗ = 1 and
m∑
j

X∗j ≤ 1, (3)

where ◦ refers to the Hadamard product, i.e., the element-
wise matrix multiplication, and || · ||F is the Frobenius norm
of a matrix. The term X is a selection matrix in which
Xi,j = 1 if the match (i, j) contributes to the solution,
otherwise Xi,j = 0. Intuitively, the term ||W ◦ X||F in
Eq. (2) computes the sum of all individual assignment costs
that contribute to the solution specified through the selection
matrix X. Additionally, the first constraint in Eq. (3) ensures
that each node in the first scan is connected to only one
node in the second scan. The second constraint in Eq. (3)
guarantees that each keypoint in the second scan is connected
to at most one node in the first scan. This minimization
problem can also be solved optimally in cubic time in n using
the Hungarian method. Here, we use the variant described
by Stachniss [22] for multi-robot target allocation problems
during exploration. Once we computed the data association,
we apply the non-rigid registration pipeline described by
Chebrolu et al. [3] but we replace its HMM-based assignment
with the result X∗ given by Eq. (2).

C. Computing Basic Phenotypic Traits

Once we aligned the scan, we can compute different
phenotypic traits at an organ level. For both, the stem and leaf
instances, we leverage the already computed keypoints. For
the stem class, we compute stem diameter and stem length.
For that, we assign each point in the cloud classified as stem
to the closest keypoint. We then compute the main axis of
each region using the standard singular value decomposi-
tion (SVD) approach. At this point, we can compute both,
stem diameter and stem length with respect to the main axis
of the considered region.



Fig. 3. Overall performances of our organ segmentation approach. The
SVM is responsible for the stem and the leaf class, while instance refers to
the unsupervised clustering of individual leaves. Best viewed in colors.

For stem diameter sd, we use:

sd =
∑
n

1

kn

∑
kn

||pk − ln||, (4)

where n is the number of keypoints of the stem, kn is the
number of points in the point cloud assigned to the n-th
keypoint, and ln is the main axis of the region computed
with the SVD as explained above.

To compute the length of the stem, we first project each
point in the n-th region onto the main axis and then compute
the stem length sl by:

sl =
∑
n

max
i,j
||pj − pi||. (5)

To compute phenotypic traits associated with the leaf, we
use a very similar approach. The LAI is defined as the green
leaf area per unit ground surface area, namely LAI = Al /
ρ(Al). Where Al is the leaf area and ρ(Al) is its projection
on the ground plane. To compute it, we first compute the
leaf area Al. Using again an SVD approach, we compute the
main plane of the points associated with each node to obtain
a 2D representation of the considered region that allows us
to compute the leaf area Al:

Al =
∑
n

hull(pn), (6)

where hull(pn) represents the area of the convex hull com-
puted from the points associated with the n-th keypoint. In a
similar fashion, we compute ρ(Al), projecting all the points
of the considered leaf instance on the ground plane and then
compute the area of the resulting convex hull.

Finally, we compute the leaf length ll as in Eq. (5) through:

ll =
∑
n

max
i,j
||pj − pi||. (7)

Other geometric traits that build upon the area o shape of
the leaves or stem can be computed as well based on the
segmented, labeled, and aligned clouds.

IV. EXPERIMENTAL EVALUATION

A. Datasets

The experiments are designed to illustrate the capability
of our approach, assess its performance, and support the

TABLE I
TOMATO MATCHING ACCURACY.

Precision Recall F1-Score

Chebrolu et al. [3] (HMM) 88.30 66.94 76.15
Hungarian w/o semantics 80.01 100.00 88.89

Our approach (Hung. w/ semantics) 93.56 100.00 97.73

TABLE II
MAIZE MATCHING ACCURACY.

Precision Recall F1-Score

Chebrolu et al. [3] (HMM) 88.70 85.45 87.04
Hungarian w/o semantics 86.89 100.00 92.98

Our approach (Hung. w/ semantics) 97.50 100.00 98.76

claims made at the end of the introduction of this pa-
per. We evaluate our approach on two different 3D time-
series datasets of different plant species, on tomato plants
(solanum lycopersicum) and maize plants (zea mays). Both
datasets were recorded over more than 10 days using a
laser scan mounted over a Romer Absolute Arm, which
is manually moved around the plants to obtain high accu-
rate scans. This dataset covers the growth of such plants
in an early stage, showing substantial changes in both
appearance and topology. The dataset used in this paper
can be found at: https://www.ipb.uni-bonn.de/
data/4d-plant-registration/

B. Point Cloud Segmentation

The first experiment is designed to illustrate and assess the
performance of our combined classification and clustering
approach and to support the claim that it is well-suited for the
organ segmentation of different plant species and different
growth stages. For each temporal sequence, we randomly
sample two scans as the training set and the rest as the test
set. Our input is an n×36 feature vector, which is composed
of the xyz-coordinates and the FPFH descriptors. We use a
radial basis function as the kernel for the SVM classifier.
After performing the classification, we apply DBSCAN
clustering on the leaf class using the Euclidean distance as
metrics to obtain a complete organ segmentation. For the
leaf instances segmentation task, we compute the assignment
between predictions and ground truth as described in Sec. III-
A. We evaluate the performances of our proposed approach
computing standard metrics such as precision, recall and f1-
score on the temporal sequences. The results are given in
Fig. 3 and a visual example of our complete segmentation
approach is shown in Fig. 4, best viewed in color.

C. Plant Registration Over Time

The second experiment is designed to support the claim
that with our approach it is possible to achieve a better data
association and, thus, a better non-rigid registration between
temporally separated point clouds than with the approach
described by Chebrolu et al. [3]. As the first evaluation, we
compute the accuracy of our matching pipeline against the



Fig. 4. Sample results of our segmentation approach. In the top row, results on a tomato plant at different growth stages, in the bottom row results on a
maize plant. The brown color represents the stem class, while different shades of green represent leaf instances. Best viewed in colors.

Fig. 5. Results of our complete matching pipeline. Different colors indicate the semantic of the keypoints. Our approach can deal with substantial growth,
emerging of new organs and anomalies such as missing data and extreme leaf bending. Best viewed in colors.

correspondences found by a hidden Markov model approach
using precision, recall and f1-score. We define true positives
as the number of correct matches, false positives as the
number of wrong matches, and false negatives as the number
of non-assigned keypoints in the first scan. A summary of
the performance given these metrics is shown in Tab. I for
the tomato sequence and in Tab. II for the maize sequence.
The tables also provide a comparison of the accuracy of our
proposed approach against the matching algorithm based on
the HMM and, as ablation study of our approach, we also
show the results of the Hungarian method-based matching
without exploiting semantic information (labeled as “Hun-

garian w/o semantics”). As can be seen, our approach clearly
outperforms alternative solutions. The perfect recall of 100%
of our approach is a result of our Hungarian matching
described in Sec. III-B. Stating the matching problem as
an optimization task including the semantic information
performs best.

As second evaluation, we register the point clouds Pi

against the point cloud Pj in a non-rigid manner using our
approach as well as the one proposed by Chebrolu et al. By
comparing the registration error of both approaches we can
make a qualitative statement about the ability to register point
clouds of plant taken at different point in time. We indicate



Fig. 6. Mean error and standard deviation of the Hausdorff distance. Bars
represent the 2σ standard deviation. Our matching approach Hungarian w/
semantics results to be the most stable compared to Hungarian w/o seman-
tics, i.e. the same method without considering any semantic information,
and Chebrolu et al., i.e. the matching found by a HMM approach. Best
viewed in colors.

as Pj|HMM the results of the non-rigid registration described
by Chebrolu et al. [3] given the HMM-based matching.
whereas, Pj|our refers to the result of the non-rigid regis-
tration when applied to the matches found by our approach,
i.e Hungarian method plus semantic information. We also
compute Pj|hung , i.e. the results of the registration given the
correspondences computed by the Hungarian method without
considering any semantic information.

We can estimate the quality of our matching approach
computing the Hausdorff distance between the transformed
point clouds and the original point cloud Pj :

d(pj ,Pj|∗) = min
p′∈Pj|∗

||pj − p′|| (8)

Fig. 6 depicts the results for all matching approaches. For
the considered temporal sequences, we plot the mean error of
the Hausdorff distance as well as its standard deviation. We
see that the mean error of the baseline is greater or equal than
for our approach. Moreover, the standard deviations of our
approach show smaller fluctuations compared to the HMM-
based method. It is also clear that including the semantic
information in the matching pipeline yields, on average, to
more realistic transformations. Fig. 7 shows an illustration
of the two matching algorithms, in the first column is shown
Pj|HMM , in the second Pj , while in the third Pj|our. As
can be seen also qualitatively, our approach produces a better
alignment.

D. Phenotypic Traits

The third experiment is designed to illustrate the potential
of our approach to derive phenotypic traits. Exploiting our
complete pipeline, namely the organ segmentation followed
by the data association between temporally separated scans,
we are able to automatically compute a diverse number of
plant traits, such as the leaf area index, leaf length, stem
diameter, and stem length. In Fig. 8, we show the tracking
of such traits over the acquisition period. For visualization

Fig. 7. A qualitative overview of the two matching algorithms, brightest
regions correspond to highest errors. Our matching approach results to be
most accurate compared to Chebrolu et al. Best viewed in colors.

reasons, we plot the leaf area instead of the LAI. However,
the latter can be easily derived as described in Sec. III-
C by computing the area of the convex hull associated
with the projection of the considered leaf instance on the
ground plane. We can observe similar behaviors in leaves
that belongs to the same canopy region, as an example the
first two emerging leaves in both tomato and maize plant
show a lower growth rate with respect to the other leaves,
likely due to the fact that such leaves capture less light
than the ones at the top of the canopy. Based on the leaf
information, our approach can also be used to obtain the
BBCH index [10], which is used to describe the phenological
development stages of plants.

V. CONCLUSION

In this paper, we presented a novel approach to compute
data association between temporally separated plant point
clouds subject to plant growth. We proposed a two-stage
registration approach to tackle the organ segmentation task.
It consists of a stem vs. leaf classification, followed an
unsupervised clustering for the leaf instance estimation task.
Given the segmented organs, we can extract plant keypoints,
encoding both, semantic and topology information based on
an unsupervised approach using self-organizing maps. This
allows us to successfully develop a two-stage hierarchical
matching algorithm that first matches organs to organs and
then performs the registrations inside the organs. Our ap-
proach computes the best assignment between scans recorded
at different points in time for our given cost matrix using the
Hungarian method.

We implemented and evaluated our approach on two dif-
ferent plant species, tomato, and maize plants, and provided
comparisons to other existing techniques. Furthermore, we
supported all claims made in this paper through our eval-
uation. The experiments suggest that our approach yields a
better data association between plants point cloud at different
growth stages and allows for computing multiple phenotypic
traits of the plant at each point in time.

Despite these encouraging results, there is further space
for improvements. For example, some of the recent deep



Fig. 8. Growth estimation: the days are plotted on the x-axis, on the y-axis
we show our estimations expressed in mm. The first two rows show the
growth estimation, respectively, of leaf area and leaf length, where each
color represents a leaf instance. The last row shows the stem parameters
estimation, for visualization reasons the diameter values are multiplied by
a factor of 10. Best viewed in colors.

learning methods might be better suited in more challenging
scenes with serious overlaps or when the point clouds are not
complete. Moreover, we plan to extend our work to deploy
it in crop fields directly on a mobile platform, thus going
beyond greenhouse conditions.
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[29] M. Zollhöfer, P. Stotko, A. Görlitz, C. Theobalt, M. Nießner, R. Klein,
and A. Kolb. State of the Art on 3D Reconstruction with RGB-
D Cameras. In Eurographics - State-of-the-Art Reports (STARs),
volume 37, 2018.


