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Abstract
For situations, where mapping is neither possible from high altitudes nor from the ground, we are developing 
an autonomous micro aerial vehicle able to fly at low altitudes in close vicinity of obstacles. This vehicle is 
based on a MikroKopterTM octocopter platform (maximum total weight: 5kg), and contains a dual frequency 
GPS board, an IMU, a compass, two stereo camera pairs with fisheye lenses, a rotating 3D laser scanner, 8 
ultrasound sensors, a real-time processing unit, and a compact PC for on-board ego-motion estimation and 
obstacle detection for autonomous navigation. A high-resolution camera is used for the actual mapping task, 
where the environment is reconstructed in three dimensions from images, using a highly accurate bundle 
adjustment. In this contribution, we describe the sensor system setup and present results from the evaluation of 
several aspects of the different subsystems as well as initial results from flight tests.
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1 INTRODUCTION
Data acquisition from mobile platforms has become established in many communities, because of the possibility 
to cover wide areas. For mapping from above, unmanned aerial systems (UASs) have been developed in 
the past ten years (Everaerts 2008). In contrast to other mobile platforms, unmanned aerial vehicles (UAVs) 
have the advantage of being able to overfly inaccessible and also dangerous areas. Furthermore, they can 
get very close to objects to achieve high resolution measurements with low resolution sensors. Especially 
in the field of precision farming such as phenotyping or plant monitoring (Xiang et al. 2011), or in the fields 
of infrastructure inspection (Merz et al. 2011) and recording of archaeological sites (Eisenbeiss et al. 2005), 
UAVs are meanwhile often deployed. In most cases, UAVs collect object information via remote sensing, 
which means that the data is acquired without physical contact to the object. In the following, we will use the 
term MAV (Micro/Mini Aerial Vehicle) as it is often applied to for UAVs with a weight lower than 5kg. 
The goal of the research project Mapping on Demand is to develop a lightweight autonomously flying MAV
that is able to identify and measure inaccessible three-dimensional objects using visual information. A major 
challenge within the project comes with the term ‘on demand’. Apart from the classical ‘mapping’ part, where 
3D information is extracted from aerial images, the MAV is intended to fly fully autonomous on the basis of a 
high-level user request, avoiding obstacles and processing mapping data in real-time including the extraction 
of semantic information (Loch-Dehbi et al 2013). Therefore a precise and robust direct georeferencing is 
necessary, not only for the real-time processing of the image data, but also for the autonomous navigation of 
the system.  

2 SYSTEM DESIGN AND SENSOR SETUP
Within the project, we have developed two different micro aerial vehicles (MAV), focussing on different 
aspects of the project goals. In the future, the sensors and properties of the two systems will be combined in a 
single setup. One MAV (Figure 1, left, referred to as ‘IGGKopter’) is designed to focus on the development of 
precise real-time trajectory estimation, and delivers directly georeferenced high resolution images, which will 
be used later to reconstruct surfaces and objects of the environment. The other MAV (Figure 1, right, referred 
to as ‘AISKopter’) is designed to focus on the autonomous flying aspects of the project, including obstacle 
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detection, collision avoidance, and path planning. 

Fig ure 1: The two MAVs, as they are developed within the project. Left: IGGKopter. Right: AISKopter

Both MAVs are based on a MikroKopter OktoXL assembly kit of HiSystems GmbH, customized to address 
the specifications of the application. They both contain an onboard computer (Intel Core i7, 8GB RAM), based 
on an EPI-QM77 embedded PC board, providing sufficient computing power for complex tasks, such as image 
processing. The computer is connected to a ground station via Wi-Fi. Another component, which is identical in 
both MAVs, is a system of two stereo camera pairs pointing forward and backward with a pitch angle of 45°. 
Each camera has a fisheye lens providing a field of view of about 185°. Sampled with a frequency of 10Hz, 
these stereo cameras contribute to trajectory estimation, as described in Sec. 3, and also provide information 
about objects and obstacles in the vicinity of the vehicle (see Sec. 4).  A major component on both MAVs is 
the direct georeferencing unit. This unit contains inertial sensors (accelerometer and angular rate sensors), a 
magnetometer, a barometer, a dual-frequency GPS receiver, a single frequency GPS receiver, and a processing 
unit in order to provide precise information about the vehicles motion state. Details on the georeferencing unit 
are given in Sec. 3.1. 
The main mapping sensor, a 5 Megapixel camera with global shutter, is attached to the IGGKopter. This 
camera is mounted to a servo and thus can be pointed downward or sideways. Instead of the high resolution 
camera, the AISKopter contains a customized continuously rotating 3D laser scanner, measuring distances 
to objects up to 30m in almost all directions. It is used to build a local map of the environment and to detect 
obstacles (see Sec. 4). The vehicle also contains eight ultrasonic sensors, also used to detect obstacles, which 
may not be seen by the laser scanner (e.g. windows). 
For the communication between different components of our system (onboard processing and ground station), 
we employ the communication infrastructure of the Robot Operating System ROS (Quigley et al., 2009). 
Those processing pipelines with large amounts of data and almost batch-like processing like the laser pipeline 
and the visual obstacles pipeline presented in the following are implemented using nodelets and efficient 
communication, respectively.

3 TRAJE CTORY ESTIMATION AND DIRECT GEOREFERENCING
A crucial part of the project is the ability to estimate the current position and orientation of the MAV at any time 
and with a high precision. This is necessary for the reconstruction of surfaces and objects in a global reference 
frame. In classical airborne photogrammetry the images are oriented using ground control points (and GPS/
INS data from the camera mount). We want to avoid the deployment of ground control points and therefore 
need a precise position and attitude determination of the camera for every taken image. This method is known 
as direct georeferencing. Within the project, we developed a direct georeferencing multi sensor unit, which is 
described in this chapter. An important specification of this unit is the ability to provide the motion information 
of the vehicle in real-time, which is necessary as input to the autonomous navigation software of the MAV. It is 
also planned to consider a priori map information during the flight, such as LOD2 models of buildings (Level 
of Detail 2, 3D model including roof structure), which are usually available in global coordinate systems. 
Since GNSS observations, which provide the main data source for the direct georeferencing, are not necessary 
available at all times, a trajectory estimation based on the two stereo camera pairs is also developed in order to 
improve and robustify the georeferencing performance. 
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3.1 Direc t Georeferencing Unit
The sensor unit consists of dual-frequency GPS receiver (Novatel OEM 615), a single-frequency GPS receiver 
(uBlox Lea6T), a tactical-grade MEMS-based inertial measurement unit (Analog Devices ADIS 16488), a 
magnetic field sensor, a barometer and a real-time capable processing unit (Nations Instruments sbRIO 9606). 
It also contains a radio modem, enabling the reception of GPS data from a reference station. Figure 2 shows 
the prototype version of the sensor unit. It measures 11x10.2x4.5cm and has a weight of about 240g, without 
the GPS antennas. 

Figure  2: Left: Prototype of the direct georeferencing unit. Right: Block diagram of the sensor unit.

The main georeferencing sensor is the dual-frequency GPS receiver. Together with the GPS observations from 
a reference station, which are received via the radio modem, a real-time kinematic (RTK) GPS solution with an 
accuracy of about 1cm is calculated using a custom developed algorithm. The main task in RTK GPS processing 
is the determination of the carrier phase ambiguities (see Hofmann-Wellenhof et al., 1994 for details). This is 
done by first estimating real-valued ambiguities using GPS code and carrier phase observations (the so called 
float solution with an accuracy of about 20cm), and then trying to find the true integer-valued ambiguities using 
a search algorithm, leading to a so called fixed solution with an accuracy of about 1cm. Figure 3 (left) shows 
the results of a test flight under ideal conditions. To demonstrate the functionality of the ambiguity search, the 
ambiguities have been reinitialized in all epochs, still leading to a fix in nearly all cases. The flight trajectory 
in Figure 6 was performed under non-ideal conditions very close to a building. Here satellite occlusions yield 
more situations, where only a float solution could be obtained (red circles), leading to systematic errors in 
the order of 20cm. Currently, the position of the vehicle is estimated using GPS observations only, without 
any motion model of the device. In the future, the full motion estimation will also use the inertial sensor data 
and the results from the incremental bundle adjustment (see sec. 3.2) in a tightly coupled way. This and the 
possibility to adjust the estimation filter optimally to the system and the application are the reasons, why we 
decided to develop our own RTK GPS processing algorithm (Eling et al., 2013a), instead of using a freely or 
commercially available one.
The attitude of the vehicle is estimated using the inertial sensors, the magnetometer and a short baseline 
between the antenna of the single frequency receiver and the antenna of the dual frequency receiver. The 
magnetometer provides a true north reference, but this can be strongly disturbed by electrical currents on the 
MAV. So, we decided to implement a short single-frequency baseline of about 50cm on the vehicle, enabling 
the determination of the vehicles heading angle in the GPS coordinate frame (see Eling et al., 2013b for 
details). The estimation of position and attitude within a single estimation filter, as it is the subject of current 
research, will also improve the attitude accuracy, especially in conditions when GPS observations are not 
always available.   
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Figure  3: Example trajectory under ideal GPS conditions, calculated onboard during the flight. For nearly all 
times the carrier phase ambiguities could be fixed. The right side shows the height component and the attitude. 

3.2 Increme ntal Bundle Adjustment
Bundle adjustment is the method of choice for orienting cameras and determining 3D coordinates of object 
points. It has a number of favourable properties, e.g. it is statistically optimal in case all statistical tools are 
exploited and it is highly efficient in case sparse matrix operations are used and variable reordering is done to 
prevent unnecessary fill-in. However, the computational expense of applying periodic batch bundle adjustments 
on each image of an image sequence would be too high as it grows with the number of involved camera 
motions and 3D points. For this reason, we process the images of the multi-camera system in a keyframe-based 
fast incremental bundle adjustment that makes a visual SLAM (Simultaneous Localization and Mapping) 
application for real-time on-board ego-motion estimation in an unknown scene feasible. The four cameras with 
1,55mm fisheye lenses have a field-of-view of up to 185° and capture four monochromatic image sequences 
with a frame rate of 10 Hz in a synchronized way with an image resolution of 752×480 pixels. The cameras are 
mounted as two stereo pairs with a basis between the cameras of 20 cm, one looking ahead and one looking 
backwards with a pitch angle of 45°, see Figure 4. 

Figure 4: Left : Multi-camera system, as it is mounted to both MAVs. Right: Images of all four synchronized 
fisheye cameras. The yellow points are features, detected and tracked by the KLT tracker.

This configuration provides highly overlapping views and a large field of view. Figure 4 (right) shows an 
example frame set. The yellow points are interest points, which are corners in the gradient image with a 
large smallest eigenvalue of the structure tensor, cf. (Shi and Tomasi, 1994). The interest points are extracted 
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and tracked in the synchronized video streams of the individual cameras by the OpenCV implementation of 
the KLT tracker, that implements the Lucas-Kanade method with pyramids according to (Bouguet, 2000), 
and matched across the cameras, if possible. The feature points are converted into ray directions pointing 
to the observed scene points in the individual camera systems. For this, we model the fisheye lens with the 
equidistant-model described in (Abraham and Förstner, 2005), allowing for ray directions with an intersection 
angle equal or larger than 90° to the viewing direction.
Previous work yielded a rigorous batch bundle adjustment for omnidirectional and multi-view cameras for 
efficient maximum-likelihood estimation with scene points at infinity, called BACS (bundle adjustment for 
camera systems), see (Schneider et al., 2012). Classical bundle adjustments are not capable of far or even ideal 
points with small intersection angles, i.e. points at infinity, e.g. points at the horizon, which have been proven 
to be effective in stabilizing the orientation of cameras, especially their rotations. The calibration of the multi-
camera system, which includes the translation and rotation from each camera into each other, is determined in 
advance according to (Schneider and Förstner, 2013). 
Recently, we made BACS real-time applicable as described in (Schneider et al., 2013). Our keyframe-based 
method computationally selects only a small number of past frames to process a global incremental bundle 
adjustment step, which reduces the processing to some geometrically useful, tracked observations. The 
initiating frame set is chosen as the first keyframe set with a fixed pose M

k
, defining the coordinate system up 

to scale. The index k denotes a motion of a set of keyframes K
k
 of all keyframe sets K = {K

k
 , k = 1, ..., K} ⊂ T = 

{T
t
 , t = 1, ..., T }, taken out of the set T of all frame sets T

t
, t being the index referring to the time of exposure of 

a set of frames taken in a synchronized way. A new keyframe set with motion M
k
 is initiated in case a minimal 

geometric distance to the last keyframe set with motion M
k-1

 is exceeded, e.g. a translation of 1 m or a rotation 
of 30°, see Fig. 6.

Figure 5: Incremental bundle adjustment. Left: At every frame, a new motion state M
t
 (green) is calculated by 

resection using the scene points in the map X . Right: After a certain motion distance, e.g. 1m or 30°, a keyframe 
is initiated (red). At every keyframe, a fast incremental bundle adjustment step is calculated to refine all 

keyframes M
k
 in K and scene points in X.

A map in our context is a set of scene points X = {X
i
 , i = 1, ..., I}, which is initialized by forward intersecting the 

matched ray directions in the stereo pairs in the initiating frame set. Robust estimates for the motion M
t
 of the 

camera system in the map are computed at each time of exposure t via simultaneous resection of all cameras by 
using a generalized camera model with multiple projection centres. We determine the solution for the six pose 
parameters of M

t
 by a robust iterative maximum likelihood-type estimation.  Observations with large residuals 

are weighted down using the robust Huber cost function (see Huber, 1981). Using the pose M
t−1

as the initial 
approximate value, the estimation for M

t
 converges in most cases after 10-20 msec (2-3 iterations). This allows 

the orientation of set of frames taken with a high frame rate. A track of observations getting a low weight is put 
on the blacklist. This procedure ensures a reliable data association as tracks on the blacklist are not considered 
in the following frames anymore.
The map is continually expanded as new keyframe sets are added. Initial values for new tracked scene points 
are obtained by forward intersection. Scene points in the map X and poses in K are updated and refined by the 
new observations in the incremental bundle adjustment step when a new keyframe is initiated. The incremental 
bundle adjustment step recalculates only entries of the information matrix, i.e. the normal equation matrix or 
inverse covariance matrix, which are actually effected by new measurements. To this end, we use the sparse non-
linear incremental optimization algorithm iSAM2 provided by (Kaess et al., 2012), which is highly efficient, 
as only variables are relinearized that have not converged yet and as fill-in is avoided through incrementally 
changing the variable ordering.
Tracking 200 feature points in each camera and setting a convergence criterion for the rotations to 0.5° and for 
the translations to 3 cm yields a very fast processing of the bundle adjustment that is always faster than one 
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second on a 3.6 GHz machine. In (Schneider et al, 2013) we have shown that the required time is independent of 
the number of new observations added to the optimization problem but rather highly depends on the number of 
affected variables that need to be relinearized in an incremental optimization step within the iSAM2 algorithm. 
Further, we have shown that the incremental bundle adjustment provides estimated pose parameters which are 
in a statistical sense optimal like using a rigorous batch bundle adjustment.
Figure 7 shows an onboard processed trajectory of the MAV by our visual odometry algorithm (solid line with 
crosses) and the georeferencing unit (fixed GPS solutions are marked with green dots and float solutions with 
red dots). 273 keyframes with 17,175 observations of 864 scene points were initiated during the five minute 
long flight, whereby 4,803 frame sets were orientated by resection (not shown in Figure 7). To compare both 
trajectories the positions of the incrementally refined keyframes are transformed with a 7-parameter similarity 
transformation on the GPS positions. The differences between the GPS positions and the transformed positions 
of the keyframes are up to 60 cm due to the drift effects in the visual odometry. These results illustrate the 
potential of the visual odometry to bridge GPS losses of lock, to fix the ambiguities of float solutions and to 
detect GPS cycle slips. The relative accuracy of the estimated rotation parameters between succeeding sets of 
frames obtained by resection is always between 0.05° to 0.2° and 1 cm to 6 cm in translation.

Figure 6: The onboard processed trajecto ries of the georeferencing unit and transformed incremental bundle 
adjustment. Left: Lateral view on the trajectories in the yz-plane, note the capability of the visual odometry to 

bridge float solutions of the georeferencing unit. Right: Top view on the trajectories in the xy-plane.

4 OBSTACLE DETECTION AND COLLISION AVOIDANCE

4.1 Sensors
To fulfil the objectives of mapping and inspection missions, our MAV has to navigate in the close vicinity of 
human-built and natural structures, e.g., buildings, power lines, and vegetation. These structures have very 
different characteristics and cannot be perceived reliably by individual sensor modalities, e.g., it is not possible 
to detect glass surfaces by means of optical sensors. Thus, we equipped our MAV with a multimodal sensor 
system to exploit the advantages of different sensors and alleviate their drawbacks.

4.1.1 3D Laser Scanner
Our primary sensor for obstacle avoidance is a continuously rotating 3D laser range finder that provides an 
almost omnidirectional view of the surroundings. Full 3D point clouds are acquired and processed with up 
to 2Hz. The scanner consists of a Hokuyo UTM-30LX-EW 2D laser range finder, mounted on a bearing (see 
Figure 7). The bearing is continuously rotated to gain a spherical field of view. The whole setup is mounted 
on the front side of the MAV and pitched downward by 45° which allows to maximize the field of view and to 
minimize the blind spot of the sensor, which is caused by the central core of the MAV. The scanner is able to 
measure up to three echoes of a single emitted light pulse. The number of echoes a light pulse reflects depends 
on the surface of the object, i.e., shape and reflectivity. For example, transparent material, vegetation or edges 
of buildings often reflect the light only partially yielding more than one echo. Hence, multi-echo detection is 
ideal for outdoor applications.
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Fig ure 7: Rotating 3D laser scanner, mounted on the AISKopter. The sensor acquires full 3D point clouds at a 
rate of 2Hz.

For processing of the acquired 3D data, we form distinct 3D point clouds from the continuous data stream of 
the rotating laser scanner. We keep track of the rotation angle and start aggregating laser range scans to form a 
new 3D point cloud every half rotation. Since movement of the sensor during acquisition leads to a distortion 
of the 3D scan, we use visual odometry to compensate this effect. Figure 8 shows example point clouds from 
indoor and outdoor environments. We filter out measurements on the MAV itself by applying a simplified robot 
model for estimating which measurements coincide with the robot’s body parts.

Figu re 8: Point clouds acquired by the rotating laser scanner, mounted on the MAV. The colour indicates height. 
Left: indoor environment. Right: outdoor environment. The MAV is within the red circle.

4.1.2 Visual Obstacles
In addition to the 3D laser scanner, we obtain 3D point clouds of the surrounding environment using the two 
stereo camera pairs. Sparse visual obstacle detection and tracking is based on interest points, as described 
in Sec. 3.2. To determine the coordinates of the matched feature points via triangulation, we match tracked 
keypoints across the cameras using the known mutual orientations between the cameras within a stereo pair. 
The mutual orientations are determined in advance as described in (Schneider and Förstner 2013). 
To match feature points in the overlapping images of a stereo camera pair, we determine the correlation 
coefficients between the local image patches at the feature points in the left and right images. Using the known 
relative orientation between the cameras within a stereo pair, we can reduce the amount of possible candidates 
to feature points lying close to the corresponding epipolar lines.
We assume feature points with the highest correlation coefficient to match, if it is above an absolute threshold, 
and - if there is more than one candidate close to the epipolar line - the closest-to-second-closest-ratio with the 
second highest correlation coefficient is lower than an absolute threshold.
The matched feature points are converted into ray directions pointing to the observed scene point in the camera 
frame system. An unknown scene point can be determined via the intersection of the observing camera rays 
in the camera frame using the known pose of the right camera in the camera frame defined by the left camera.

4.1.3 Ultrasonic Sensors
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Figure  9: Setup and mounting of the ultrasonic sensors. These sensors are used to reliably detect small obstacles 
in the close vicinity of the MAV.

As neither the laser point cloud nor the visual obstacles are dense, and transparent obstacles cannot be measured 
optically, we have equipped our MAV with eight ultrasonic sensors. With a measurement range from 4cm to 
6m, these sensors cover the space in the vicinity of the MAV. Ultrasonic sensors are particularly well suited for 
detecting close obstacles. In our setup, they are used as a fallback for dynamic obstacles suddenly appearing in 
the MAV’s vicinity. Furthermore, their measurement principle with the wide sonar cone allows for perceiving 
obstacles that are hard to detect otherwise, e.g., wires and tree branches, as well as transparent obstacles such 
as windows. Referring to Figure 9, the ultrasonic sensors are mounted in a ring around the MAV in a star-like 
pattern with one pair of sensors at each of the four riggers of the frame. We filter out erroneous measurements 
by examining a sequence of measurements for each of the ultrasonic sensors, and only take a measurement into 
account for collision avoidance when it appears stable over several readings. In all our experiments, incorrect 
measurements were sparse and not persisting over multiple range readings.

4.2 Local Map Building and Collision Avoidance

4.2.1 Map Building
In order to fuse and accumulate measurements, we construct local egocentric obstacle maps. For each 
measurement and the corresponding 3D point, the individual cell of the map is marked as occupied. An 
exemplary map from an indoor map is shown in Figure 10. The map is used by our obstacle avoidance algorithm 
described in the next section. Along with the occupancy information, each cell also maintains its most recent 
3D scan points in a ring buffer. These 3D points can be used for point-based scan processing, for example 3D 
scan registration. We aim for efficient map management for translation and rotation. To this end, individual 
grid cells are stored in a ring buffer to allow shifting of elements in constant time. We interlace multiple ring 
buffers to obtain a 3D map. In case of a translation of the MAV, the ring buffers are shifted whenever necessary 
to maintain the egocentric property of the map. For sub-cell-length translations, the translational parts are 
accumulated and shifted if they exceed the length of a cell. Since we store 3D points for every cell for point-
based processing, single points are transformed in the cell’s local coordinate frame when adding, and back to 
the map’s coordinate frame when accessing. Since rotating the map would necessitate accessing of all cells, 
our map is oriented independent to the MAV’s orientation. We maintain the orientation between the map and 
the MAV and use it to rotate measurements when accessing the map.

Figure  10: Middle: 3D laser scan of the indoor environment in the left figure (aggregated over 1s). Right: 
Resulting local grid-based map. 

A complete 3D scan is aligned to the map by means of the Iterative Closest Point (ICP) algorithm (Besl 
and McKay, 1992). The ICP algorithm estimates a transformation between two point clouds, describing the 
displacement between them. The scan registration is triggered after acquiring a full 3D scan (i.e., a half rotation). 
When using the ICP algorithm for scan registration, corresponding points between the model and the current 
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point cloud are assigned, usually by building a space-partitioned data structure from the model point cloud. In 
contrast, we utilize our grid-based data structure for efficient correspondence assignment. Every point from a 
newly acquired 3D scan is directly assigned to a map cell in constant time. The closest point in terms of the 
Euclidean distance from the point list of this cell is initially assigned as corresponding point. Points in the 
neighbouring cells might be closer to the measured point than the initially assigned point. Consequently, we 
extend the search to neighbouring cells, if the distance to the initial assignment is larger than the distance to 
the border of a neighbouring cell.

4.2.2 Potential Field-based Collision Avoidance
Our concept for the navigation of the MAV is based on a multi-layer approach. Between low-level control and 
high-level planning layers, we employ a fast reactive collision avoidance module based on artificial potential 
fields (Ge and Cui, 2002) employing our local obstacle map described in the previous section. This enables 
the MAV to immediately react to nearby obstacles and deviate from a path that was planned based on a static 
allocentric environment model.

Figure 11: Visualization of our obstacle avoidance using a 3d grid map (left: real MAV, right: simulation). Left: 
A previously unknown obstacle obstructs the direct connection to the next waypoint (yellow). Right: Obstacles 
in range induce repelling forces (red lines). The trajectory is predicted into the future (green) given the current 

dynamic state of the MAV and the potential field. The blue cells depict our discretized robot model.

In contrast to the standard potential field-based approach, we relax the assumption that the robot is an idealized 
particle. We account for the shape of the MAV by discretizing it into cells of the size of our 3D grid map (see 
Figure 11). The centre points of these cells are individual particles to the algorithm. Hence, obstacles induce 
repulsive forces and the target waypoint induces an attractive force on each of these cells. Thus, multiple 
obstacles can induce forces on different parts of the MAV. Furthermore, we relax the assumption that the 
motion of a vehicle can be changed immediately. To overcome this limitation, we predict the MAV’s future 
trajectory given the current dynamic state and the probable sequence of motion commands for a fixed discrete-
time horizon (Figure 11). This time horizon is tightly bound by the property that MAVs can quickly stop or 
change their motion. To predict the trajectory, we employ a motion model of the MAV and the estimated 
resulting forces along the trajectory. The magnitudes of the velocity commands are calculated according to 
the predicted future forces. If a given force threshold is exceeded at any point of the trajectory, we reduce the 
velocity of the MAV.
In addition to guiding the MAV in a collision free manner to waypoints, our approach can act as a safety co-
pilot to assist a human pilot. As the human pilot sends direct motion commands instead of coordinates relative 
to the MAV, we omit the attractive force in this case. Instead, we directly influence the control command given 
by the pilot if the MAV operates in the vicinity of obstacles. Repulsive forces induce a delta command that is 
added to the original control command, yielding a stop or deviation from the commanded direction.
We tested our collision avoidance in waypoint following scenarios in simulation. The tests include bounded 
environments with walls and unbounded environments, where the waypoints direct the MAV through window-
like openings of different size. These experiments revealed that our collision avoidance approach is able to 
follow paths, if a relatively sparse trajectory is given that covers only the most crucial navigation points. The 
simulated MAV was able to fly through all passageways and windows of its size plus a safety margin. The 
prediction of the near future outcome of motion commands leads to smoother trajectories, keeping the MAV
further away from obstacles than the same potential field approach without trajectory prediction. The occurring 
artificial forces during the flights were reduced to 68% of the forces without trajectory prediction. No collisions 

http://www.digibib.tu-bs.de/?docid=00056119 16/05/2014



145

occurred during these test runs. Experiments with the real MAV showed that our approach is able to successful 
avoid obstacles, even if the commanded flight direction from an upper layer would lead to a collision.

5 CONCLUSIONS AND FUTURE WORK
In this contribution, we presented the concept and the current status of a project which aims to develop 
an autonomously flying MAV for online mapping purposes. We showed that a custom developed direct 
georeferencing unit is able to determine the position and the attitude of the vehicle in real-time with an accuracy 
of a few centimetres and a few degrees and is therefore able to capture georeferenced high-resolution images 
without the need for ground control points. We also showed that an incremental bundle adjustment algorithm, 
based on the images of four fisheye cameras, has the potential to bridge GPS gaps and to improve the attitude 
estimation of the MAV. Additionally, our robot possesses a number of sensors modalities, such as a rotating 3D 
laserscanner and ultrasonic sensors, which constantly update an ego-centric obstacle map. This map enables 
the MAV to operate in a mode, which goes far beyond the usual waypoint flight, as it is common for high-
altitude MAV-based aerial photogrammetry. The system will be able to accomplish a higher-level mission, 
such as ‘fly around the house (which is for example given as a LOD2 model) and count all the windows’, while 
adapting to locally and temporally changing conditions, such as static or moving obstacles. 
Subjects of future work are the integration of the vision based and the GPS/IMU based trajectory estimation to 
improve and robustify the real-time georeferencing capability of the MAV and the integration of all presented 
subcomponents and processes into a single mobile mapping workflow. The calibration and the evaluation of the 
system regarding motion estimation and mapping accuracy are also important topics of ongoing investigation. 
It should be noted here, that an essential part of the project ‘Mapping on Demand’ has not been discussed 
within this paper. This part deals with the problem of processing the georeferenced images to depth maps 
and point clouds, reconstructing objects and surfaces and extracting semantic information from the data. The 
integration of these tasks into the mapping work flow is also a major subject of future work. 
As an intermediate result of the mapping procedure, we present in Figure 12 a georeferenced point cloud, which 
has been reconstructed from images, recorded by the high-resolution camera on the IGGKopter, which was 
manually controlled during the flight. Note, that this point cloud has been processed using a freely available 
software for dense image matching (pmvs2, see Furukawa 2010). More advanced methods will be used in the 
future, as described above. 

Figure 12 : Georeferenced point cloud, extracted from images using a freely available software package for dense 
image matching (Furukawa, 2010).
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