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Abstract— Pose estimation and mapping are key capabilities
of most autonomous vehicles and thus a number of local-
ization and SLAM algorithms have been developed in the
past. Autonomous robots and cars are typically equipped with
multiple sensors. Often, the sensor suite includes a camera and
a laser range finder. In this paper, we consider the problem
of incremental ego-motion estimation, using both, a monocular
camera and a laser range finder jointly. We propose a new
algorithm, that exploits the advantages of both sensors—the
ability of cameras to determine orientations well and the
ability of laser range finders to estimate the scale and to
directly obtain 3D point clouds. Our approach estimates the five
degree of freedom relative orientation from image pairs through
feature point correspondences and formulates the remaining
scale estimation as a new variant of the iterative closet point
problem with only one degree of freedom. We furthermore
exploit the camera information in a new way to constrain the
data association between laser point clouds. The experiments
presented in this paper suggest that our approach is able to
accurately estimate the ego-motion of a vehicle and that we
obtain more accurate frame-to-frame alignments than with one
sensor modality alone.

I. INTRODUCTION

The ability to estimate the ego-motion of a vehicle is a
vital part of most autonomous navigation systems. Mobile
robots and autonomous cars typically use different tech-
niques for pose estimation, such as scan matching, visual
odometry, or integrated GPS/IMU systems. Often, such sys-
tems are equipped with multiple sensors. Laser scanners are
important for obstacle detection and tracking, while cameras
are frequently used to interpret the scene using semantic
segmentation or visual object detection systems.

Estimating the ego-motion using a 2D or 3D laser range
finder through point cloud alignment is often referred to
as scan-matching. Scans are either matched pair-wise or
with respect to a local or global map in order to compute
the relative transformation between the robot’s poses at the
different points in time. Popular approaches for that are
the iterative closest point (ICP) algorithm [2], [22] and its
variants, such as [19], [20], or correlative scan matching [15].

The ego-motion can also be estimated using visual odom-
etry with stereo or monocular cameras [4], [5], [9], [11].
In case of a calibrated monocular camera, only five out
of the six degrees of freedom can be estimated, since the
scale cannot be determined. The most popular algorithm
for that is Nistér’s 5-point algorithm [14]. When comparing
systems using cameras to those using lasers, we often see
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that cameras are slightly better in estimating the angular
components, i.e., the rotation of the movement, whereas laser
scanners are superior for estimating the translation and for
obtaining 3D points. Furthermore, cameras provide dense
color information, which can simplify the data association
using feature correspondences. Thus, coupling laser scanners
and camera can yield advantages.

In this paper, we address the problem of combining the
laser range and camera information to jointly estimate the
ego-motion of a mobile platform. We propose a coupled
laser-visual scan matching method for frame-to-frame pose
estimation. In this way, we combine the advantages of both
sensing modalities, i.e., the abilities to accurately estimate
orientations (camera) and the scale (laser range finder). Our
method works with general sensor configurations and does
not require an overlap of the fields of view of the camera
and the laser scanner. Besides a calibrated monocular camera,
we only assume that the laser and camera are extrinsically
calibrated, which means that the relative pose between the
two devices on the robot are known.

The main contribution of this paper is a novel approach
to joint laser-camera pose estimation. It estimates the 5-
DoF relative orientation from image pairs through feature
point correspondences and formulates the remaining scale
estimation problem as a variant of the ICP problem with
only one degree of freedom. This can be solved effectively
through a 1D grid search followed by a refinement for
computing the minimum of the error function for solving
the scale problem. Furthermore, our approach exploits the
camera information to effectively constrain the data associ-
ation between laser point clouds, even if the fields of view
of both sensors do not overlap. In sum, we make two key
claims: our approach (i) allows for accurate frame-to-frame
alignments from monocular vision and laser range data and
(ii) is able to exploit the advantages of both modalities.

II. RELATED WORK

A problem similar to the visual-laser scan matching ap-
pears in RGB-D image registration [3], [8], [13]. Devices
such as the Microsoft Kinect camera or stereo cameras
can provide dense 3D information in the form of depth
images along with regular RGB color information. Numer-
ous methods are tailored to such dense 3D measurements
with large overlapping fields of view. Recent examples are
KinectFusion [13], DVO [8], and MPR [3]. Projective data
association approaches are often used in such cases to speed
up the registration process and to jointly exploit the depth
and color cues. These approaches are in nearly all aspects



different from our proposed one, even though they solve a
related problem.

The ICP algorithm by Besl and McKay [2] for aligning
point clouds is a popular approach for laser-based scan
matching. For registering two point clouds recorded at
unknown relative positions, the ICP algorithm iteratively
performs two steps: data association and transformation esti-
mation given the data association. The point-to-point distance
and the point-to-plane distance are two commonly used
metrics. We refer to the work of Pomerleau et al. [17] and
Rusinkiewicz et al. [18] for a detailed review and comparison
for different ICP variants.

A straight forward and common practice to combine laser
and cameras for pose estimation is to use the visual odometry
result as an initial guess for the ICP pipeline, see [16],
[21]. The work of Zhang et al. [21] starts with visual
odometry to roughly estimate the ego-motion, and the result
is then refined by ICP. Another way of combining camera
and laser information is to use image/color information to
guide and accelerate the data association process [1], [7],
[10], [12]. Andreasson et al. [1], Joung [7], and Men [10]
represent methods that treat the color information as the
fourth channel input to the ICP. This strategy reveals a faster
convergence rate than normal ICP according to Men [10].
The color information is not used in the error minimization
process in Men’s approach, which is in contrast to the work
of Joung [7], whose error function incorporates the color
consistency of matched points. They both use color data to
filter out unlikely point candidates before ICP.

The work of Naikal et al. [12] achieves the same goal
but employs a different strategy. The data association is
established through image patch matching instead of using
a k-d tree-based closest point assignment. They project scan
points onto the respective images so that the 3D points can
be associated to image patches around the projected location.
A patch matching process is then carried out across images
by minimizing a bidirectional sum of absolute differences.
The resulting patch correspondences eventually determine
the scan point correspondences. The visual odometry result
is furthermore used to provide a search window for the patch
matching process.

All of the aforementioned methods have the limitation that
they are only applicable to laser points that are visible in
the camera image and not to all scan points. Furthermore,
only the laser points with the improved correspondences are
used to estimate the relative transformation. Additionally,
these approaches typically cannot handle the fact that the
rotation information obtained from visual matching is often
more accurate than the ones obtained by a laser scanner. Our
approach, in contrast, naturally respects this and works even
if there is no overlap between the fields of view of laser and
camera.

III. BACKGROUND: ICP AND RELATIVE ORIENTATION

A. Iterative Closest Point for Aligning Point Clouds

Consider two point clouds, the previous point cloud {ai ∈
R3}Mi=1 and the current point cloud {bj ∈ R3}Nj=1 that are

generated from two, often consecutive laser scans. We would
like to estimate the relative rotation R ∈ SO3 and translation
t ∈ R3 between the two scanning locations by registering the
two point clouds. If a point pair (ai, bj) of two measured
points belongs to the same scene point, we have the relation

ai = Rbj + t. (1)

The point correspondences are usually unknown and need
to be estimated. If we have an initial guess R̂, t̂ for the
transformation, we can match a current points bj to its closest
points in the previous scan {a}, i.e,

m(bj)
def
= argmin

p∈{a}

∥∥p− b′j∥∥2
(2)

with b′j
def
= R̂bj + t̂. Point-to-point ICP solves

R, t = argmin
R,t

∑
j

‖t+ Rbj −m(bj)‖2 (3)

and point-to-plane solves

R, t = argmin
R,t

∑
j

∣∣[t+ Rbj −m(bj)] · ηj

∣∣2 , (4)

where ηj is the (rotated) normal information of the surface
around the point bj .

ICP is an intuitive and straightforward to implement algo-
rithm, but the unknown point associations can be limiting in
practice and thus a good initial guess for the correspondences
is of great value.

B. Relative Orientation of the Image Pair
The task of matching distinct features across camera

images works quite reliably. In a monocular camera setup,
we can estimate five out of the six degrees of freedom of
the transformation between camera viewpoints purely based
on image point correspondences. These are three parameters
for rotation R and two parameters for translation direction
tdir ∈ R3. The scale, i.e., the length of tdir, cannot be
determined and thus one uses ‖tdir‖ = 1. This set of five
parameters is often referred to as the relative orientation of
the image pair and it can be efficiently estimated by exploit-
ing the coplanarity constraint. This constraint is formulated
by xTi Ex′i = 0, where xi, x′i are the 2D image coordinates of
a corresponding point pairs and E is the so-called essential
matrix, from which the orientation parameters can be ex-
tracted. Various direct solutions for computing the essential
matrix exist. We use Nistér’s five-point algorithm [14] and
SIFT features together with a standard RANSAC procedure.
The relative orientation parameters are extracted from the
essential matrix E . We verify the parameters by standard
checks such as the fact that triangulated points must lie in
front of the camera and we handle typical corner cases, such
as zero translations.

IV. OUR APPROACH TO INCREMENTAL POSE
ESTIMATION USING CAMERA AND LASER INFORMATION

Our approach starts with estimating the 5-DoF relative ori-
entation of the image pair and then uses the laser information
for scale estimation.



Fig. 1: 1-DoF ICP point-to-point cost function evaluated on the KITTI dataset. The x axis shows the scale deviation from the ground truth
(0) and the y axis the averaged point matching error distance. The function reveals a smooth surface and appears to be mostly convex.

A. 1-DoF ICP for Scale Estimate
Given the relative orientation R0, tdir computed from the

image pair, the metric scale of the translation ‖ttrue‖ is
unknown. We denote the unknown scale parameter as s and
express the scale through the translation vector between the
two poses as

ttrue = s tdir, s ∈ [0,∞). (5)

To estimate s, we propose to solve a novel variant of the
ICP problem with only one degree of freedom, which can
be expressed through

s = argmin
s≥0

∑
i

∥∥∥stdir + R0bj −m(bj)
∥∥∥2

(6)

or s = argmin
s≥0

∑
i

∣∣∣[stdir + R0bj −m(bj)] · ηj

∣∣∣2 , (7)

for the point-to-point and point-to-plane cost function respec-
tively. Efficient closed form solution can be derived for both
equations. To solve Eq. (6), we define ej

def
= m(bj) − Rbj

and obtain:

Φ(s)
def
=
∑
j

∥∥∥stdir + R0bj −m(bj)
∥∥∥2

(8)

=
∑
j

‖stdir − ej‖2 (9)

=
∑
j

s2 − 2seTj tdir + eTj ej . (10)

By setting ∂Φ
∂s = 0, we obtain

∑
j s−eTj tdir = 0 and thus

snew =
1

N

∑
j

eTj tdir, (11)

where N is total number of matched point pairs.
Similarly, for point-to-plane distances according to Eq. (7),

we define wj
def
= ηT

j tdir and obtain

Φ(s)
def
=
∑
j

∣∣∣[stdir + R0bj −m(bj)] · ηj

∣∣∣2 (12)

=
∑
j

∣∣∣sηT
j tdir + ηT

j [R0bj −m(bj)]
∣∣∣2 (13)

=
∑
j

∣∣swj − ηT
j ej
∣∣2 . (14)

Setting ∂Φ
∂s = 0 leads to

∑
j sw

2
j − wjη

T
j ej = 0 and thus

snew =

∑
j wjη

T
j ej∑

j w
2
j

. (15)

This 1-DoF ICP problem possess several attractive prop-
erties. First and foremost, in all our analyzed cases, the cost
function has a well distinguishable global minimum, espe-
cially in feature-rich environment. Consider the KITTI [6]
dataset “odometry sequence 00” as an example. Fig. 1
shows a plot of the point-to-point cost function evaluated
over keyframes covering the whole scene. Although the cost
function depends on the scene structure, we found that the
curve is smooth, appears to be mostly convex, and that the
global minimum represents the true scale well. Beside from
that, the solution space of the scale parameter can also be
easily bounded if additional information is available, as the
scale parameter represents the physical straight line distance
that the vehicle has traveled.

Based on the above observation, we propose a two-step
approach to solve the 1-DoF ICP instead of a standard ICP
implementation: 1D grid search followed by an iterative
refinement. The grid search operates in a branch and bounce
fashion to locate the basin of the global minimum. Given a
search boundaries [smin, smax], we generate a small number of
linearly spaced hypotheses and evaluate the cost (e.g., total
point distance) for each hypothesis. We then select two of the
hypotheses with minimum cost as the new search boundaries
and repeat the process. In this way, the solution space can
be drastically reduced in just a few iterations and one has a
higher chance to avoid shallow local minima that may impair
the ICP performance. If a prior s0 exists, for example from
wheel encoders, we can also incorporate it into the the grid
search as an extra hypothesis in the first iteration.

After the grid search has been performed, we iteratively
refine s using the closed form solution in Eq. (11) or Eq. (15)
according to the use cost function, starting with the data
association that results from the grid search solution and
updating it in every iteration.

The algorithmic view of our method is given in Alg. 1. It
is worth pointing out that in the point-to-plane version, we
can safely discard any points of the current scan that has a
normal vector perpendicular to tdir, without compromising
the solution. Because ηT

j tdir = wj = 0 implies that these
points have no influence on the solution. Such a filtering can
greatly reduce the computational effort and is a big advantage
for real-time processing. For example, in the KITTI dataset



sequence 00, we can remove up to 40% of the scan points
because they lie on the ground plane and do not contribute
to the scale estimate.

After convergence, we execute one final ICP step that
corrects all three translational parameters (but not the rotation
parameters nor changes the data association). We observed
that this steps leads to slightly better results for the estimated
trajectory in the end.

Algorithm 1 1-DoF ICP for scale estimate

1: Input:
• Previous point cloud a, current point cloud b;
• Relative orientation R0, tdir;
• Initial search boundary smin, smax;
• Initial guess s0;

2: Parameter:
• Number of hypotheses per iteration n ∈ [3,∞);
• Outlier distance threshold dout;

3: Output: Estimated scale s.

. Step 1: Grid Search
4: repeat
5: Hypothesis {s1, · · · , sn} ← linspace(smin, smax, n);
6: if first iteration then sn+1 ← s0;
7: for s ∈ {s1, · · · , sn+1} do
8: Transform current cloud b′ ← R0b+ stdir;
9: Match previous cloud m← argmina

∥∥a− b′∥∥;
10: Calculate cost C(s)←

∑
b′

∥∥m− b′∥∥;

11: Update smin, smax ← the two s with lowest cost.
12: until converge or maximum iterations reached
13: s← argmin{smin,smax} C(s)

. Step 2: Refinement
14: repeat
15: Transform current cloud b′ ← R0b+ stdir;
16: Match previous cloud m← argmina

∥∥a− b′∥∥;
17: Remove points pair whose distance exceeded dout;
18: if using point-to-point then
19: Update s← 1

N

∑
j e

T
j tdir . from Eq. (11)

20: else // using point-to-plane
21: Update s←

∑
j wjη

T
jej∑

j w2
j

. from Eq. (15)

22: until converge or maximum iterations reached
23: return s

B. Relative Orientation Constrained Data Association

Beside reducing the normal ICP problem to a one degree
of freedom one, the relative orientation can also be used to
guide the data association that has to take place in all ICP
iterations. Considering the fact that the current frame must
be located in the direction tdir with respect to the previous
one, the same must hold for the corresponding points, see
Fig. 2 for an illustration. Therefore, for a current point bj ,
we can restrict its matching candidates ai to be located near
to the ray rj = b′j − λtdir, instead of arbitrary points in the
whole previous point cloud. Ideally, the point ai should lie

tdir
previous

current(true)

current(estimate)

7
3

rj

q

Fig. 2: The relative orientation supports point cloud data associa-
tion. Given R0, tdir, the point set b′j should be matched to a point
in ai that is lying on the ray rj = b′j − λtdir even if it is not the
closest point. Thus, several wrong associations can be excluded.

exactly on the ray, but due to noise, we relax the constraint
and allow the candidate point to slightly deviate from the
ray.

To achieve this, we propose a modified closest point
association procedure as listed in Alg. 2. The main idea is
to use a temporary coordinate system with tdir being the x-
axis and the previous frame’s origin being the origin of that
frame. Any point correspondences that are inconsistent with
the direction tdir will have nonzero Y and Z components in
its error vector in this temporary frame. Thus, we can define
a weighted Euclidean distance metric, which punishes the Y
and Z components in this frame, i.e.,

d2(ai, b
′
j)

def
= (Qai −Qb′j)

T

1
α

α

 (Qai −Qb′j)

(16)

= (ai − b′j)TQT

1
α

α

Q(ai − b′j) (17)

def
= (ai − b′j)TW (ai − b′j), (18)

where α � 1 is the penalty weight for the Y and Z
components and Q is a rotation matrix, which is used to
transform the points ai, b

′
j from the previous frame into the

new temporary frame.
The rotation matrix Q depends on vector tdir and can

be generated by applying QR decomposition to tdir. The
orthonormal matrix of the decomposition result is used as Q
after transpose. The rows of Q consist of tdir and two orthog-
onal complements of tdir in R3, i.e., Q =

[
tdir q1 q2

]T
and q1 ⊥ q2 ⊥ tdir.

The proposed distance metric can be used in a standard
k-d tree algorithm with minor modifications, while the other
parts of ICP algorithm remain the same.

With this distance metric, we can efficiently transfer the
knowledge gained from image feature correspondences into
the process of laser point association without requiring an
overlap in the field of views of both sensors.



Algorithm 2 Constrained Data Association

1: Input:
• Previous point cloud a, current point cloud b;
• Relative orientation and scale R0, tdir, s;

2: Parameter:
• Penalty weight α� 1;
• Outlier distance threshold dout;

3: Output: Matched point pairs (m, b).

4: Calculate QR decomposition: QR = tdir;

5: Weight matrix W ← Q
[
1
α
α

]
QT;

6: Transform current points b′ ← R0b+ stdir;
7: Match previous points m ← argmina(a− b′)TW (a−
b′);

8: Remove point pairs with
∥∥m− b′∥∥ > dout;

9: return point correspondences (m, b)

V. EXPERIMENTAL EVALUATION

The main focus of this work is a novel approach to joint
laser-camera ego-motion estimation. We make the claims
that our approach (i) allows for accurate frame-to-frame
alignment from monocular vision and laser range data and
that (ii) it is able to exploit the advantages of both modalities.
Our experiments are designed to support these two claims.

We perform our evaluations on the KITTI dataset as it is
a standard dataset for these type of problems and we have
ground truth available. Note that, compared to several other
methods, our approach achieves it performance without any
loop-closing.

Within this evaluation, we use the geodesic distance on
a unit sphere to parameterize the rotational error. Given a
rotation matrix ∆R, we compute

erot = arccos

(
trace(∆R)− 1

2

)
(19)

as the error angle.

A. Error Evaluation

The first set of experiments is designed to support both
claims, i.e., that our approach can accurate align frames
pairwise and that it is able to exploit the advantages of
both modalities. Fig. 3 shows the cumulative error plots
for the rotation (left plot) and the translation (right plot)
of our approach in comparison to an optimized, laser-only
ICP. These are the cumulative plots over all sequences of the
KITTI dataset but the plots for the individual datasets looks
similar and show the same characteristics.

Based on the left plot of Fig. 3, it is clearly visible that
the relative orientation information from the camera provides
a better estimate of rotational component of the ego-motion
(blue line) than laser-based ICP (dashed orange line). The
blue line shows the performance of Nistér’s 5-point algorithm
and our approach (as we use the 5-point algorithm for the
rotation estimation). The fact that this approach is better than

Fig. 3: Cumulative error distribution: Percentage (y-axis) of cumu-
lative errors (x-axis) in rotation and translation for our approach
and laser-only ICP.

laser-based ICP can be seen because blue curve is always
above the dashed, orange one.

We can furthermore show that our approach outperforms
laser-only ICP when estimating the translational part, see
right plot of Fig. 3. The blue line represents our approach and
is always above the dashed, orange one, which corresponds
to laser-only ICP. This is the case for two reasons: First,
our point-to-point data association described in Sec. IV-B is
better than the regular ICP data association as we drastically
reduce the number of potential matches since we only need to
consider points that are in line with the rotation. This avoids
several wrong data associations. Second, the orientation
estimates of our approach are better than those of laser-only
ICP and they also impact the translation estimation. Note
that no translational error can be provided for the camera-
only case as the scale, i.e., the length if the motion vector,
cannot determined using a monocular camera.

Thus, we can conclude that our approach outperforms
visual odometry from the monocular camera (because we
obtain an accurate scale estimate) as well as laser-based ICP
(more accurate orientation and translation).

B. Trajectory Estimation

This second part of the evaluation also supports the first
claim and furthermore provides a better visual impression
about the quality of the estimated trajectories. We plot the
ground truth trajectories, our estimates, and the ones of laser-
only ICP for several KITTI sequences in Fig. 4 (only a subset
is shown due to space reasons). In all sequences except the
top left one, it is rather clear from the shown X/Y plots that
our trajectory estimate is always closer to the ground truth
than the ones obtained by laser-only ICP. For the top left
trajectory (sequence 00), this is more difficult to see. When
inspecting the error in the Z component, however, we can
see in Fig. 5 that our approach clearly outperforms laser-
only ICP. For nearly all keyframes, the error in the height
estimate (Z axis) is larger for the laser-only ICP estimate.

VI. CONCLUSION

In this paper, we presented novel approach to ego-motion
estimation using a monocular camera and a laser range finder
jointly. Our approach estimates the 5-DoF relative orientation
from the camera images and uses a novel variant of ICP



Fig. 4: Resulting trajectories from a subset of the KITTI sequence through our frame-to-frame registration without any loop-closing.

Fig. 5: Error in Z direction of sequence 00 for the keyframes.

with 1-DoF to estimate the scale. We can furthermore con-
strain the possible data associations among the point clouds
given constraints derived from the relative orientation. We
implemented our approach and evaluated it using KITTI data.
In sum, our approach provides accurate trajectory estimates,
which are better than those of each sensing modality alone.
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