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Abstract— In this paper, we address the problem of com-
bining 3D laser scanner and camera information to estimate
the motion of a mobile platform. We propose a direct laser-
visual odometry approach building upon photometric image
alignment. Our approach is designed to maximize the in-
formation usage of both, the image and the laser scan, to
compute an accurate frame-to-frame motion estimate. To deal
with the sparsity of the range measurements, our approach
identifies planar point sets within individual point clouds and
subsequently extract their corresponding pixel patches from
the camera image. The extracted planar image patches are
used together with the non-planar pixels to estimate the frame-
to-frame motion using a homography formulation capable of
incorporating both types of pixel alignments. To achieve high
estimation accuracy, we explicitly predict possible occlusions
caused by observations taken from different locations. We
evaluate our proposed approach using the KITTI dataset as
well as data recorded with a Clearpath Husky platform. The
experiments suggest that our approach can achieve competi-
tive estimation accuracy and produce consistently registered,
colored point clouds.

I. INTRODUCTION

The ability to estimate the ego-motion of a vehicle is a
vital part of most autonomous navigation systems. Mobile
robots and autonomous cars typically use different tech-
niques for pose estimation, such as scan matching, visual
odometry, or integrated GPS/IMU systems. Often, such vehi-
cles are equipped with multiple sensors as the different sens-
ing modalities have individual strength. For example, laser
scanners are important for obstacle detection and tracking,
while cameras are frequently used to interpret the scene using
semantic segmentation or visual object detection systems.

Estimating the ego-motion using a laser scanner through
point cloud alignment is often referred to as scan-matching.
Scans are either matched pair-wise or with respect to a local
or global map in order to compute the relative transfor-
mation between the robot’s poses at the different points in
time. Popular approaches for that are the iterative closest
point (ICP) algorithm [1], [26] and different variants [17],
[18] or correlative scan matching [15]. However, due to the
limited number of laser beams in the laser scanner, the range
measurements are rather sparse in the vertical direction. This
can pose difficulties in the registration.

Visual odometry based on stereo or monocular cameras
can also be used to estimate the ego-motion [3], [4], [10],
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[12]. Over the past few years, direct visual methods based
on the photometric error became popular. These methods
have the potential to exploit the full image information
to estimate the camera motion. Recent advantages in this
approach showed remarkable performance [3], [5], [9], [13],
[20]. Monocular visual odometry, however, suffers inherently
from the scale ambiguity problem.

Visual-laser odometry tries to exploit both the laser point
cloud data and the camera image information for estimat-
ing the ego-motion. A combination of accurate but sparse
spatial measurements from laser scans and dense appear-
ance information from camera images have the potential to
complement each other for the task of motion estimation.
In this paper, we propose a direct laser-visual odometry
approach based on the photometric image alignment method.
Our approach is designed to maximize the information usage
of both the image and the laser scan to achieve accurate
frame-to-frame motion estimation. To address issues due
to the sparsity of the range measurements, our approach
identifies planar point sets from the laser data and extract the
corresponding pixel patches from image data. The extracted
dense planar image patches together with the sparse non-
planar point cloud and pixels information are jointly used
to estimate the frame-to-frame motion. For that, we rely on
a homography formulation that is capable of incorporating
both types of pixel alignments. We explicitly address the
occlusion problem with a prediction approach tailored to deal
with sparse laser point clouds.

To achieve high estimation accuracy, our approach em-
ploys a two-stage registration strategy. The first stage is
aimed to ensure a proper initial pose estimate by jointly per-
forming a coarse photometric pixel-alignments together with
a geometric point cloud registration. The resulting estimate
is then refined in the second stage by aligning only pixel
intensities at the finest image level. The motivation behind
this strategy is to combine the photometric and the geometric
information while avoiding their respective pitfalls, i.e., local
minima in photometric alignment and estimation bias in point
cloud registration due to sparse point correspondences.

The main contribution of this paper is a novel direct
approach to the joint laser-camera motion estimation. We
exploit planar information, perform occlusion prediction,
and a two-stage registration. Through this novel registration
methods, our approach is able to obtain accurate frame-to-
frame motion estimates using monocular camera image and
laser range data. Experiments on the KITTI and self-recorded
datasets supported this claim.



II. RELATED WORK

Common work in laser-visual odometry can be catego-
rized into two groups: visual-odometry-based approaches and
point-cloud-registration-based approaches. Visual-odometry-
based approaches try to apply a visual odometry pipeline
with known pixel depth information coming from the laser
scan. For example, the work of Shin et al. [19] tries to
solve the visual-laser SLAM problem within the direct sparse
odometry (DSO) [3] framework. They use the projected laser
points as feature points instead of using the salient gradient
points extracted from the images. With the depth values of
the feature points known and fixed, they perform a multi-
frame photometric optimization the same as the DSO to
estimate the poses of the keyframes. The work of Zhang et al.
named depth enhanced monocular odometry or DEMO [23]
is similar. However, a common problem of visual-odometry
based methods is that they do not consider the laser points
that are outside the field of view of the camera, so much of
the range measurements will be discarded with sensors like
Velodyne LiDAR, which can provide a 360 degrees scan.
Such setting renders the system less accurate and vulnerable
to texture-less scenes.

In contrast to that, the point cloud registration (ICP) based
approaches try to align the whole point cloud with the help
of image information in various aspects. For example, the
method in [16] and [24] simply use the visual odometry
result as an initial guess to the ICP process, making the ICP
less likely to be trapped in local minima.

A more advanced way to fuse the information is to use
image/color information to guide and accelerate the data
association process [8], [11]. The work of Joung [8] and
Men [11] treat the color information as the fourth channel
input to the ICP, allowing a faster convergence rate than
normal ICP as reported by Men [11]. However, due to the
inevitable outlier point correspondences, the true solution
may not necessarily locate at the exact minimum of the
ICP cost function. This is especially the case when the point
cloud is sparse. Therefore, it is necessary to optimize a joint
objective that rewards both tight point cloud alignment (via a
geometric term) as well as consistent image appearance (via
a photometric term), to obtain better estimation accuracy.

In this regard, the multi-cue photometric point cloud
registration approach (MPR) by Della Corte et al. [2] tries to
jointly register color, depth, and normal information within
a unified framework by considering the depth and normal
information as channels of a multi-channel image. The
approach, however, requires the depth of each point to be
known in order to transform the channel values, hence throws
away a large amount of depth-less pixel information.

Our previous work [7] introduces a visual-laser odometry
approach that estimates the 5-DoF relative orientation from
image pairs through feature point correspondences and for-
mulates the remaining scale estimation problem as a variant
of the ICP problem with one degree of freedom. The image
information is used indirectly through image feature points.

In this paper, we propose a direct visual-laser odometry

approach that tries to avoid the aforementioned problems by
considering also planar pixel patches in the image, as well as
employing a two-stage registration strategy. Implementation
details are described in the next section.

III. OUR APPROACH

In this paper, we assume the camera and laser scanner are
time synchronized (e.g., by using hardware trigger) and that
their relative transformation on the robot is known. Thus, one
can project a 3D laser point to the camera image and directly
obtain the intensity value of the corresponding image pixel.

We denote the previous visual-laser measurement, which
consists of a point cloud {ai ∈ R3}Mi=1 and an image Ia,
using the character a, while the current one uses b with point
cloud {bj ∈ R3}Nj=1 and image Ib. Our task is to estimate
the ego-motion of the robot between a and b, which consists
of a relative rotation R ∈ SO3 and translation t ∈ R3.

A. Occlusion Detection for Sparse Point Cloud

Photometric alignment is based on the constant image
brightness assumption, which assumes the intensities of
corresponding pixels of a scene point in two (or more)
images are equal. However, this assumption will be violated
if the scene point is occluded during the viewpoint changes.
The occluded points are outliers to the system and will
deteriorate the estimation accuracy if they are not removed
from the photometric alignment process.

To overcome the occlusion problem, we propose a novel
method to predict which laser points of a sparse point cloud
will be occluded under a certain camera motion. We explic-
itly exclude these occluded points from the motion estimation
step. Compared to the standard Z-buffering approach, which
is often used for dense depth images, our approach is more
suitable for dealing with sparse laser point cloud data.

The key observation of our approach is that whenever parts
of a point cloud are occluded in the current camera view, the
relative pixel order of the projected point cloud in the current
image will be different from the previous one. Consider
Fig. 1 as an example. Assume there are five scene points,
which are labeled from left to right as 1, 2, 3, 4, 5 in the
original camera view (Fig. 1a). After a camera translation, t,
we observe the scene again and obtain a new camera image
by re-projecting the five points, as illustrated in Fig. 1b.
However, points 3 and 4 are occluded in the new view. Note
that, at the same time, the pixel order in the new image
becomes 1, 3, 4, 2, 5 from left to right, which is different from
the original order 1, 2, 3, 4, 5.

The phenomenon of pixel order changes is not limited to
perspective projection but also holds true for the spherical
projection, and we can exploit such pixel-order changes to
identify occluded scene points. To be more specific, we can
first compare the two sequences and find out which point-sets
have been swapped, e.g. points {3,4} and point 2 in Fig. 1.
One of the point-set is occluded while the other is not. We
identify the occluded one by comparing their depth values
and the larger one is occluded, i.e. points 3 and 4 have larger
depths than point 2, therefore they are occluded.
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Fig. 1: The pixel order of projected 3D points will change if
occlusions happened. (a) In the original view, we label the 3D points
from left to right as 1, 2, 3, 4, 5. (b) After the camera movement t,
points 3 and 4 are occluded and lead to a different pixel order in
the new camera image, which is now 1, 3, 4, 2, 5 from left to right.
We exploit such pixel order changes to perform occlusion detection
for sparse 3D point clouds.

Fig. 2: Example result of the occlusion detection algorithm. The red
points are the image projections of the (predicted) occluded points
of a laser scan. The occlusions happen mostly at the borders of
objects and switch sides as the viewpoint changes.

We generalize this idea and propose Alg. 1 to perform
occlusion detection for sparse 3D point clouds. Our algo-
rithm takes a row (or a column) of points as input. A row
(or column) means a subset of points having a close or
the same pitch (or yaw) laser beam angle. Another input
variable is a translation vector t representing the new camera
position, which is expressed under the original point cloud
coordinate frame. Because rotational camera movements do
not induce scene occlusion, they are therefore not needed in
the calculation.

Fig. 2 shows an example detection result on the KITTI
dataset. The red points are the predicted occluded scene
points, projected on images taken at a different location.
Notice how the projected pixels lie on different objects
because of the occlusion. In this example, the occluded points
take up to 11% of the total visible points. It is worth noticing
that the occlusion happens not only because of the camera
ego-motion, but also due to the displacement between the
camera and the LiDAR sensors on the vehicle. Therefore, to
account for both effects, we use the camera ego-motion plus
the camera-LiDAR displacement as the translation input t to
Alg. 1.

Algorithm 1 Occlusion Prediction
1: Input:

• A row of points P
• Translational movement t

2: Output:
• Occlusion mask O

. Step 1. Point projection
3: Index list A ← Sort indices of P by {πx(p) | p ∈ P}
4: Index list B ← Sort indices of P by {πx(p− t) | p ∈ P}
. Step 2. List comparison

5: Occlusion mask O(·)← False . default: nothing occluded
6: Index a← A.pop()
7: Index b← B.pop()
8: loop size(P) times
9: if a == b then

10: update both a and b . in line 18
11: else
12: if Pz(a) > Pz(b) then . a is behind b thus occluded
13: mark O(a)← True
14: update only a
15: else . b is occluded
16: mark O(b)← True
17: update only b
18: if update a then
19: a← A.pop()
20: if O(a) is True then repeat line 19
21: if update b then
22: b ← B.pop()
23: if O(b) is True then repeat line 22
24: return O

B. Coplanar Point Detection

The depth measurements are often sparse and cover only
a small portion of the image pixels when projected into the
camera image (see Fig. 4b). While most image pixels do not
have depth information from the laser, such depth-less image
pixels are either discarded (e.g., in [2]) or falsely assigned
with a constant depth the same as their associated pixel (e.g.,
in [19]), which are both sub-optimal solutions.

We overcome this problem by exploiting planar regions
in the scene, which are often abundant in structured (urban)
environments. A scene plane usually corresponds to a large
number of pixels, and such pixels can also be used to
estimate the motion parameters even without knowing their
depth values, because they can be projected to another image
using plane-induced homography given the plane parameters.
Therefore, to include as much as possible pixel information
in the photometric term, our approach explicitly detects scene
planes from the point cloud and use them for registration.

To identify which subset of the laser points are parts of a
planar region, we propose a grid-based method inspired by
the work by Weingarten et al. [21] and Xiao et al. [22]. The
main idea is to first discretize the point cloud into a grid of
cells and then, for each cell use principal component analysis
(PCA) to fit a plane to the points that are inside the cell.

We also accelerate the detection process by incorporating
prior knowledge about existing planes, e.g., knowledge about
the ground plane or previously detected planes. Given prior



Algorithm 2 Coplanar Point Detection
1: Input:

• Point cloud IP
• Prior plane parameters {(n, d)}

2: Parameter:
• Grid size s
• Point-to-plane distance threshold ε

3: Output:
• Planar points list P
• Plane normal list N

. Step 1: Prior Plane Fitting
4: for each prior plane parameters (n, d) do
5: Inliers I ← {p ∈ IP \ P

∣∣ |nTp− d| < ε}
6: Planar points list P insert←− Inliers I
7: Plane normal list N insert←− n

. Step 2: Discretization
8: Point list L ← {∅}
9: for each point p in the remaining point cloud IP \ P do

10: Cell coordinates (u, v, w)← discretize(p, s)
11: Point list L insert←− item {(u, v, w) : p}
12: Sort point list L by (u, v, w)
13: Cell list C ← {∅}
14: Current cell c← {∅}
15: for each point pi in the sorted point list L do
16: Current cell c insert←− pi

17: if current (u, v, w)i 6= next coordinates (u, v, w)i+1 then
18: Cell list C insert←− current cell c
19: Current cell c← new cell {∅}

. Step 3: Plane Detection
20: for point set {p} of each cell in the cell list C do
21: Eigenvalues λ1 ≤ λ2 ≤ λ3 ← PCA({p})
22: if size({p}) < 7 then . {p} is too sparse.
23: skip this cell
24: if λ1/size({p}) > ε then . {p} not planar.
25: skip this cell
26: Normal vector n← eigenvector v1 (for eigenvalue λ1)
27: Plane normal list N insert←− n
28: Planar points list P insert←− {p}
29: return P,N

plane parameters (n, d), where n is the normal vector of
the plane and d is the plane-to-camera-origin distance, we
compute the point-to-plane distance |nTp−d| for each point
p in the new point cloud. Points with a small distant are
identified as inlier points for that plane. These inlier points
are removed from the point cloud and the fitting process is
performed again with the next prior plane parameters until all
hypotheses are tested. This process happens as the first stage
of the planar point detection and can identify a large portion
of the planar points. After that, all the remaining (unmatched)
points are then handled by the grid-based detection process.
Alg. 2 summarizes our proposed coplanar point detection
method.

C. Homography-Based Photometric Alignment

Once we extracted the (dense) planar image patches, they
are used together with the (sparse) non-planar point cloud-
projected pixels to estimate the motion parameters with our
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Fig. 3: Plane-induced homography relation of two images.

homography formulation.
Fig. 3 shows a plane-induced homography relation of two

images. Assume a laser point ai is located on a 3D plane P
with a normal vector n and a plane-to-camera-origin distance
d

def
= nTai. Any points p belongs to this plane will satisfy

the equation

nTp = d. (1)

Now assume that there is an previous image point x
def
=

[u, v, 1]T on Ia, its back projected ray r(λ)
def
= λx intersects

the plane P . According to Eq. (1), the intersection happens
at

nT(λx) = d 7→ λ =
d

nTx
. (2)

Therefore, the intersection point is d
nTx

x and will have a 3D
homogeneous coordinates[

d
nTx

x
1

]
'
[
dx
nTx

]
∈ R4. (3)

Given the relative motion parameters R and t, we can project
this intersection point to the current image Ib and obtain

y '
[
R t

] [ dx
nTx

]
= (dR + tnT)x. (4)

With the camera intrinsic matrix K and x, y being in pixel
coordinates, Eq. (4) becomes

y ' K (dR + tnT)K−1x. (5)

Therefore, the pixels of a 3D plane in the two images, i.e.
x and y, are related through

y ' Hx, (6)

where H def
= K (dR + tnT)K−1 is a plane-induced homogra-

phy.
For a non-planar laser point that does not lie on a planar

region, the homography formulation in Eq. (6) is still ap-
plicable because it can be seen as a special case where the
pixel by itself defines a fronto-parallel patch, i.e.,

P = {ai} and n = [0, 0, 1]T. (7)

In this case, d = [0, 0, 1]ai is the depth of ai, thus
ai = dK−1x and the entity Hx amounts to the standard 3D



point projection as

Hx = K (R +
tnT

d
)dK−1x (8)

= K (Rai + t
nTai
d

) (9)

= K (Rai + t). (10)

Base on this homography formulation, we define our pho-
tometric cost function for estimating the motion parameters
R and t as

Epho,i
def
=

∑
x∈Pimg(ai)

ϕ
(
I ′a(x)− Ib

(
π(Hi(R, t)x)

)︸ ︷︷ ︸
{epho}

)
(11)

where
• ϕ(·) is a robustification function based on the t-

distribution (of five degree of freedom, as in [9]):

ϕ(e)
def
=

6

5 + e2

σ2

e2 (12)

with σ being the standard deviation of all residuals e;
• x

def
= [u, v]T is a pixel coordinates, and x

def
= [u, v, 1]T

is its homogeneous form;
• π(·) is the Euclidean normalization that transforms

homogeneous coordinates into (inhomogeneous) pixel
coordinates, i.e. π(x) = x, or more generally

π([u, v, w]T)
def
= [u/w, v/w]T; (13)

• Pimg(ai) denotes a set of neighboring pixels around the
image point of ai. If the image point of ai is denoted
as ai

def
= π(Kai), then

Pimg(ai)
def
=

{
{x ∈ Z2 | ‖ai − x‖ ≤ r}, if ai is planar,
{ai}, if non-planar,

(14)

where r is a predefined radius;
• Hi(R, t)

def
= K (aT

i niR + tnT
i )K

−1 is the homography
associated to the laser point ai. For non-planar points
we set ni = [0, 0, 1]T. Otherwise ni is calculated from
the laser point cloud using a method described in
Sec. III-B;

• I ′a(·)
def
= αIa(·)+β is used to model the gain, α, and the

bias, β, between the two intensity images, to account for
possible different camera exposure settings and ambient
light changes. Both α and β are unknown parameters
to be estimated during the optimization.

D. Two-Stage Registration

Photometric alignment is in essence a highly nonlinear
optimization problem with lots of local minima. To ensure
a proper initial estimate and avoid false minima, we first
optimize a joint objective that rewards both consistent pho-
tometric alignment (with smoothed images) as well as tight
point cloud registration. For that, besides the photometric
term in Eq. (11), we also incorporate a geometric term to

account for the point-to-plane point cloud registration errors
as in the ICP:

Egeo,i
def
= ϕ

(
nT
i (Rai + t− b′i)︸ ︷︷ ︸

{egeo}

)
, (15)

where b′i is the nearest-neighbor to the transformed ai in
the point cloud b, determined by using a k-d tree search.
For non-planar points, ni refers to the surface normal of the
points.

Combining Eq. (11) and Eq. (15), we have in the first
registration stage a minimization problem of the form:

argmin
R,t,α,β

1

σ2
geo

∑
i

Egeo,i +
1

σ2
pho

∑
i∈Vis

Epho,i, (16)

where
• σgeo and σpho are the standard deviation of the residuals
{egeo} and {epho};

• i ∈ Vis stands for laser points that are visible and
not occluded in both camera images Ia and Ib, which
are smoothed by a Gaussian function and then down-
sampled.

In the second stage of the alignment procedure, the es-
timation of R and t is refined by performing photometric
alignment at the finest resolution. Therefore, a cost function
similar to Eq. (16) is used in the second stage, but with only
the photometric term Epho and using raw images.

In both stages, we minimize the objective with a stan-
dard iterative Gauss-Newton optimization algorithm. Our
experimental result in Sec. IV-A suggests that our two-stage
registration strategy can significantly improve the estimation
accuracy.

IV. EXPERIMENTAL EVALUATION

The main focus of this work is a novel direct approach to
joint laser-camera odometry. The experiments are designed
to show the capabilities of our method and to support our key
claim that our approach is able to accurately estimate frame-
to-frame motion using monocular vision and laser range data.
We perform the evaluations on own robotic datasets as well
as on publicly available ones.

A. Outdoor LiDAR-Camera Dataset with Gound Truth Con-
trol Points

The first experiment is to verify the proposed method
with a mobile robot in an outdoor environment. The robot
is a Clearpath Husky mobile platform equipped with a 16-
beams Velodyne VLP-16 LiDAR and a stereo-camera (we
use images from only the left camera here), as shown in
Fig. 4a. Along the performed experiment route, there are
five geodetic control points on the ground with precisely
measured coordinates around our campus, as illustrated in
Fig. 4c. We place Apriltag markers [14] on top of the control
points and utilize an auxiliary camera on the robot to detect
these markers on the ground when the robot drives by them.
In this way, we obtain the positions of the robot relative
to the control points. We use these positions as ground-
truth locations in the environment to evaluate the trajectory



(a) Robot platform. (b) Laser points projected into the camera image. (c) Experimental route and control points.

(d) 3D mapping result of the path from control point 4 to 5.

Fig. 4: Outdoor experiment. We drive a Clearpath Husky robot around the campus. The experimental path passes by five precisely
known geodetic control points, which are used for the ground truth evaluation.

TABLE I: Relative distance error measured at five control points.

Segments 1-2 2-3 3-4 4-5
Ground Truth Point Dist. (m) 114.12 93.86 116.87 103.62

Estimated Trajectory length (m) 213.47 133.16 125.17 110.05

Geo. Only
Dist. Error (m) 3.20 1.43 2.60 2.92
Rel. Error (%) 1.49 1.07 2.07 2.65

Pho. Only
Dist. Error (m) 0.92 2.25 0.26 0.57
Rel. Error (%) 0.43 1.69 0.21 0.52

Combined
Dist. Error (m) 0.26 0.12 0.02 0.35
Rel. Error (%) 0.12 0.09 0.02 0.32

estimated with our approach. Due to the orientation of the
markers are somewhat uncertain, we compare the point-to-
point distances and the result is shown in Tab. I.

As shown in the last row of Tab. I, our approach achieves
an excellent accuracy with relative distance errors as low as
0.1%, without using loop-closing. Fig. 4d depicts a colored
point cloud generated by our approach.

To see the benefit of using the two-stage registration
strategy, we also include in Tab. I the results of using
only the geometric term or the photometric term. The result
suggests that the accuracy improvements of using two-stage
registration are significant.

B. Comparison to State-of-the-Art Methods Using KITTI

The second experiment performs evaluations about the
motion estimation quality of our approch using the odom-
etry datasets of the KITTI Odometry Benchmark [6]. We
performed the motion estimation using the point clouds from

TABLE II: Comparison on relative translational error
using the KITTI odometry dataset.

Sequences without loops
Approach 01 03 04 10

LOAM [25] 1.4% 0.9% 0.7% 0.8%
Shin [19] 1.5% 0.9% 0.7% 0.7%

Our 1.0% 1.1% 0.6% 0.7%

the 64-beams Velodyne LiDAR and the monochromic images
from the camera 0. The results of sequences without loop-
closing are reported in Tab. II for comparison, including
the reported results of Shin et al. [19] (a photometric-
alignment based visual-laser odometry approach), as well
as the state-of-the-art laser-based approach, LOAM [25].
The result shown in Tab. II suggests that our approach
perform better or on par with the state-of-the-art in terms
of translational error.

V. CONCLUSION

In this paper, we presented a novel direct approach to
joint laser-camera odometry. Our method exploits planar
information, performs occlusion prediction, and employs a
two-stage registration. This allows us to estimate frame-to-
frame motions with high accuracy. We implemented and
evaluated our approach on different datasets and provided
comparisons to other existing techniques. The evaluation
result supported the claim that our approach can achieve
competitive estimation accuracy.
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