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Abstract— Extrinsic sensor calibration is an important task
in robotics. There are various ways to perform the calibration
task, but it often remains unclear which methods are better than
the others. In this paper, we provide a systematic study about
the calibration accuracy of three types of calibration methods,
each represented by an abstract geometric model based on
the sensor configuration and the calibration setup. We discuss
the advantages and disadvantages of each model and perform
a rigorous study on their noise sensitivity from a geometric
perspective. As a result, we can reveal and quantify the relative
calibration accuracies of the three models, thus answering
the question of “which model is better and why?”. Beside
our analytical analysis, we also provide numerical simulation
experiments that validate our findings.

I. INTRODUCTION

Most mobile robots perform some form of state estimation
such as localization, mapping, simultaneous localization and
mapping (SLAM), or exploration. For most of such tasks,
it is important to know where the individual sensors are
mounted on the robot. The task of determining the relative
transformation between the sensors is often referred to as
extrinsic calibration. Without this calibration information,
a lot of the estimation tasks, especially those related to
computing geometric models such as SLAM, do not work
properly and/or provide suboptimal results. The extrinsic
calibration is also important when the information from
multiple sensors have to be fused.

There are various of ways to perform the calibration task.
Some methods rely on auxiliary and dedicated markers,
while others utilize only the motion information estimated
from the sensors. We refer to the former methods as marker-
based while the later ones as motion-based.

Both techniques have been studied for common senors
like cameras, laser-scanners, GPS receivers etc. It remains,
however, unclear which methods are better and, more impor-
tantly, why they are better than the others.

The main contribution of this work is a systematic study
about the calibration accuracy of three kinds of calibration
methods, each represented by an abstract geometric model
based on the sensor configuration and calibration setup. We
discuss the advantages and disadvantages of each model
and perform a rigorous study on their noise sensitivity.
Theoretical bounds for their calibration accuracy are obtained
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Fig. 1: Three geometric models for calibration problem of
a sensor pair. M and ♦ refer to the reference frames of
the two sensors. (a) Model A uses absolute poses in a
common global frame. (b) Model B uses absolute poses in
separate global frames. (c) Model C uses individual, relative
motions for each sensor. The arrows represent two sensors
pose estimate at different timesteps, dotted lines represent
the unknown transformations T between the sensors, dashed
lines represent pose/motion measurements.

and compared. As a result, we are able to report on the
relative calibration accuracy of the three models and are
able to answer the question of “which kind is better in
which scenario and why?”. Experimental results based on
simulation justify our analysis.

II. RELATED WORK

Marker-based calibration methods formed the vast major-
ity of calibration studies. They rely on markers or known
environment features and try to estimate the target parameters
directly from the sensed features by maximizing a quality
measure or the agreement of the sensor data with specific
constraints [7], [10], [11], [17].

Typical sensors that fit in this paradigm are cameras and
LiDARs. For cameras, usually a set of point correspondences
matched from different views of the same scene are used. The
sum of squared point re-projection errors are then serves
as a cost function for an error minimization in parameter
space [8], [18]. For LiDARs, objects with distinguishable
shape, like flat surface or round perimeter are used. Taylor
et al. [16] introduce a metric called gradient orientation mea-
sure that is applicable to different modalities. The underlying
geometry of marker-based approach is straight forward and
seldom discussed.

An alternative group of calibration methods is motion-
based. Motion-based calibration methods are strongly related
to the study of the transformation equation AX=XB. Early
work of Shiu and Ahmad [14] motivates this equation in the
context of camera-in-the-hand (aka. hand-eye) calibration.



They provide a closed form solution as well as its unique-
ness condition. Following works propose various alternative
closed form solutions by using, for example, angle-axis
representation [13], or dual-quaternions formulation [3], or
the idea of screw motion and screw axis [4]. Despite the
simplicity and being fast to compute, these direct approaches
do not take measurement uncertainties into full consideration,
thus rendering these methods vulnerable to noise.

Strobl and Hirzinger [15] considered the measurement
noise, but only as a relative weighting between rotation/-
translation components in the error metrics for the nonlinear
optimization. Brookshire and Teller [2] provide a more
formal discussion. They formulate a projected Gaussian noise
model for unit dual quaternion SE(3) parameterization. By
using unit dual quaternion with 8 parameters, the rotation
and translation are jointly represented, including their uncer-
tainty. Maximum likelihood optimization is then carried out
under this noise model, which provides a Cramer-Rao bound
for the calibrations uncertainty. The aforementioned analysis
is rigorous but it covers only one model.

Beside measurement noise, existence of unobservable pa-
rameters is another practical problem occurs in motion-based
approaches. This happens when the motions experienced by
the sensors do not contain enough rotations in 3D, which
leads to an incomplete confinement to all the six transfor-
mation parameters during the estimation. Brookshire and
Teller [1] discuss the parameter observability in a algebraic
way by inspecting the rank of the Fisher information matrix,
while a more recent work by Maye et al. [12] brings the
observability analysis into practical use. They aim to separate
the calibration parameters into observable and unobservable
part in real-time and update only those parameters that
are observable during the optimization. They carry out the
analysis in a numerical way by using rank-revealing QR
and singular value decompositions of the Fisher information
matrix.

Observability analysis can, however, merely state whether
the parameter is observable or not. We take a step forward
and perform noise sensitivity analysis using the underlying
geometric models. This can not only provide the information
about observability, but more importantly quantify how the
sensor and trajectory configuration relates to the calibration
accuracy for three general calibration models.

III. MODELS

In this paper, we consider the calibration problem between
two sensors. As proven in [9], problems of that type involv-
ing multiple sensors can be formulated in a pair-wise manner
without loss of generality.

Consider two sensors a and b that are rigidly attached
to a robot. Each sensor is assumed to provide a noisy
pose (position and orientation) estimate of itself. Depending
on the sensor, the pose estimates could be incremental
motions relative to past ego-centric frames of a simultaneous
localization and mapping or structure from motion system,
or absolute poses with respect to a fixed coordinate system.
We denote relative motions as M and absolute poses as P.

More specifically,

P,M =

[
R t
0 1

]
∈ SE(3), (1)

with R being a 3x3 rotation matrix and ta a 3x1 vector.
Subscripts consist of {a, b, a′, b′, w, v} are used to indicate
the reference frames. For example, Pwa is sensor a’s absolute
pose in the fixed coordinate system w, and Mb′b is sensor
b’s current pose with respect to its previous ego-frame b′.

Since the rotation magnitude of a pose pair plays an
important role in our discussion, we denote the rotation
magnitude of a rotation matrix R as θ, which is related to
the angle-axis representation where a unit vector indicates
the rotation axis and θ ∈ [0, π] describes the magnitude of
the rotation about that axis.

Our calibration task is to estimate the relative transforma-
tion T ab of sensor b in a’s frame, which contains the relative
rotation, denoted as O, and displacement, denoted as ξ

T ab =

[
Oab ξab
0 1

]
∈ SE(3). (2)

With this transformation, a point p in sensor b’s frame, which
is written as bp, can then be transfered to sensor a by

ap = Oab
bp+ ξab. (3)

A. Model A

In this paper, we categorize common extrinsic calibration
problems into three types, base on their underlying geometric
models. The three models are illustrated in Fig. 1.

In the first model (Fig. 1a), there exists a global reference
frame common to both sensors. Each sensor estimates its
poses with respect to that global frame. A typical example
of this setup is stereo camera calibration, where both cameras
look at a checkerboard and build a common reference frame
using this checkerboard. As the physical dimension of the
checkerboard is known, the camera poses with respect to the
checkerboard can be estimated by solving a Perspective N
Point problem. Once the camera poses are provided, their
relative transformation, i.e. the extrinsic parameter, can then
be estimated under the formulation of Model A, which is

PwaT ab = Pwb, (4)

where w is the common reference frame for both sensor a
and b. The estimation of T ab with this model is straight
forward. A pair of poses is enough to determine the pa-
rameter and the estimation can be made explicitly from
measurements, i.e. T ab = (Pwa)−1Pwb. As we will see in
Sec. IV and in the experiments, Model A has a good and
stable estimation accuracy among the three models.

However, the setup of a reference frame common to all
sensors often requires control points, known landmark, or
reference objects with known geometry. Hence, we refer to
Model A as marker-based approach. The requirement of a
common frame is a major disadvantage as they are hard or
even impossible to achieve in some cases. Consider hand-
eye calibration problem for example, where the encoder of
the robot arm measures nothing other than its own rotation.



Thus a direct shared measurement frame with camera is not
possible. Calibration with the wheeled odometry of mobile
robot has similar problems. Another generally known exam-
ple is camera to camera calibration where the cameras have
non-overlapping views. In this case, a single checkerboard is
not sufficient and a more elaborate infrastructure is required.
Beside the landmarks may be hard to setup, we also need
to make sure their pose information are error free, because
otherwise the estimation result will be biased and may
contain systematic errors.

B. Model B

If we allow the sensors to have separated global reference
frames, then we can avoid the need for setting up reference
objects and thus simplify the calibration process. This relax-
ation leads us to the Model B, as depicted in Fig. 1b.

In this model, each sensor estimates its poses with respect
to a self-defined global reference frame. The global frames
are related to each other by a second unknown transforma-
tion. The pose pair together with the global frames forms a
quadrilateral and the geometric relation becomes

PwaT ab = TwvPvb, (5)

where v is the reference frame of sensor b. In general, we
have Twv 6= T ab and thus two unknown transformations.
This model is known as AX=YB in the hand-eye calibration
literature.

Since for each sensor, we assume to have a sensor-based
odometry or localization system, we can record its trajec-
tory independently (except time synchronization). Therefore,
control points or objects for cross reference are no longer
needed. This largely simplifies the calibration process, but
as we will see in Sec. IV and Fig. 4, this relaxation comes
at a price of two “degeneration zones”, where the estimation
accuracy will be severely undermined.

C. Model C

Both Model A and Model B utilize absolute pose mea-
surements, but absolute poses are not always available or
can be subjected to drift, i.e. measurement errors are not
with zero mean. For example, wheeled odometry for ground
vehicle provides more accurate relative motion information
than absolute ones. And pose estimate from simultaneous
localization and mapping algorithm over long trajectories
are inevitable to drift often even with loop-closing. In these
cases, using relative pose over small time periods is a more
attractive option and leads to the use of Model C:

Ma′aT ab = T a′b′Mb′b (6)

By definition, T a′b′ = T ab and thus only one unknown
transformation. Its characteristic form AX=XB has been
widely studied. Related works such as [4], [13] etc. prove
that it requires at least two sets of poses with unparalleled
rotation axes to determine a unique solution for T .

Since Model C utilized mainly motion information, we
refer to it as motion-based method. Geometrically, Model C
can be seen as a special case of Model B, but it turns out

that Model C is quite different than Model B in terms of its
properties. We will see more on their comparison in Sec. IV-
D.

In short, common calibration problems can be categorized
into these three models. As we will show later, in general
situation, Model A has a good and stable calibration accuracy
regardless of the trajectory configuration. On the contrary,
the accuracy of Model B and C vary greatly depending on
the rotation magnitude θ along the trajectory. However, we
discover that the motion-based method (Model C) can in
theory have a better estimation accuracy than marker-based
approach (Model A) under certain conditions.

IV. NOISE SENSITIVITY ANALYSIS

To understand the estimation accuracy difference between
the models, it is necessary to analyze their sensitivity to
noise. To achieve this, we rely primarily on the concept of
variance propagation in statistics. For readers that are not
familiar with variance propagation, we present here a short
summary. A more detailed treatment can be found at Förstner
and Wrobel [5] page 42-44.

Given a noisy measurement x̃ def
= µx +δx, its expectation

and dispersion (variance) is

IE(x̃) = µx (7)

ID(x̃)
def
= IE(δxδ

T
x) = Σxx. (8)

An estimated random variable ỹ computed through a non-
linear function y = f(x) will approximately have the mean
and variance of this form:

IE(ỹ) = f(µx) (9)

ID(ỹ) = JΣxxJT, (10)

where J def
= ∂f

∂x is the Jacobian of function f evaluated at
µx. This is due to the fact that

µy + δy
def
= ỹ

def
= f(x̃) (11)

= f(µx + δx) (12)

≈ f(µx) +
∂f

∂x

∣∣∣∣
x=µx

δx +O(|δx|2) (13)

≈ µy + Jδx. (14)

Therefore, we have δy = Jδx up to a first order approxima-
tion and thus the variance of x̃ is propagated to ỹ as

Σyy = IE[(Jδx)(Jδx)T] = JΣxxJT. (15)

To analyze the three models, we first identify the nonlinear
functions that relate the unknown parameters and the noisy
measurements, and then obtain theoretical upper bound of
the estimation accuracy by applying variance propagation.

For translation parameter ξ, we analyze ‖ξ‖ instead of
carrying out an exhaustive variance propagation for each
component. The reason is that vector norms are invariant
with rotations. This property allows us to have an intuitive
analysis and interpretation, enabling a direct comparison be-
tween different models. For the estimation of the orientation
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Fig. 2: The three geometric models A, B, and C. Model A uses one global frame, Model B two global frames, and Model C
relies on relative motion estimates only.

parameter O, several studies exist and hence will not be
covered in this paper. An in depth discussion of such topic
can be found at Hartley et al. [6].

In the following discussion, we use tilde accents to denote
noisy measurements (e.g. t̃a, t̃b, θ̃, . . . ) and Σ to denote the
corresponding variance of additive noise. The other entities
that appear in variance propagation without accents are
meant to be noise free latent values. Their values depend
on the the physical and spatial configuration of the sensors.
As we will see, they play an important rules in determining
the calibration accuracy.

A. Model A

We start with the analysis of Model A. Eq. (4) can be
expanded to

Oab = RT
aRb (16)

ξab = RT
a (tb − ta). (17)

From Eq. (17) or Fig. 2a, we know that

‖ξ‖ = ‖tb − ta‖ (18)

=
√
‖tb‖2 + ‖ta‖2 − 2‖ta‖‖tb‖ cosφ. (19)

Hence, the estimated ‖ξ̃‖ is

‖ξ̃‖ =

√
‖t̃b‖2 + ‖t̃a‖2 − 2‖t̃a‖‖t̃b‖ cosφ, (20)

where φ def
= ∠(ta, tb) is the angle between vector ta and tb

(see Fig. 2a). The uncertainty of ‖ξ‖ is obtained by applying
variance propagation to Eq. (20) and reads to

ΣA‖ξ‖ =

[
‖ta‖ − ‖tb‖ cosφ

‖ξ‖

]2

Σ‖ta‖

+

[
‖tb‖ − ‖ta‖ cosφ

‖ξ‖

]2

Σ‖tb‖ +O(Σφ),

(21)

assuming the noise of ‖t̃a‖ and ‖t̃b‖ are uncorrelated.
Consider the other two angles α def

= ∠(ξ, −ta) and β def
=

∠(ξ, tb) within the vector triangle, we obtain

‖ta‖ = cosφ‖tb‖+ cosα‖ξ‖ (22)
‖tb‖ = cosφ‖ta‖+ cosβ‖ξ‖, (23)

and then Eq. (21) can be simplified to

ΣA‖ξ‖ = cos2 α Σ‖ta‖ + cos2 β Σ‖tb‖. (24)

We can conclude that the more ξ is perpendicular to ta, tb,
the less sensitive is ξ̃ to noise. Σ‖ξ‖ is bounded by

ΣA‖ξ‖max = Σ‖ta‖ + Σ‖tb‖ (25)

when (α, β, φ) = {(π, 0, 0), (0, π, 0), (0, 0, π)}, i.e. ta, tb
being collinear.

Computing the lower bound for Σ‖ξ‖ is not as straight
forward and it depends on the ratio of Σ‖ta‖ and Σ‖tb‖. To
give a rough idea, we can assume Σ‖ta‖ = Σ‖tb‖, then

ΣA‖ξ‖min =
1

2

‖ξ‖2

‖ta‖2
Σ‖ta‖ (26)

which is the case if α = β. This means the relative
uncertainty rξ

def
=

Σ‖ξ‖
‖ξ‖2 of the estimation is only a half of

rt
def
=

Σ‖ta‖
‖ta‖2 of the measurement.

For example, assume ‖ξ‖ = 20 cm, ‖ta‖ = 1m, ‖tb‖
varies but Σ‖ta‖ = Σ‖tb‖ = 1 cm2, then the ξ̃ estimated
by Model A will have a standard deviation of 0.014 cm ∼
1.4 cm in its length.

B. Model C

We discuss Model C first and leave Model B for last,
because the former one is simpler to start with. For Model C,
Eq. (6) can be expanded to

RaOab = OabRb (27)
Raξab + ta = Oabtb + ξab. (28)

Two pose pairs form a vector quadrilateral. Our target is to
find the extrinsic parameters (ξ,O) that “closes” the quadri-
lateral. Eq. (28) in its original form does not provide much
clues for this task. Therefore we introduce an intermediate
entity dt and rewrite Eq. (28) as

ta −Oabtb
def
= dt = ξab − Raξab. (29)

Fig. 2c illustrated the motivation. Assuming a nonzero ro-
tation and shifting the upper pose pair to the lower pair,
we can transform the quadrilateral into two triangles that
share one side. These two triangles respectively correspond
to the left and right term of Eq. (29). The shared side dt
is the translation difference between the sensors a and b,
as indicated by the left term1. On the other hand, the right
term (ξ−Rξ) forms an isosceles triangle, which relates the



unknown entity ξ to its two equal sides, with the included
angle being the rotation magnitude θ of R.

From this isosceles triangle, we obtain the relation

‖dt‖ = 2 sin(θ/2)‖ξ‖. (30)

If θ = 0, Eq. (30) still hold because sin(θ/2) = 0 and
‖dt‖ = 0, but ξ is no longer unique and could take any
values given fixed ta and tb.

If θ 6= 0, then ‖ξ̃‖ can be estimated from

‖ξ̃‖ =
1

2 sin(θ̃/2)
‖d̃t‖. (31)

By applying variance propagation to Eq. (31), the uncertainty
of ‖ξ̃‖ turns into

ΣC‖ξ‖ =

[
cos(θ/2)

4 sin2(θ/2)
‖dt‖

]2

Σθ +

[
1

2 sin(θ/2)

]2

Σ‖dt‖ (32)

or

ΣC‖ξ‖ =

[
cos(θ/2)

2 sin(θ/2)
‖ξ‖

]2

Σθ +

[
1

2 sin(θ/2)

]2

Σ‖dt‖ (33)

due to ‖dt‖ = 2 sin(θ/2)‖ξ‖.
Furthermore, as d̃t is estimated from t̃a and t̃b with

d̃t = t̃a −Oabt̃b, (34)

we obtain Σ‖dt‖ similar to Eq. (21) in Model A:

Σ‖dt‖ =
1

4 sin2(θ/2)

([
‖ta‖ − ‖tb‖ cosφ′

‖ξ‖

]2

Σ‖ta‖

+

[
‖tb‖ − ‖ta‖ cosφ′

‖ξ‖

]2

Σ‖tb‖

)
,

(35)

but with φ′
def
= ∠(ta, Oabtb). The leading factor 1

4 sin2(θ/2)

of Eq. (35) is also due to ‖dt‖ = 2 sin(θ/2)‖ξ‖.
From Eq. (32), we can see that ΣC‖ξ‖ consists of two

parts. One part is the translational (‖d̃t‖) and the other is the
rotational one (θ̃). The relative angle θ of the pose pairs plays
an important role in both parts. In situations where θ takes
small values (e.g. θ < 10◦), the factor 1

sin(θ/2) (and its power)
will be large, meaning any noise in the measurements will
be significantly amplified. We refer to this as a “degeneration
zone”. In extreme cases around θ = 0, the uncertainty (or
variance) approaches infinity, because the solution is not
unique and can take any values.

In contract to that, if we have a good configuration with
a large θ around 180◦, the influence of measurement noise
will be reduced. The minimum Σ‖ξ‖ is attained for θ = 180◦

with

ΣC‖ξ‖min =
1

16

([
‖ta‖ − ‖tb‖ cosφ′

‖ξ‖

]2

Σ‖ta‖

+

[
‖tb‖ − ‖ta‖ cosφ′

‖ξ‖

]2

Σ‖tb‖

)
.

(36)

Our simulation experiment in Sec. V confirms this bound.

1In case the robot pivots around sensor b (i.e. tb = 0), then ξ and O are
completely decoupled, and dt = ta is solely the translation measurement
of sensor a.

C. Model B

The analysis of Model B is similar to Model C.
Eq. (5) can be expanded to

RwaOab = OwvRvb (37)
Rwaξab + twa = Owvtvb + ηwv, (38)

where both ηwv and ξab are unknown translation parameters.
We rewrite Eq. (38) as

twa −Owvtvb
def
= dt = ηwv − Rwaξab. (39)

In this model, the triangle that relates ξ and dt is no longer
isosceles and an extra unknown side η is present, as depicted
in Fig. 2b. The geometric relation becomes

sin θ‖ξ‖ = sinψ‖dt‖ (40)

with ψ def
= ∠(η, dt).

If sin θ = 0, (i.e. θ = 0 or π, meaning ξ and η are
collinear), we have sinψ = 0. The equation still hold but
the system becomes degenerated in the sense that solution
to ξ̃ is not unique (so does η̃ because η̃ = d̃t+ Rξ̃).

Assuming sin θ 6= 0, the length of ξ̃ relates to ‖d̃t‖, ψ̃
and θ̃ with

‖ξ̃‖ =
sin ψ̃

sin θ̃
‖d̃t‖. (41)

By applying variance propagation and omitting the correla-
tion terms, the uncertainty of ‖ξ̃‖ becomes

ΣB‖ξ‖ =

[
cos θ sinψ

sin2 θ
‖dt‖

]2

Σθ +

[
cosψ

sin θ
‖dt‖

]2

Σψ

+

[
sinψ

sin θ

]2

Σ‖dt‖

(42)

and can be written as

ΣB‖ξ‖ =

[
cos θ

sin θ
‖ξ‖

]2

Σθ +

[
cosψ

sinψ
‖ξ‖

]2

Σψ +

[
sinψ

sin θ

]2

Σ‖dt‖

(43)

due to ‖ξ‖ = sinψ
sin θ ‖dt‖.

The uncertainty ΣB‖ξ‖ consists of one translation and two
rotation parts. We can identify the two degeneration zones
around θ = 0 and θ = π from Eq. (43), which are due to
the squared cotangent factors of Σψ and Σθ.

The translation part is not as straight forward as in
Model C, but we can show that, assuming ‖η‖ > ‖ξ‖, the
factor sinψ

sin θ is bounded by

‖ξ‖
‖η‖+ ‖ξ‖

<
sinψ

sin θ
<

‖ξ‖
‖η‖ − ‖ξ‖

, (44)

because of Eq. (40) and ‖η‖ − ‖ξ‖ < ‖dt‖ < ‖η‖ +
‖ξ‖. From the perspective of Eq. (44), we can in theory
increase the calibration accuracy by making ‖η‖ larger, e.g,
separating the global frames further away from each other.



TABLE I: Overview of Σ‖ξ‖ for the three models.

Model Σ‖ξ‖ # of degeneration zones

A (AX=B)
[
2 sin(θ/2)

]2
Σ‖dt‖ 0

C (AX=XB)
[

cos(θ/2)
2 sin(θ/2)

‖ξ‖
]2

Σθ +
[

1
2 sin(θ/2)

]2
Σ‖dt‖ 1

B (AX=YB)
[
cosψ
sinψ

‖ξ‖
]2

Σψ +
[
cos θ
sin θ
‖ξ‖

]2
Σθ +

[
sinψ
sin θ

]2
Σ‖dt‖ 2

D. Comparison

Given Eq. (21), Eq. (33) and Eq. (43), see also Tab. I,
we are now able to compare the three models. For this
comparison, we assume the same trajectory and measurement
noise.

First, we compare Model B and Model C. From the
geometry perspective, Model C can be seen as a special case
of Model B with η = ξ. In this case, we can exploit this
equality for the comparison of the models, as it implies

ψ = (π − θ)/2. (45)

This results in
sinψ

sin θ
=

sin(π/2− θ/2)

sin θ
=

cos(θ/2)

2 sin(θ/2) cos(θ/2)
=

1

2 sin(θ/2)
. (46)

Given that, the second term of Eq. (33) and the third term
of Eq. (43) are equal. Additionally exploiting cot θ = cos θ

sin θ
and assuming Σψ = 1

4Σθ, we simplify ΣB‖ξ‖ −ΣC‖ξ‖ for our
comparison as follows:

ΣB‖ξ‖ − ΣC‖ξ‖

= ‖ξ‖2
[
Σθ cot2 θ + Σψ cot2 ψ − Σθ

4
cot2 θ

2

]
(47)

= ‖ξ‖2
[
Σθ cot2 θ +

Σθ
4

tan2 θ

2
− Σθ

4
cot2 θ

2

]
(48)

= Σθ‖ξ‖2
[
cot2 θ +

1

4
tan2 θ

2
− 1

4
cot2 θ

2

]
︸ ︷︷ ︸

g(θ)

. (49)

The term g(θ) in Eq. (49) provides us the insight that, under
which circumstances Model C is better than Model B, or
vice versa. We have

g(θ) < 0 if θ < π/2

g(θ) = 0 if θ = π/2

g(θ) > 0 otherwise.
(50)

See also Fig. 3 for a plot of this term. The term g(θ) is
smaller than zero (between -1/2 and 0) for θ ∈ [0◦, 90◦),
meaning Model B is (slightly) better than Model C in that
range. For θ ∈ [90◦, 180◦], this term is larger than zero and
even approaches infinity, such that Model C is substantially
better than Model B here.

Second, we compare Model A to C. Eq. (21) shows that
ΣA‖ξ‖ is independent of θ, which is an advantage of Model A
over Model C and B. Because the terms related to θ can lead
to large uncertainty or degeneration zones as we saw before.

Fig. 3: Illustration of the function g(θ) in Eq. (49) depending
on the value of θ. As can be seen, for θ < 90◦, Model B is
slightly better than Model C, but for value larger than 90◦,
Model B degenerate quickly. In contrast, Model C performs
well (compare also Fig. 4).

Fig. 4: Result from a simulation experiment for calibrating
two sensors with all three models along the same trajectories.
The plot shows the RMSE of the three models depending
on θ with a close-up view for the interval θ ∈ [40◦, 140◦].
As can be seen, Model A performs well, independent of θ.
Model C is better than Model A for θ > 60◦. Model B never
outperforms Model and has practically no advantages over
Model C.

By comparing ΣA‖ξ‖ to the theoretical minimum value
of ΣC‖ξ‖ from Eq. (36), we can see that Model C can in
theory outperform Model A. As we will, however, observe
in the experimental evaluation, Model A is less sensitive to
degenerate cases and thus, should be preferred over Model B
and Model C in most practical situation. Only for large values
of θ > 60◦, Model C is better than Model A. Furthermore,
Model B never outperforms Model A.



V. EXPERIMENTAL EVALUATION

To validate our analysis, we conduct Monte Carlo simula-
tions. We generate trajectories with controlled configuration
parameters for ‖t‖, θ, etc. We add zero mean Gaussian
noise to the simulated pose measurements and estimate
the extrinsic parameters O, ξ with a nonlinear least-squares
approach developed in our previous work [9]. This estimation
approach is based on the Gauss-Helmert paradigm and able
to provide a statistical optimal solution up to the Cramer-Rao
bound. Meanwhile, all solutions are initialized with ground-
truth values to rule out possible effects of local minimas. In
the end, we compute the error as the difference in the length
of the vectors ξ and ξ̃, i.e., ‖ξ‖−‖ξ̃‖, and calculate the root
mean square (RMSE) for each model. The common setup
for the simulations are ‖η‖ = ‖ξ‖ = 1m, ‖t̃a‖ = 10m,
and noise variance are set to Σ‖ta‖ = Σ‖tb‖ = (0.01m)2,
Σθ = (0.001 rad)2.

We generated 1000 trials/trajectories per value of θ and
each trajectory consists of 100 poses, all evaluated for the
three models. The result of our Monte Carlo simulations is
depicted in Fig. 4. It shows the RMSE for each model with
varying values of θ.

For Model A, the RMSE plot is almost straight and with
minimal variations as expected. The curve of Model B is
dominated by the shape of the squared cotangent function.
We can visually identify the two degeneration zones around
θ = 0◦ and θ = 180◦, which are due to the squared
cotangent factor of Σψ and Σθ, see Eq. (43) in Sec. IV-C. For
Model C, the RMSE plot shows almost no difference to that
of Model B for values θ < 40◦, but it is strictly decreasing
and has only one degeneration zone around θ = 0.

Comparing the three models, we see the situation changes
as the value of θ increases. Model A’s near constant perfor-
mance remains the best until θ reaches 60◦, then Model C
becomes the best and eventually its RMSE takes only half
of Model A’s RMSE when θ = 180◦. Model B performs the
worst among the three models in this experiment, only in a
narrow range (from 80◦ to 100◦) it is close to Model A.

The noticeable deviation of Model B’s and C’s curve
begins at θ = 40◦ instead of expected θ = 90◦. A possible
explanation is because the correlation terms we omitted in
Eq. (43) also have a substantial influence on ΣB‖ξ‖. But
this does not change our conclusion about the accuracy
comparison.

To sum up, the results of the simulation experiment
support our analytical analysis and suggest that Model A
is the preferred solution. For controlled cases with θ > 60◦,
one can consider Model C instead. The use of Model B
however should be avoided.

VI. CONCLUSION

In this paper, we presented a systematic study about the
calibration accuracy of three kinds of calibration methods,
namely AX=B, AX=XB and AX=YB. We discussed the
advantage and disadvantage of each model and perform a
rigorous study on their noise sensitivities. We showed how
the sensor configuration and calibration setup influence the

calibration accuracies and answered the question of “which
model is better?”. Contradict to the common conception
that marker-base methods are always superior, we showed
that in some cases the motion-based methods can be better
than marker-base approaches. In summary, we conclude that
if the calibration setup allow for using Model A, i.e., the
marker-based approach, it is a good choice and should be
used. For controlled settings with θ > 60◦, one should
also consider Model C as it can provide better estimate
of the parameters and typically requires less calibration
infrastructure. If Model A cannot be applied, Model C is
more appropriate than Model B, but for small values of θ,
both degenerate.
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