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Abstract— Our world is non-static, and robots should be able
to track its changing geometry. For tracking changes, data asso-
ciations between 3D points over time are key. In this paper, we
investigate the problem of associating 3D points on plant organs
from different mapping runs over time while the plants grow.
We achieve a high spatial-temporal matching performance
by combining 3D RGB-D SLAM, visual place recognition,
and 2D/3D matching exploiting background knowledge. We
showcase our approach in a real agricultural glasshouse used
to grow sweet peppers, using RGB-D observations from a
mobile robot traversing the environment. Our experiments
suggest that with our approach, we can robustly make data
associations in highly repetitive scenes and under changing
geometries caused by plant growth. We see our approach as
an important step towards spatial-temporal data association
for robotic agriculture.

I. INTRODUCTION

Monitoring and tracking changing geometries over time

is a common task for autonomous systems, as our world

is not static. Whenever intelligent systems should model

or understand how the world evolves, monitoring changes

over time becomes relevant. In agriculture, measuring plant

development over time is a key element in phenotyping

and central for decision management or making breeding

decisions.

Whenever the growth of a plant should be monitored

over time, data associations between individual parts of

the plant need to be estimated. These associations are the

basis for computing time-aligned 3D models. Computing

correct data associations is one of the most challenging

problems in mapping and SLAM—it is well known that

the SLAM problem simplifies dramatically with perfect data

associations. Obtaining correct data associations, however,

is challenging. This is especially true for highly repetitive

environments and those undergoing continual changes. If

both aspects come together, this task becomes even more

challenging.

We aim to investigate means for computing data associa-

tions in agricultural environments such as glasshouses or an

All authors are with the University of Bonn, Germany. Cyrill Stachniss is
additionally with the Department of Engineering Science at the University
of Oxford, UK, and with the Lamarr Institute for Machine Learning and
Artificial Intelligence, Germany. Olga Vysotska is with Microsoft Mixed
Reality & AI Lab Zurich, Switzerland; the contributions to this work have
been done while being with the University of Bonn.

This work has partially been funded by the Deutsche Forschungsgemein-
schaft (DFG, German Research Foundation) under Germany’s Excellence
Strategy, EXC-2070 – 390732324 – PhenoRob, by the Deutsche Forschungs-
gemeinschaft (DFG, German Research Foundation) under STA 1051/5-
1 within the FOR 5351 (AID4Crops), and by the European Union’s
Horizon Europe research and innovation programme under grant agreement
No 101070405 (DigiForest).

Fig. 1: Temporal associations between 3D point clouds re-projected
on the images for visualization (we show only a subset of them
for clarity). Our method works in presence of visual changes due
to plant deformation and strong visual aliasing of the plants. It
is able to match the images of the same plant taken in different
weeks. At the same time, it can discard images that look similar
but depict different plants, thanks to the combination of sequential
place recognition and conditioned feature matching.

orchard monitored by a mobile robot. We explicitly focus

on the data association problem and aim to find ways to

associate plant organs over time. An example of such a

data association over time is depicted in Fig. 1, in which

associations between plants have been created. We do not

address the complete 4D SLAM problem in the sense of

building a spatial-temporal 4D model, as it is not fully clear

how a 4D model should look like in the domain of growing

plants. We, however, target realistic robotic data acquisitions

in commercial glasshouses. We explicitly exclude artificial

setups such as high-precision laser scanning in the lab, as

done in prior work, including our own ones [6], [16], [22].

The main contribution of this paper is a practical, novel

approach toward spatial-temporal mapping of plants in the

agricultural domain. Our approach establishes data associa-

tion between highly repetitive plants, even if they undergo

changes over time. Our approach combines 3D RGB-D

SLAM to build local models of plants while the robot

traverses the glasshouse. When mapping the space again,

we employ visual place recognitions exploiting sequences

of images. Based on consistent image pairs, we can create

the correspondences between observed plants across time,

considering that stem locations are fairly static. Given the

image data associations and plant associations, we then

associate plant surface points across time, resulting in links



Fig. 2: Our proposed pipeline for 4D data associations combining 3D SLAM for mapping a single mission, visual place recognition based
on image sequences, scan registration, and conditioned feature matching.

between plant parts over time. This sequential approach

allows for generating robust 4D associations over time and

space. We show the capabilities of our method using a real

robot equipped with consumer RGB-D cameras operating in

an agricultural glasshouse used to grow sweet peppers.

II. RELATED WORK

Robotics for plant phenotyping has recently gathered at-

tention in the scientific community. Das et al. [8] present

methods for automated crop monitoring using a custom sen-

sor suite. Riggio et al. [21] illustrate the use of RGB images

for yield estimation in vineyards exploiting prior structural

information. A central point in performing automatic phe-

notyping is considering the evolution of plants’ traits over

time. Chebrolu et al. [5], [7] propose robot localization

and long-term registration using aerial images for precision

agriculture. Chebrolu et al. [6] exploit a skeleton structure of

the plant to find stable associations between different growth

stages. The main idea of finding stable features to perform

plant registration is an inspiration for our work, which,

instead of using a skeleton, operates directly on images and

raw point clouds.

A standard approach to 3D point matching is ICP by

Besl and McKay [4]. Huang et al. [14] assume rigid scene

and offer a recent survey on point cloud matching and

registration. However, most of these methods require a good

prior about the relative pose between the two point clouds

to provide suitable matches. This is often not given in

agricultural environments due to the non-rigid deformation

that natural structures are affected over time.

Visual place recognition (VPR) can be a powerful tool to

find images taken from the same location and is essential

in highly repetitive environments. Classical approaches use

local features such as SURF [2] or SIFT [15] to perform

image matching. However, these methods can be suscep-

tible to scene changes. Arandjelovic et al. [1] introduce a

low-dimensional global neural descriptor called NetVLAD,

now a standard for visual place recognition techniques.

Recently, fully deep learning-based approaches have also

been proposed in this field. Masone et al. [17] provide a

comprehensive overview of deep learning approaches for

visual place recognition.

Milford et al. [18] propose to exploit sequential informa-

tion of the input data for VPR in autonomous driving and

transfer the single image matching into a sequence matching

problem using multiple images. Vysotska et al. [25] follow

the idea of sequence-to-sequence alignment and formalize a

sequential matching as an online informed graph search. This

method constitutes one of the core modules of our pipeline,

as it is robust to substantial visual changes. Additionally,

our approach exploits 3D information to cope with highly

repetitive natural environments commonly observed in the

agricultural domain when monitoring rows of similar-looking

plants.

Currently, there is no method for temporal matching rows

of plant point clouds that uses only RGB-D information

to keep track of the evolution of traits in time. Dong et

al. [10] provide a method for robust data association of both,

spatial and temporal domains, exploiting a factor graph for

4D reconstruction. Nevertheless, their approach uses exter-

nal information, such as IMU and GPS information, while

operating in an open field and observing numerous static

elements. In contrast, Magistri et al. [16] perform a non-rigid

registration of plants by finding temporal matches between

skeletal structures. Extracting plant skeletons requires high-

resolution 3D data, complete views, and isolation of plants.

Thus, these are too strong assumptions when operating in

a commercial glasshouse. Furthermore, Magistri et al. [16]

work only with single plant instances, whereas our method

is well-suited for entire rows of plants. Closely related to our

application is the work by Riccardi et al. [20] that introduce

a temporal fruit tracking and matching system, which uses

an expensive automotive LiDAR sensor and keeps track of

fruits. It tracks strawberries without considering other plant

components leading to an easier problem as the berries are

fairly distinct. While their approach handles a sequence of

observations, it does not target the application of matching

temporally distant sequences.

To the best of our knowledge, we propose in this paper

the first method to perform 4D matching of plants between



incoming RGB-D image streams and a prior map acquired

at a different point in time, without using any positional

information despite aliasing due to repetitive structures of

plants in a glasshouse.

III. OUR APPROACH

We propose a pipeline that computes data associations

between temporally distant point clouds recorded from plants

in a glasshouse. In particular, we perform the matching

between a map of the environment recorded at a previous

data collection and a point cloud generated from an RGB-D

stream captured in a different data recording session. This

allows us to keep track of the non-rigid changes that plants

undergo during growth without relying on any additional

information about the pose of the robot.

In this section, we provide the details of our approach,

starting from how we constructed the 3D representation of

the first data acquisition used as a reference model in our

pipeline for the next run (Sec. III-A). Then, given the new

incoming RGB-D image stream, we exploit the approach

proposed by Vysotska et al. [25] to perform visual place

recognition and understand which part of the reference model

we are currently observing. The output of this module is

image correspondences that we can turn into a rough estimate

of the robot’s position in the prior model (Sec. III-B). We

further refine the pose estimate using scan alignment. As

plants undergo non-rigid changes in structure, we perform

the alignment on temporally stable features as explained in

Sec. III-C. Finally, in Sec. III-D, we present the temporal

association algorithm, where we use a combination of de-

scriptor matching and 3D nearest neighbor search on the

aligned plants’ point clouds which is feasible given the prior

steps that constrain the associations. We sketch our proposed

pipeline in Fig. 2.

We perform our measurements using the robotic platform

introduced by Smitt et al. [24], which has three vertically

mounted RGB-D cameras that provide side-view. The robot

moves along the plant rows through the glasshouse. We use

only the middle camera to perform visual localization in

Sec. III-B because it captures most information about the

plants. Otherwise, we use all three cameras to generate the

point clouds used in our approach.

A. 3D Mapping of Plant Rows

In this section, we explain how we obtain the initial 3D

representation of the environment at one point in time.

Let St be a sequence of images captured with an RGB-

D sensor at time t, which is an ordered set of images

Si
t = {I1t , I

2
t , . . . , I

n
t }, where n is the number of images

acquired in the session at time t. We exploit the wheel

odometry to associate to St a set of corresponding initial

poses Tt = {T
1

t ,T
2

t , . . . ,T
n
t }, where T

i
t ∈ R

4×4 represent the

pose in the world coordinate frame of the session at time t

as homogeneous matrices.

Given the RGB-D images and an initial guess of the poses,

we can generate a colored 3D point cloud by exploiting the

pixel-wise depth di of each RGB-D image using the classic

Fig. 3: An example point cloud map produced by our approach.
We show in the red circles the stems of the plants that we use as
temporally stable features for the registration.

pinhole camera unprojection [13]. Following the word by

Smitt et al. [24], we maintain only the 3D points belonging

to the measured crop row, filtering out all points outside the

relevant depth range.

Then, we apply the RGB-D odometry algorithm proposed

by Park et al. [19] to refine the pose using the observations.

With this approach, both photo consistency and geometry

constraints are considered to update the poses T
i
t of each

image Iit .

This straightforward mapping system is computationally

highly efficient and can run on a single CPU core. Fig. 3

shows an example of the aggregated point cloud map pro-

duced with this approach using the refined poses.

B. Sequence Alignment over time using Visual Localization

Let us now consider a new recording session in the same

environment but at a future time t + 1 e.g., one week

later. We have again an ordered set of images St+1 =
{I1t+1, I

2
t+1, . . . , I

m
t+1}, where m is the number of images

acquired in this new session. Our objective is to associate

each image I
j
t+1 to an image Iit in the reference sequence St,

if such a match exists. Once such an image correspondence

is known, we can transfer the pose T
i
t to I

j
t+1 obtaining a

reasonable estimate of the robot’s current location in the map

recorded at time t. This gives an initial global alignment of

the missions.

As the environment in which we are operating is changing

due to the growth of the plants and is highly repetitive, we

have to exploit the sequential nature of the recorded data.

We use the approach of Vysotska et al. [25] for robust image

sequence alignment over time. In the following, we briefly

discuss the method of Vysotska et al. [25] as it is a core

component to make our pipeline robust and align missions

even under drastic appearance changes.

For each image Iit , we compute a global visual feature

vector. More specifically, we use NetVLAD descriptor [1]

as it is robust to illumination changes, which we often

experience in our data. As a result, we obtain a low-

dimensional representation d
i
t ∈ R

D for each image Iit . We



(a) Query (b) Reference

Fig. 4: Example of visual place recognition result. (a) A frame from
the query sequence, (b) the result of the visual place recognition
algorithm. The correct match is found even with many missing parts
of the plant.

use the cosine distance to determine the similarity sim(Iit , I
j
t )

between images Iit and I
j
t :

sim(Si
t , S

j
t ) =

d
i
t

⊤

d
j
t

‖di
t‖‖d

j
t‖

. (1)

We perform a search in a data association graph to obtain

the best possible match. More specifically, we use a directed

acyclic graph G = (X , E) as a data structure. Following the

notation of Vysotska et al. [25], X are the nodes, and E are

the edges. Each node represents the fact that an image Iit is

compared to an image in I
j
t+1, and each edge represents a

possible movement of the robot between image recordings.

To model that the robot can move at different speeds or the

cameras can have different frame rates, each node in the data

association graph is connected to K edges. For larger values

of K, we have more nodes connected with the current one,

so more images in the sequence are considered as possible

next match. In our approach, we adopt K = 5 as in the

original work of Vysotska et al. [25].

Another problem is that all the plants share similar ap-

pearances, making it challenging to differentiate plants. In

our approach, we exploit the idea of lazy data associations

originally proposed by Hähnel et al. [12] in the context of

SLAM.

We allow for committing late on a specific data association

through a graph search procedure. To enable an online

execution, we build the graph incrementally while searching

for possible matches. The key idea is to use a heuristic about

image matching cost to enable a fast and effective search in

the data association graph. We refer to [25] for details.

The result of this approach is a sequence-consistent set

of matched images with pairs (i, j), i ∈ {1, . . . , n} and j ∈
{1, . . . ,m}. From that, we can determine the pose alignment

over time Tt+1 by setting T
j
t+1 = T

i
t as the initial guess.

Fig. 5: Illustration of the point cloud registration using our matching
based on the stable stem area. We show in yellow the query point
cloud. On the left, the initial alignment using the pose computed
by visual localization. On the right, the refined result obtained by
registering the plants’ stem areas.

Using only visual information, we can perform local-

ization of the robot’s poses in the new mission to the

previously mapped environment, even with substantial visual

changes and aliasing. Fig. 4 shows that our approach can find

matches between images despite missing parts of the plant

and different leaves density.

C. Plant Registration using Stable Features

Consider now an incoming image I
j
t+1 from the sequence

St+1 and the corresponding associated poses T
j
t+1. As de-

scribed in Sec. III-A, we can produce a colored 3D point

cloud using the depth information and bring it into the same

frame of the reference map. Fig. 5 (left) shows an example

of a point cloud obtained from a single image unprojected

into the reference map using only the positional information

obtained with visual localization described in Sec. III-B. To

achieve a plant-to-plant alignment, we propose to extract

points that do not change between sessions to perform an

initial point cloud registration of the plants. This is useful

to correct the pose obtained with the visual localization

approach to obtain a good overlapping between the current

measurement and the target map and thus correct the set of

poses Tt+1.

We adopt the plants’ stems (see Fig. 3) as temporally

stable features. In particular, they are extracted by simply

applying a threshold on the z-axis to the point clouds. In this

way, we can register plants without considering moving parts

such as leaves and fruits, which can considerably change

shape and position between the two sessions.

We perform point cloud registration using the plane-to-

plane ICP approach originally proposed by Segal et al. [23].

Fig. 5 (right) shows the result of the registration algorithm,

where the plants overlap along stable stem areas. As ex-

pected, we do not have a perfect overlapping of leaves and

fruits due to changes in the plant geometry.

D. Temporal Matching across Whole Plants using Visual

Feature Correspondances

To obtain a good association between different parts of the

plants, we need a representation that is stable under non-rigid



changes that the plant can undergo between different record-

ing sessions. We exploit visual information to determine

correspondences between point clouds while considering the

alignment done so far. In particular given the incoming image

S
j
t+1 and the associated T i

t+1 from the sequence recorded at

time t, we can compute local descriptors to determine which

part of the pictures is relevant. We propose to use SuperPoint,

a neural local feature extractor developed by Detone et al. [9]

that is robust to visual changes.

Once we have the local descriptors for both images, we

perform a matching between them, finding keypoints that

represent the 3D points on the plants. Then, we apply a

RANSAC schema [11] to filter outliers, using the corre-

sponding Homography as a discriminator.

From the images, these matches are converted into 3D

point correspondences by unprojecting each keypoint into the

corresponding point cloud. For each unprojected point, the

nearest neighbor inside the map is found. The nearest neigh-

bor search is performed efficiently by computing a KD Tree

representation of the point clouds as proposed by Bentley

et al. [3]. Only matches for which the Euclidean distance

is under a threshold of 0.5m are considered. Furthermore,

matches are filtered using the same threshold on the z-axis

used in the mapping step. This geometric filtering is possible

thanks to the registration of the point clouds, which are now

in a common reference frame. Fig. 7 shows the matches

computed by our pipeline before and after the geometric

filtering. By exploiting the 3D information, our system can

discard most of the associations in the background and focus

on semantically meaningful parts of the plant.

IV. EXPERIMENTAL EVALUATION

The main focus of this work is the development of

a method to perform temporal data associations between

individual plants’ organs in order to be able to keep track

of their changes over time. The tracked points are 3D points

on the plants’ surfaces and stem from the plant recorded at

different acquisitions while plants grow.

We present our experiments to show the capabilities of

our method in finding correspondence on a real agricultural

glasshouse dataset, with highly repetitive scenes and non-

rigid changes. We want to point out how our approach is

capable to address these results using only a single image

and a previously built 3D map, without any prior knowledge

about the pose of the incoming measurement.

A. Data Collection

To collect our data, we used the robotic platform described

by Smitt et al. [24] operating in a glasshouse for growing

sweet pepper in Bonn, Germany. In particular, 3 RGB-D

cameras have been utilized to capture sweet peppers plants in

an advanced growth stage. The sensors are Intel RealSense

D435i, where infrared information is used to obtain depth

information in addition to RGB data.

We have a FOV overlap of about 20% between the three

cameras, which are placed one on top of the other. Fig. 6

Fig. 6: From left to right: images acquired from camera 1, camera
2 and camera 3.

TABLE I: Quantitative results for our approach.

Total matches Avg. matches Total Precision Avg. Precision
per image per image

16869 168 0.957 0.954

shows the images acquired from the three cameras, and it is

easy to visualize the point of view utilized.

In particular, we collect two datasets, one week apart from

each other. The first, used as the reference, was collected on

the 19th of September, 2022. The second, on the 26th of

September 2022. The plants’ shapes have changed between

the two missions; leaves have grown, fruits have ripened and

changed color, and some have even been harvested.

B. Quantitative Evaluation

Evaluating the 3D points matches of non-rigid objects is

difficult, especially with an unlabelled dataset if no plant

organ instance is available. For this reason, we performed the

evaluation projecting each 3D match on the original images.

We can then evaluate the quality of each match by manually

inspecting the corresponding image points to check if they

represent the same entity, a long manual procedure.

Because of the contained speed of the robot during the

recording, we have a low displacement between consecutive

frames. For this reason, we considered one frame every 10 in

the evaluation to ensure a sufficient difference in the portion

of the field that is observed. As a result, we consider a total of

100 frames, each made by three images, for a total of 16, 869
associations that we manually analyzed in our evaluation.

We measure the precision of our method for temporal

matching by computing the number of correct associations

among all reported ones. In Tab. I, we show the number of

associations and the corresponding precision i.e., the number

of correct matches over the total reported associations, both

as average per image and as a cumulative metric. In all

the images, the result of the visual localization was always

correct, with an accuracy of 100%. This provides us with a

good initial guess for the plant registration algorithm. Our

pipeline achieves more than 95% precision on the temporal

matches.



Fig. 7: On the top, the associations found by matching only
SuperPoint descriptors. On the bottom, the result obtained by
filtering the matches exploiting the 3D information.

C. Qualitative Evaluation

As only providing the precision in a quantitative evaluation

is one part of the story — but the only one that this type

of evaluation allows us to do — we also provide a set of

qualitative example images illustrating the matches in Fig. 9.

Furthermore, in Fig. 8, we show qualitatively the result of a

baseline that matches SIFT descriptors from a query image

to the reference image sequence to find temporal matches. As

expected, this vanilla approach cannot find the corresponding

image in the reference sequence. As a consequence, it fails to

find good correspondence between the two plants, whereas

our system can solve both problems and allows us to find

good 3D temporal matches, as we can see in Fig. 9.

In Fig. 7, we qualitatively show that exploiting the 3D

information is essential to solve the data association problem

in highly changing environments, such as glasshouses. In

particular, we compare purely visual feature matching with

our 3D data association pipeline. As we can see in the

pictures, we can filter most of the false positive matches

by relying on geometric information. This is possible thanks

to our registration algorithm that exploits stable temporal

features and allows us to have both plant point clouds in the

same reference frame.

Fig. 8: Example of using a nearest neighbor search on SIFT
descriptors to perform visual place recognition for a query image.
Due to the highly repetitive structure of the glasshouse rows, this
approach fails in finding the corresponding reference image.

V. CONCLUSION

In this paper, we presented a novel approach for 4D data

association in a real agricultural glasshouse. Our approach

operates in highly repetitive scenes under changing geome-

tries caused by plant growth. Our method combines 3D

RGB-D SLAM, visual place recognition, and background

knowledge to address the data association problem. This

allows us to successfully obtain temporal matches between

3D point clouds over time, using only a single RGB image

with depth information to keep track of the evolution of

plants’ shapes in time.

We implemented and evaluated our approach on a real

agricultural glasshouse dataset and supported the claims

made by this paper. The experiments suggest that spatial-

temporal data association is possible for natural and dynamic

environments by means of a single RGB-D camera. Our

work is an important step toward the 4D reconstruction

of agriculture fields, especially suitable for phenotyping

and breeding decisions. Plants’ geometry evolution tracking

using consumer RGB-D cameras can potentially enhance

autonomous in-field operations for robots in agriculture.

REFERENCES

[1] R. Arandjelovic, P. Gronat, A. Torii, T. Pajdla, and J. Sivic. NetVLAD:
CNN Architecture for Weakly Supervised Place Recognition. In
Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition

(CVPR), 2016.
[2] H. Bay, A. Ess, T. Tuytelaars, and L.V. Gool. Speeded-up robust fea-

tures (SURF). Journal of Computer Vision and Image Understanding

(CVIU), 110(3):346–359, 2008.
[3] J. Bentley. Multidimensional binary search trees used for associative

searching. Communications of the ACM, 18(9):509–517, 1975.
[4] P. Besl and N. McKay. A Method for Registration of 3D Shapes.

IEEE Trans. on Pattern Analysis and Machine Intelligence (TPAMI),
14(2):239–256, 1992.
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