
Range Image-based LiDAR Localization for Autonomous Vehicles

Xieyuanli Chen Ignacio Vizzo Thomas Läbe Jens Behley Cyrill Stachniss

Abstract— Robust and accurate, map-based localization is
crucial for autonomous mobile systems. In this paper, we exploit
range images generated from 3D LiDAR scans to address the
problem of localizing mobile robots or autonomous cars in a
map of a large-scale outdoor environment represented by a
triangular mesh. We use the Poisson surface reconstruction
to generate the mesh-based map representation. Based on the
range images generated from the current LiDAR scan and
the synthetic rendered views from the mesh-based map, we
propose a new observation model and integrate it into a Monte
Carlo localization framework, which achieves better localization
performance and generalizes well to different environments. We
test the proposed localization approach on multiple datasets col-
lected in different environments with different LiDAR scanners.
The experimental results show that our method can reliably and
accurately localize a mobile system in different environments
and operate online at the LiDAR sensor frame rate to track
the vehicle pose.

I. INTRODUCTION

Precise localization is a fundamental capability required
by most autonomous mobile systems. With a localization
system, a mobile robot or an autonomous car is capable to es-
timate its pose in a map based on observations obtained with
onboard sensors. Precise and reliable LiDAR-based global
localization is needed for autonomous driving, especially in
GPS-denied environments or situations where GPS cannot
provide accurate localization results.

Most autonomous mobile systems have a 3D LiDAR sen-
sor onboard to perceive the environment and directly provide
3D range measurements. In this paper, we tackle the problem
of vehicle localization based on such 3D LiDAR sensors.
For localization, probabilistic state estimation techniques are
used in most localization systems today. In particular, particle
filters are a versatile tool as they do not need to restrict the
motion or observation model to follow a specific distribution,
such as a Gaussian. When utilizing particle filters, we need
to design an appropriate observation model in lieu with
a map representation. Frequently used observation models
for LiDARs are the beam-end point model, also called the
likelihood field [25], the ray-casting model [8], or models
based on handcrafted features [23], [33]. These methods
either only work efficiently with 2D LiDAR scanners or
need carefully designed features to work properly. Recently,
researchers also focused on data-driven learning of such
observation models [12], [29], [6], which provide accurate

All authors are with the University of Bonn, Germany.
This work has partially been funded by the Deutsche Forschungsgemein-

schaft (DFG, German Research Foundation) under Germany’s Excellence
Strategy, EXC-2070 - 390732324 - PhenoRob, and by the Chinese Schol-
arship Committee.

Mesh map

Synthetic range image Current range image

Current scan

Fig. 1: Visualization of range images and triangular mesh map. On
the left, we show the triangular mesh used as the map and the
rendered synthetic range image from the mesh. In the mesh map,
red parts correspond to ground planes and blue parts represent non-
ground structures. On the right, we show the LiDAR point cloud
at the same location and the corresponding range image generated
from the LiDAR scan.

and reliable results as long as the environment is close to
the environment used for learning the model.

Instead of using raw point clouds obtained from a 3D
LiDAR sensor or features generated or learned from the point
clouds, we investigate range images for 3D LiDAR-based
localization for autonomous vehicles. As shown in Fig. 1, we
project the point clouds into range images and localize the
autonomous system with rendered views from a map that is
represented with a triangular mesh. There are several reasons
to use range image representation and maps represented
by a mesh. The cylindrical range image is a natural and
light-weight representation of the scan from a rotating 3D
LiDAR, and a mesh map is more compact than a large
point cloud. Those properties enable our approach to achieve
global localization in large-scale environments. Furthermore,
the rendering of range images from a mesh map can be
performed efficiently using computer graphics techniques.
Therefore, range images and mesh maps are a perfect match
for achieving LiDAR-based global localization.

The main contribution of this paper is a novel observation
model for 3D LiDAR-based localization. Our model is based
on range images generated from both, the real LiDAR scans
and synthetic renderings of the mesh map. We use the differ-
ence between them to formulate the observation model for a
Monte Carlo localization (MCL) for updating the importance
weights of the particles. Based on our novel observation
model, our approach provides (x, y, θ)-pose estimates for the
vehicle and achieves global localization using 3D LiDAR

scans. Furthermore, our approach generalizes well over dif-
ferent environments collected with different types of LiDAR
scanners. In sum, we make three key claims: Our approach is
able to (i) achieve global localization accurately and reliably
using 3D LiDAR data, (ii) can be used for different types of
LiDAR sensors, and, (iii) generalize well over different envi-
ronments. These claims are backed up by the paper and our
experimental evaluation. The source code of our approach is
available at: https://github.com/PRBonn/range-mcl.

II. RELATED WORK

For localization given a map, one often distinguishes be-
tween pose tracking and global localization. In pose tracking,
the vehicle starts from a known pose and the pose is updated
over time. In global localization, no pose prior is available. In
this work, we address global localization using 3D LiDAR
data without assuming any pose prior from GPS or other
sensors. Therefore, we concentrate here mainly on LiDAR-
based approaches.

In the context of autonomous cars, many approaches
were proposed for accurate pose tracking using multiple
sensor modalities and high-definition (HD) maps. Levinson
et al. [16] utilize GPS, IMU, and LiDAR scans to build HD
maps for localization. They generate a 2D surface image
of ground reflectivity in the infrared spectrum and define an
observation model that uses these intensities. The uncertainty
in intensity values has been handled by building a prior
map [31]. Barsan et al. [12] use a fully convolutional neural
network (CNN) together with HD maps to perform online-
to-map matching for improving the robustness to dynamic
objects and eliminating the need for LiDAR intensity cali-
bration. Merfels and Stachniss [18] present an efficient chain-
like pose graph for vehicle localization exploiting graph
optimization techniques and different sensing modalities.
Based on this work, Wilbers et al. [30] propose a LiDAR-
based localization system performing a combination of local
data association between laser scans and HD map features,
temporal data association smoothing, and a map matching
approach for robustification. The approaches above show
good performance for tracking vehicles’ poses but require
GPS information for operating on HD maps. In contrast, our
approach addresses global localization using only 3D LiDAR
data without assuming any pose prior.

To achieve global localization, traditional approaches rely
on probabilistic state estimation techniques [25]. A popular
framework is Monte Carlo localization [8], [26], [10], which
uses a particle filter to estimate the robot’s pose and is widely
used in robot localization systems [3], [6], [15], [24], [32].

Recently, several approaches exploiting deep neural net-
works and semantic information for 3D LiDAR localization
have been proposed. For example, Ma et al. [17] combine
semantic information such as lanes and traffic signs in a
Bayesian filtering framework to achieve accurate and robust
localization within sparse HD maps. Yan et al. [32] exploit
buildings and intersections information from a LiDAR-based
semantic segmentation system [19] to localize in Open-
StreetMap data. Schaefer et al. [21] detect and extract pole

Current scan

Global mesh map Particles Synthetic
range images

Current
range image

Observation
model

Posterior

Fig. 2: Overview of our approach. We project the LiDAR point
cloud into a range image and compare it to synthetic range images
rendered at each particle location from a mesh map. Based on the
range images, we propose a new observation model for localization
and integrate it into a Monte Carlo localization system to estimate
the pose posterior of the vehicle.

landmarks from 3D LiDAR scans for long-term urban vehicle
localization whereas Tinchev et al. [27] propose a learning-
based method to match segments of trees and localize in
both urban and natural environments. Sun et al. [24] use a
deep-probabilistic model to accelerate the initialization of the
Monte Carlo localization and achieve a fast localization in
outdoor environments. In our previous work [6], [5], we also
exploit CNNs with semantics to predict the overlap between
LiDAR scans as well as their yaw angle offset, and use
this information to build a learning-based observation model
for Monte Carlo localization. The learning-based methods
perform well in the trained environments, while they usually
cannot generalize well in different environments or different
LiDAR sensors.

In sum, our method only uses LiDAR data to achieve
global localization outdoors without using any GPS. More-
over, our approach uses range information directly without
exploiting neural networks, semantics, or extracting land-
marks. Therefore, it generalizes well to different environ-
ments and different LiDAR sensors and does not require new
training data when moving to different environments.

III. OUR APPROACH

In this paper, we propose a probabilistic global localization
system for autonomous vehicles using a 3D LiDAR sensor,
see Fig. 2 for an illustration. To this end, we project the
LiDAR point cloud into a range image (see Sec. III-A) and
compare it to synthetic range images rendered at each particle
location from a map represented by a triangular mesh (see
Sec. III-B and Sec. III-C). Based on the range images, we
propose a new observation model for LiDAR-based local-
ization (see Sec. III-E) and integrate it into a Monte Carlo
localization system (see Sec. III-D). Furthermore, we employ
a tile map to accelerate the rendering and decide when the
system converges (see Sec. III-F). Using an OpenGL-based
rendering pipeline, the proposed system operates online at
the frame rate of the LiDAR sensor after convergence.

https://github.com/PRBonn/range-mcl

A. Range Image Generation

The key idea of the proposed method is to use range
images generated from LiDAR scans and rendered from the
triangular mesh map for robot localization. To generate range
images, we use a spherical projection [2], [19], [7], [5].
We project the point cloud P to the so-called vertex map
VD : R2 7→ R3, where each pixel contains the nearest 3D
point. Each point pi = (x, y, z) is converted via the function
Π : R3 7→ R2 to spherical coordinates and finally to image
coordinates (u, v), i.e.,(

u
v

)
=

(
1
2

[
1− arctan(y, x) · π−1

]
· w[

1−
(
arcsin(z · r−1) + fup

)
f−1
]
· h

)
, (1)

where r = ||p||2 is the range, f = fup + fdown is the vertical
field-of-view of the sensor, and w, h are the width and height
of the resulting vertex map VD. Given the vertex map VD
and range r of points at each coordinate (u, v), we generate
the corresponding range imageRD, on which the subsequent
computations are based upon.

B. Mesh-based Map Representation

We use a triangular mesh as a mapM of the environment.
A triangular mesh provides us with a compact representation
that enables us to render the aforementioned range images
at the frame rate of the LiDAR sensor.

To generate the map, we use LiDAR scans together with
their poses provided a SLAM system uses for mapping.
Note that it is not necessary for our approach to use the
same LiDAR sensor for map generation and localization.
We employ Poisson surface reconstruction (PSR) [13] to
obtain the representation of the map as a triangular mesh
from point clouds. The PSR algorithm requires an oriented
point cloud, thus normals for all the points in the input cloud.
To estimate the surface normals, we use a range image-
based normal estimation [2], which computes normals in the
so-called normal map ND for each coordinate (u, v) using
cross products over forward differences of the corresponding
vertex map pixel, i.e.,

ND((u, v)) = (VD((u+ 1, v))− VD((u, v)))

× (VD((u, v + 1))− VD((u, v))) . (2)

To decrease the storage size of the map, we use a ground
segmentation algorithm. We first compute the empirical
covariance matrix of all the points in the cloud. We then
compute the normalized Eigenvectors of Σ : e1, e2, e3 with
corresponding Eigenvalues λ1 ≥ λ2 ≥ λ3. We use a simple,
yet effective, approach to label a point pi = (x, y, z) with
corresponding normal ni as ground. pi is considered to
belong to the ground surface if it satisfies the following
criteria: ni · e3 > cosαthres and z < zthres.

After all ground points have been labeled, we proceed
to run the reconstruction algorithm that retains the labels
encoded as two different colors of the vertices pi in the
reconstructed triangles. To simplify the ground mesh, we
split the complete mesh into non-ground and ground mesh.
For the ground mesh, we contract all vertices to a single

Point rendering Mesh rendering

Fig. 3: Rendering example. In contrast to a map represented by
a point cloud, triangular meshes are smoother and more compact.
During the projection, for each triangle, only three vertices need to
be projected. Moreover, triangles can better represent the occlusion
relationship between different objects.

vertex that are inside a voxel of a given size svoxel. Then,
we filter the ground vertices using an average filter by
replacing each vertex vi with v∗i averaging all adjacent
vertices vn ∈ N :

v∗i =
vi +

∑
n∈N vn

|N |+ 1
. (3)

After averaging, invalid edges are removed. Once the
ground surface has been simplified, it is combined with the
rest of the mesh with no further processing. This simplifi-
cation allows us to decrease the size of the mesh model to
about 50% of its original size.

The PSR algorithm provides a global solution that consid-
ers the whole input data at once without resorting to heuristic
partitioning [4] or blending [1], [22]. Therefore, instead of
building the map incrementally [28], we aggregate all the
oriented point clouds into a global reference frame using map
poses, then, this oriented point cloud map is directly fed to
the PSR algorithm, yielding a globally consistent triangular
mesh of the environment.

C. Rendering Synthetic Range Images

Given a particle j with its state vector (xj , yj , θj) and
the triangular mesh map M, we use OpenGL to render a
synthetic range image for that particle. Using the spherical
projection, cf. Eq. (1), we project vertices of the triangles
from the given particle pose and let OpenGL shade the
triangle surface considering the occlusion, as shown in Fig. 3.
To further accelerate rendering, we render batches of range
images for multiple particles using instancing of the map,
which allows us to avoid reading vertex positions multiple
times and minimizes the number of draw calls.

D. Monte Carlo Localization

Monte Carlo localization (MCL) is commonly imple-
mented using a particle filter [8]. In our case, each particle
represents a hypothesis for the autonomous vehicle’s 2D
pose xt = (x, y, θ)t at time t. When the robot moves, the
pose of each particle is updated based on a motion model
with the control input ut. The expected observation from the
predicted pose of each particle in the map M is then com-
pared to the actual observation zt acquired by the robot to
update the particle’s weight based on an observation model.
Particles are resampled according to their weight distribution

(a) Location heatmap

−40 −20 0 20 40

yaw angle [deg]

0.00

0.25

0.50

0.75

1.00

(b) Heading likelihood

(c) Scene used to generate the heatmap

Fig. 4: Range image-based observation model. (a) A local heatmap
shows the location likelihood of the scan at the car’s position with
respect to the map with the same heading. Red shades correspond
to higher weights. (b) Heading likelihood of the observation model
when changing the yaw angle with the same location. (c) A top-
down view of the Carla scene used in this example.

and resampling is triggered whenever the effective number of
particles drops below a specific threshold [11]. After several
iterations of this procedure, the particles eventually converge
around the true pose.

MCL realizes a recursive Bayesian filter estimating a
probability density p(xt | z1:t,u1:t) over the pose xt given
all observations z1:t up to time t and motion controls u1:t

up to time t. This posterior is updated as follows:

p(xt | z1:t,u1:t) = η p(zt | xt,M)·∫
p(xt | ut,xt−1) p(xt−1 | z1:t−1,u1:t−1) dxt−1, (4)

where η is a normalization constant, p(xt | ut,xt−1) is the
motion model, p(zt | xt,M) is the observation model, and
p(xt−1 | z1:t−1,u1:t−1) is the probability distribution for the
prior state vt−1.

In this work, we focus on the observation model and
employ a standard motion model for vehicles [25].

E. Range Image-based Observation Model
Based on the generated range image from the current

LiDAR scan and the rendered synthetic range images for
all particles, we design an observation model.

Each particle j represents a pose hypothesis
xj
t = (x, y, θ)jt at time t. Given the corresponding synthetic

rendered range image zj for the j-th particle rendered at
the particle’s pose hypothesis, we compare it to the current
range image zt generated from the LiDAR point cloud.
The likelihood p (zt | xt,M) of the j-th particle is then
approximated using a Gaussian distribution:

p (zt | xt,M) ∝ exp

(
−1

2

d
(
zt, z

j
)2

σ2
d

)
, (5)

where d corresponds to the difference between or similarity
of the range images zt and zj .

There are several ways to calculate this similarity. For ex-
ample, we could directly compare two range images at pixel
level with absolute differences or using a cross-correlation.
One could also generate features and compare two images
in the feature space. Recently, there are also many deep
learning-based algorithms proposed [12], [6], [24], [29].

In this paper, our goal is to investigate the use of range im-
ages generated from LiDAR scans and triangular meshes for
a Monte Carlo localization system and the particular choice
of similarity computation is application dependent. To keep
the whole system fast and easy to use, we opted for a fast-to-
compute and effective method and use d = N−1

∑
|zt−zj |,

i.e., the mean of the absolute pixel-wise differences, where N
is the number of valid pixels in the current range image. Our
results show that this choice is effective and generalizes well
to datasets collected in different environments with different
types of LiDAR sensors (see Sec. IV-B).

Fig. 4 shows the probabilities in a local area calculated
by our proposed observation model and shows that it en-
codes the pose hypotheses very well. In contrast to our
prior work [5], which decouples the observation model into
two parts, location likelihood and heading likelihood, the
proposed observation model can estimate the likelihood for
the whole state space xt = (x, y, θ)t at once using one
model, which is elegant and fast.

F. Tiled Map Representation

We split the global mesh-based map into tiles to accelerate
the Monte Carlo localization by more efficient rendering. We
only use parts of the mesh associated to a tile, which are close
to the particle position. Besides more efficient rendering,
we also use tiles to determine when the localization has
converged. If all particles are localized in at most Nconv tiles,
we assume that the localization has converged and reduce the
number of particles to track the pose. Tiles also enable the
runtime of our method to be independent of the size of the
whole environment after converging.

IV. EXPERIMENTAL EVALUATION

We present our experiments to show the capabilities of
our method and to support our claims, that our approach is
able to: (i) achieve global localization accurately and reliably
using 3D LiDAR data, (ii) can be used for different types
of LiDAR scanners, and, (iii) generalize well to different
environments without changing parameters.

Implementation Details. We implement our code based
on Python and OpenGL. To generate a triangular mesh map,
we use the PSR implementation from Open3D [34]. For
ground point extraction, we use αthres = 30◦ and zthres as
the sensor mounted height, and employ a voxel grid with
voxel sizes svoxel = 1.0m. We use tiles of size 100× 100 m2

and we reduce the number of particles from initially 10, 000
to 100 particles after convergence, i.e., only Nconv = 1 tile
is covered by particles. The size of the tile map and the
reduced number of particles are trade-offs between runtime

TABLE I: Dataset Overview

Dataset Sensor Sequence Acquisition Lengthtime

Carla
(Simulator)

8 - 128 beam
LiDAR

map (0.2 Gb) n/a 3.5 km
00 n/a 0.7 km

IPB-Car
(Germany) Ouster 64

map (0.8 Gb) 02/2020 6.2 km
00 09/2019 1.7 km
01 11/2019 1.9 km

MulRan
(Korea) Ouster 64 map (0.5 Gb) 08/2019 6.0 km

00 06/2019 6.1 km

Apollo
(U.S.) Velodyne 64 map (5.4 Gb) 09/2018 44.8 km

00 10/2018 8.8 km

and accuracy. We set σd = 5 in Eq. (5), and we only
update the weights of particles when the car is moving. All
parameters are tuned with one dataset (IPB-Car) and kept
the same for all other experiments with different datasets
and sensors.

Datasets. We evaluate the generalization ability of our
method using multiple datasets, including Carla [9], IPB-
Car [6], MulRan (KAIST) [14] and Apollo (Columbia-
Park) [35]. These datasets are collected in different environ-
ments with different types of LiDAR scanners over different
times, see Tab. I for more details. For the Carla simulator, we
added objects for the test sequences, which are not present in
the map to simulate a changing environment like in the real
datasets. For all experiments on different datasets, we only
change the intrinsic and extrinsic calibration parameters of
the LiDAR sensors for the generation of the range images
and keep all other parameters, especially those of the MCL,
the same.

Baselines. In the following experiments, we use the same
MCL framework and only change the observation models.
We compare our method with three baseline observation
models: the typical beam-end model [25], a histogram-based
model derived from the work of Röhling et al. [20], and a
deep learning-based model [6].

The beam-end observation model is often used for 2D
LiDAR data. For 3D LiDAR scans, it needs many more
particles to make sure that it converges to the correct pose,
which causes the computation time to increase substantially.
In this paper, we implement the beam-end model with a
down-sampled point cloud map using voxelization with a
resolution of 10 cm.

Our second baseline for comparison is inspired by Röhling
et al. [20], which exploit the use of similarity measures on
histograms extracted from 3D LiDAR data.

The third baseline is the overlap-based localization [6]. It
uses a deep neural network to estimate the overlap and yaw
angle offset between a query scan and map data, and on top
of this builds an observation model for MCL. The overlap-
based method utilizes a grid map and stores virtual frames
for each grid cell. We refer to the corresponding paper [6]
for more details.

Ours
Overlap
Ground truth

200 m

Fig. 5: Localization results using 10, 000 particles on the IPB-
Car dataset. Shown are the mesh map, the ground truth trajectory
(black), the overlap-based result (blue), and the result of our
proposed method (orange).

A. Localization Performance

The experiment presented in this section investigates the
localization performance of our approach. It supports the
claim that our approach achieves global localization accu-
rately and reliably using 3D LiDAR data.

For qualitative results, we show the trajectories of the
localization results tested on the IPB-Car dataset in Fig. 5.
The results illustrate that the proposed method localizes well
in the map using only LiDAR data collected in dynamic
environments at different times. Comparing to the baseline
methods, the proposed method tracks the pose more accu-
rately.

For quantitative results, we first calculate the success rate
for different methods with different numbers of particles
comparing our approach to the aforementioned methods,
see Fig. 6. We tested the methods using five different
numbers of particles N = {1, 000, 5, 000, 10, 000, 50, 000,
100, 000}. For each setup, we sample 10 trajectories and per-
form global localization. The x-axis represents the number
of particles, while the y-axis is the success rate of different
setups. The success rate for a specific setup of one method
is calculated using the number of success cases divided by
the total number of the tests. To decide whether one test
is successful or not, we check the location error by every
100 frames after convergence. If the location error is smaller
than 5 m, we count this run as a success.

Quantitative results of localization accuracy are shown
in Tab. II. The upper part shows the location error of all
methods tested with both sequences. The location error is
defined as the root mean square error (RMSE) of each
test in terms of (x, y) Euclidean error with respect to the
ground truth poses. It shows the mean and the standard
deviation of the error for each observation model. Note that
the location error is only calculated for success cases with
10, 000 particles. The lower part shows the yaw angle error.
It is the RMSE of each test in terms of yaw angle error with
respect to the ground truth poses. The table shows the mean

Histogram Beam-end Overlap Ours

103 104 105

Number of particles

0.0

0.2

0.4

0.6

0.8

1.0

S
u

cc
es

s
ra

te

103 104 105

Number of particles

0.0

0.2

0.4

0.6

0.8

1.0

S
u

cc
es

s
ra

te

Fig. 6: Success rate of the different observation models for 10
globalization runs. Here, we use sequence 00 (left) and sequence
01 (right) to localize in the map of the IPB-Car dataset.

TABLE II: Localization results on the IPB-Car dataset

Sequence Location error [m]

Beam-end Histogram-based Overlap-based Ours

00 0.92 ± 0.27 1.85 ± 0.34 0.81 ± 0.13 0.66± 0.12
01 0.67 ± 0.11 1.86 ± 0.34 0.88 ± 0.07 0.44± 0.03

Sequence Yaw angle error [deg]

Beam-end Histogram-based Overlap-based Ours

00 1.87 ± 0.47 3.10 ± 3.07 1.74 ± 0.11 1.69± 0.11
01 2.10 ± 0.59 3.11 ± 3.08 1.88± 0.09 2.53 ± 0.79

and the standard deviation of the error for each observation
model. As before, the yaw angle error is also only calculated
for cases in which the global localization converged with
10, 000 particles.

The quantitative results show that our method outperforms
all baseline methods in location accuracy while achieving
similar heading accuracy. The reason is that our method
uses online rendered range images and does not rely on
discrete grids. Therefore, our method will not be affected
by the resolution of the grid. However, this means that
our method requires more particles to achieve the same
success rate. Thus, we use a large amount of particles for
initialization. It will then achieve a high success rate while
without influencing the runtime after convergence, due to the
use of tiles, see in Sec. IV-C.

B. Generalization

The experiment supports the claim that our method is able
to use different types of LiDAR sensors to localize in the
same mesh map. We test 5 different types of LiDAR sensors
in the Carla simulator, including Quanergy MQ-8 (8-beams),
Velodyne Puck (16-beams), Velodyne HDL-32E (32-beams),
Velodyne HDL-64E (64-beams), and Ouster OS1-128 (128-
beams). We use the real parameters from the aforementioned
LiDAR sensors, which include the number of beams and
the field of view. As shown in Tab. III, our method works
well with all different types of sensors and achieves good
localization results even with relatively sparse scans (location
RMSE of 0.48 m with the 8-beam LiDAR).

Tab. III and Fig. 7 also verify the claim that our method
generalizes well over different environments. We test our
method on both the MulRan and Apollo datasets with the
same parameters used in the Carla and IPB-Car dataset.
Our method works well also in Korean and U.S. urban
environments.

TABLE III: Localization results on datasets using different sensors.

Dataset Scanner Location RMSE [m] Yaw angle RMSE [deg]

Carla

8-beams 0.48 3.87
16-beams 0.43 3.87
32-beams 0.42 3.40
64-beams 0.36 3.46
128-beams 0.33 3.31

MulRan Velodyne 64 0.83 3.14

Apollo Ouster 64 0.57 3.40

0 1000 2000 3000 4000 5000 6000 7000 8000

Time index

−2

0

2

L
a

ti
tu

d
e

er
ro

r
[m

]

RMSE = 0.46 m

0 1000 2000 3000 4000 5000 6000 7000 8000

Time index

−2

0

2

L
o

n
g

it
u

d
e

er
ro

r
[m

]

RMSE = 0.7 m

0 1000 2000 3000 4000 5000 6000 7000 8000

Time index

−5

0

5

10

H
ea

d
in

g
er

ro
r

[d
eg

re
e]

RMSE = 2.14 deg

Fig. 7: Localization results on the MulRan dataset w.r.t. provided
GPS locations. The top figure shows the latitude error, the middle
figure shows the longitude error, and the bottom figure shows the
heading error.

C. Runtime

Here we show that our approach runs fast enough to
support online processing on the robot at sensor frame rate.
We tested our method on a regular computer with an Intel
i7-8700 with 3.2 GHz and an Nvidia GeForce GTX 1080
Ti with 11 GB of memory. On the Carla dataset, before
convergence, the maximum time for one query frame is
56.7 s with 10, 000 particles. After convergence, the average
frame rates of our method is 21.8 Hz with 100 particles and
the tile maps size of 100× 100 m2.

V. CONCLUSION

In this paper, we presented a novel range image-based
online LiDAR localization approach. Our method exploits
range images generated from LiDAR scans and a triangular
mesh-based map representation. This allows us to localize
autonomous systems in the given map successfully. We im-
plemented and evaluated our approach on different datasets
and provided comparisons to other existing techniques. The
experiments suggest that our method is able to achieve
global localization reliably and accurately. Moreover, our
method generalizes well to different environments and can
be used with different LiDAR sensors. After the localization
convergence, our method can operate online at the sensor
frame rate.

REFERENCES

[1] M. Alexa, J. Behr, D. Cohen-Or, S. Fleishman, D. Levin, and C.T.
Silva. Point set surfaces. In Proc. of the IEEE Visualization, (VIS),
pages 21–29. IEEE, 2001.

[2] J. Behley and C. Stachniss. Efficient Surfel-Based SLAM using 3D
Laser Range Data in Urban Environments. In Proc. of Robotics:
Science and Systems (RSS), 2018.

[3] M. Bennewitz, C. Stachniss, W. Burgard, and S. Behnke. Metric Local-
ization with Scale-Invariant Visual Features using a Single Perspective
Camera. In H.I. Christiensen, editor, European Robotics Symposium
2006, volume 22 of STAR Springer Tracts in Advanced Robotics, pages
143–157. Springer Verlag, 2006.

[4] J.C. Carr, R.K. Beatson, J.B. Cherrie, T.J. Mitchell, W.R. Fright, B.C.
McCallum, and T.R. Evans. Reconstruction and representation of 3d
objects with radial basis functions. In Proc. of the Intl. Conf. on
Computer Graphics and Interactive Techniques (SIGGRAPH), pages
67–76, 2001.

[5] X. Chen, T. Läbe, A. Milioto, T. Röhling, O. Vysotska, A. Haag,
J. Behley, and C. Stachniss. OverlapNet: Loop Closing for LiDAR-
based SLAM. In Proc. of Robotics: Science and Systems (RSS), 2020.

[6] X. Chen, T. Läbe, L. Nardi, J. Behley, and C. Stachniss. Learning
an Overlap-based Observation Model for 3D LiDAR Localization. In
Proc. of the IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems
(IROS), 2020.

[7] X. Chen, A. Milioto, E. Palazzolo, P. Giguère, J. Behley, and C. Stach-
niss. SuMa++: Efficient LiDAR-based Semantic SLAM. In Proc. of
the IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS),
2019.

[8] F. Dellaert, D. Fox, W. Burgard, and S. Thrun. Monte carlo localization
for mobile robots. In IEEE International Conference on Robotics and
Automation (ICRA), May 1999.

[9] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun.
CARLA: An Open Urban Driving Simulator. In Proc. of the Conf. on
Robot Learning (CoRL), 2017.

[10] D. Fox, W. Burgard, F. Dellaert, and S. Thrun. Monte Carlo
Localization: Efficient Position Estimation for Mobile Robots. Proc. of
the Conference on Advancements of Artificial Intelligence (AAAI),
1999(343-349), 1999.

[11] G. Grisetti, C. Stachniss, and W. Burgard. Improved Techniques for
Grid Mapping with Rao-Blackwellized Particle Filters. IEEE Trans. on
Robotics (TRO), 23(1):34–46, 2007.

[12] I. Andrei I.A. Barsan, S. Wang, A. Pokrovsky, and R. Urtasun.
Learning to Localize Using a LiDAR Intensity Map. In Proc. of the
Second Conference on Robot Learning (CoRL), pages 605–616, 2018.

[13] M. Kazhdan, M. Bolitho, and H. Hoppe. Poisson surface recon-
struction. In Proceedings of the fourth Eurographics symposium on
Geometry processing, volume 7, 2006.

[14] G. Kim, Y.S. Park, Y. Cho, J. Jeong, and A. Kim. Mulran: Multimodal
range dataset for urban place recognition. In Proc. of the IEEE
Intl. Conf. on Robotics & Automation (ICRA), 2020.

[15] R. Kümmerle, M. Ruhnke, B. Steder, C. Stachniss, and W. Burgard.
Autonomous Robot Navigation in Highly Populated Pedestrian Zones.
Journal of Field Robotics (JFR), 2014.

[16] J. Levinson, M. Montemerlo, and S. Thrun. Map-Based Precision
Vehicle Localization in Urban Environments. In Proc. of Robotics:
Science and Systems (RSS), 2007.

[17] W. Ma, I. Tartavull, I. A. Bârsan, S. Wang, M. Bai, G. Mattyus,
N. Homayounfar, S. K. Lakshmikanth, A. Pokrovsky, and R. Urta-
sun. Exploiting Sparse Semantic HD Maps for Self-Driving Vehicle
Localization. In Proc. of the IEEE/RSJ Intl. Conf. on Intelligent Robots
and Systems (IROS), 2019.

[18] Ch. Merfels and C. Stachniss. Pose fusion with chain pose graphs for
automated driving. In Proc. of the IEEE/RSJ Intl. Conf. on Intelligent
Robots and Systems (IROS), 2016.

[19] A. Milioto, I. Vizzo, J. Behley, and C. Stachniss. RangeNet++: Fast
and Accurate LiDAR Semantic Segmentation. In Proceedings of the
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), 2019.

[20] T. Röhling, J. Mack, and D. Schulz. A Fast Histogram-Based
Similarity Measure for Detecting Loop Closures in 3-D LIDAR Data.
In Proc. of the IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems
(IROS), pages 736–741, 2015.

[21] A. Schaefer, D. Büscher, J. Vertens, L. Luft, and W. Burgard. Long-
term urban vehicle localization using pole landmarks extracted from
3-D lidar scans. In Proc. of the Europ. Conf. on Mobile Robotics
(ECMR), pages 1–7, 2019.

[22] C. Shen, J.F. O’Brien, and J.R. Shewchuk. Interpolating and ap-
proximating implicit surfaces from polygon soup. In Proc. of the
Intl. Conf. on Computer Graphics and Interactive Techniques (SIG-
GRAPH), pages 896–904, 2004.

[23] B. Steder, M. Ruhnke, S. Grzonka, and W. Burgard. Place Recognition
in 3D Scans Using a Combination of Bag of Words and Point
Feature Based Relative Pose Estimation. In Proc. of the IEEE/RSJ
Intl. Conf. on Intelligent Robots and Systems (IROS), 2011.

[24] L. Sun, D. Adolfsson, M. Magnusson, H. Andreasson, I. Posner,
and T. Duckett. Localising Faster: Efficient and precise lidar-based
robot localisation in large-scale environments. In Proc. of the IEEE
Intl. Conf. on Robotics & Automation (ICRA), 2020.

[25] S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics. MIT Press,
2005.

[26] S. Thrun, D. Fox, W. Burgard, and F. Dellaert. Robust Monte Carlo
Localization for Mobile Robots. Artificial Intelligence, 128(1-2), 2001.

[27] G. Tinchev, A. Penate-Sanchez, and M. Fallon. Learning to see
the wood for the trees: Deep laser localization in urban and natural
environments on a CPU. IEEE Robotics and Automation Letters (RA-
L), 4(2):1327–1334, 2019.

[28] I. Vizzo, X. Chen, N. Chebrolu, J. Behley, and C. Stachniss. Poisson
Surface Reconstruction for LiDAR Odometry and Mapping. In
Proc. of the IEEE Intl. Conf. on Robotics & Automation (ICRA), 2021.

[29] X. Wei, I. A. Bârsan, S. Wang, J. Martinez, and R. Urtasun. Learn-
ing to Localize Through Compressed Binary Maps. In Proc. of
the IEEE/CVF Conf. on Computer Vision and Pattern Recognition
(CVPR), pages 10316–10324, 2019.

[30] D. Wilbers, Ch. Merfels, and C. Stachniss. Localization with Sliding
Window Factor Graphs on Third-Party Maps for Automated Driving.
In Proc. of the IEEE Intl. Conf. on Robotics & Automation (ICRA),
2019.

[31] R.W. Wolcott and R.M. Eustice. Fast lidar localization using multires-
olution gaussian mixture maps. In Proc. of the IEEE Intl. Conf. on
Robotics & Automation (ICRA), pages 2814–2821, 2015.

[32] F. Yan, O. Vysotska, and C. Stachniss. Global Localization on
OpenStreetMap Using 4-bit Semantic Descriptors. In Proc. of the
Europ. Conf. on Mobile Robotics (ECMR), 2019.

[33] C. Zhang, M. H. Ang, and D. Rus. Robust lidar localization for
autonomous driving in rain. In Proc. of the IEEE/RSJ Intl. Conf. on
Intelligent Robots and Systems (IROS), pages 3409–3415, 2018.

[34] Q.Y. Zhou, J. Park, and V. Koltun. Open3D: A modern library for 3D
data processing. arXiv:1801.09847, 2018.

[35] Y. Zhou, G. Wan, S. Hou, L. Yu, G. Wang, X. Rui, and S. Song. Da4ad:
End-to-end deep attention-based visual localization for autonomous
driving. In Proc. of the Europ. Conf. on Computer Vision (ECCV),
2020.

	Introduction
	Related Work
	Our Approach
	Range Image Generation
	Mesh-based Map Representation
	Rendering Synthetic Range Images
	Monte Carlo Localization
	Range Image-based Observation Model
	Tiled Map Representation

	Experimental Evaluation
	Localization Performance
	Generalization
	Runtime

	Conclusion
	References

