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Olga Vysotska†,∗ Alexandre Haag† Jens Behley∗ Cyrill Stachniss∗

∗Photogrammetry & Robotics Lab, University of Bonn, Germany
‡Fraunhofer FKIE, Wachtberg, Germany

†Autonomous Intelligent Driving GmbH, Munich, Germany

Abstract—Simultaneous localization and mapping (SLAM) is
a fundamental capability required by most autonomous systems.
In this paper, we address the problem of loop closing for SLAM
based on 3D laser scans recorded by autonomous cars. Our
approach utilizes a deep neural network exploiting different cues
generated from LiDAR data for finding loop closures. It estimates
an image overlap generalized to range images and provides a
relative yaw angle estimate between pairs of scans. Based on such
predictions, we tackle loop closure detection and integrate our
approach into an existing SLAM system to improve its mapping
results. We evaluate our approach on sequences of the KITTI
odometry benchmark and the Ford campus dataset. We show that
our method can effectively detect loop closures surpassing the
detection performance of state-of-the-art methods. To highlight
the generalization capabilities of our approach, we evaluate our
model on the Ford campus dataset while using only KITTI for
training. The experiments show that the learned representation
is able to provide reliable loop closure candidates, also in unseen
environments.

I. INTRODUCTION

Simultaneous localization and mapping or SLAM [1, 29] is
an integral part of most robots and autonomous cars. Graph-
based SLAM often relies on (i) pose estimation relative to a
recent history, which is called odometry or incremental scan
matching, and (ii) loop closure detection, which is needed for
data association on a global scale. Loop closures enable SLAM
approaches to correct accumulated drift resulting in a globally
consistent map.

In this paper, we propose a new method to loop closing for
laser range scans produced by a rotating 3D LiDAR sensor
installed on a wheeled robot or similar vehicle. Instead of
using handcrafted features [15, 31], we propose a deep neural
network designed to find loop closure candidates. Our network
predicts both, a so-called overlap defined on range images and
a relative yaw angle between two 3D LiDAR scans recorded
with a typical sensor setup often used on automated cars.
The concept of overlap has been used in photogrammetry to
estimate image overlaps, see also Sec. III-A and III-B, and
we use it on LiDAR range images. It is a useful tool for loop
closure detection as illustrated in Fig. 1 and can quantify the
quality of matches. The yaw estimate serves as an initial guess
for a subsequent application of iterative closest point (ICP) [4]
to determine the relative pose between scans to derive loop
closures constraints for the pose graph optimization. Instead
of ICP, one could also use global scan matching [7, 37, 34]
to estimate the relative pose between scans.

Fig. 1: Overlap of two scans (blue and orange points) at a loop
closure location but computed with different relative transformations.
The overlap depends on the relative transformation and larger overlap
values often correspond to better alignment between the point clouds.
Our approach can predict the overlap without knowing the relative
transformation between the scans.

The main contribution of this paper is a deep neural network
that exploits different types of information generated from Li-
DAR scans to provide overlap and relative yaw angle estimates
between pairs of 3D scans. This information includes depth,
normals, and intensity or remission values. We additionally
exploit a probability distribution over semantic classes that can
be computed for each laser beam. Our approach relies on a
spherical projection of LiDAR scans, rather than the raw point
clouds, which makes the proposed OverlapNet comparably
lightweight. We furthermore integrate it into a state-of-the-
art SLAM system [3] for loop closure detection and evaluate
its performance also with respect to generalization to different
environments.

We train the proposed OverlapNet on parts of the KITTI
odometry dataset and evaluate it on unseen data.We thoroughly
evaluate our approach, provide ablation studies using different
modalities, and test the integrated SLAM system in an online
manner. Furthermore, we provide results for the Ford campus
dataset, which was recorded using a different sensor setup in
a different country and a differently structured environment.
The experimental results suggest that our method outperforms
other state-of-the-art baseline methods and is also able to
generalize well to unseen environments.

In sum, our approach is able to (i) predict the overlap
and relative yaw angle between pairs of LiDAR scans by



exploiting multiple cues without using relative poses, (ii) com-
bine odometry information with overlap predictions to detect
correct loop closure candidates, (iii) improve the overall pose
estimation results in a state-of-the-art SLAM system yielding
more globally consistent maps, (iv) solve loop closure detec-
tion without prior pose information, (v) initialize ICP using
the OverlapNet predictions yielding correct scan matching
results. The implementation of our approach is available at:
https://github.com/PRBonn/OverlapNet

II. RELATED WORK

Loop closure detection using various sensor modalities [16,
28] is a classical topic in robot mapping. We refer to the
article by Lowry et al. [21] for an overview of approaches
using cameras. Here, we mainly concentrate on related work
addressing 3D LiDAR-based approaches.

Steder et al. [31] propose a place recognition system operat-
ing on range images generated from 3D LiDAR data that uses
a combination of bag-of-words and a NARF-feature-based [30]
relative poses estimation exploiting ideas of FABMAP [11].
Röhling et al. [26] present an efficient method for detecting
loop closures through the use of similarity measures on
histograms extracted from 3D LiDAR scans. The work by
He et al. [15] presents M2DP, which projects a LiDAR scan
into multiple reference planes to generate a descriptor using a
density signature of points in each plane. Besides using pure
geometric information, there is also work [9, 14] exploiting
the remission information, i.e., how well LiDAR beams are
reflected by a surface, to create descriptors for localization
and loop closure detection with 3D LiDAR data.

Motivated by the success of deep learning in computer
vision [20], deep learning-based methods have been proposed
recently. Barsan et al. [2] propose a deep network-based lo-
calization method, which embeds LiDAR sweeps and intensity
maps into a joint embedding space and achieves localization
by matching between these embeddings. Dubé et al. [12]
advocate the usage of segments for loop closure detection.
Cramariuc et al. [10] train a CNN to extract descriptors
from segments and use it to retrieve near-by place candidates.
Schaupp et al. [27] propose a system called OREOS for place
recognition, that also estimates the yaw discrepancy between
scans. Furthermore, Yin et al. [35] develop LocNet, which uses
semi-handcrafted feature learning based on a siamese network
to solve place recognition. Lu et al. [22] proposed L3-net,
which uses 3D convolutions and a recurrent neural network to
learn local descriptors for global localization. Uy and Lee [33]
proposed PointNetVLAD to generate a global descriptor for
3D point clouds. Kim et al. [19] proposed a learning-based
descriptor called SCI to solve long-term global localization.
Most recently, Sun et al. [32] also proposed a learning-based
method combined with Monte Carlo localization to achieve a
fast global localization.

Contrary to the above-mentioned methods, our method
exploits multiple types of information extracted from 3D
LiDAR scans, including depth, normal information, inten-
sity/remission and probabilities of semantic classes generated

by a semantic segmentation system [23].
Similar to LocNet [35], we also use a siamese network,

but we learn features and yield predictions end-to-end. Our
network can directly provide estimates for overlap and the
relative yaw angle between pairs of LiDAR scans. Different
from OREOS [27], our method not only provides loop closures
candidates but also an estimate of the matching quality in
terms of the overlap.

Recently, Zaganidis et al. [36] proposed a Normal Distribu-
tions Transform (NDT) histogram-based loop closure detection
method, which is also assisted by semantic information. In
contrast to ours, their method needs a dense global map and
cannot estimate the relative yaw angle.

III. OUR APPROACH

A. The Concept of Overlap

The idea of overlap that we are using here has its origin
in the photogrammetry and computer vision community [18].
To successfully match two images and calculate their relative
pose, the images must overlap. This can be quantified by
defining the overlap percentage as the percentage of pixels in
the first image, which can successfully be projected back into
the second image without occlusion. Note that this measure is
not symmetric: If there is a large scale difference of the image
pair, e.g., one image shows a wall and the other shows many
buildings around that wall, the overlap percentage for the first
to the second image can be large and from the second to the
first image low. In this paper, we use the idea of overlap for
range images, exploiting the range information explicitly.

For loop closing, a threshold on the overlap percentage can
be used to decide whether two LiDAR scans are at the same
place and/or a loop closing can be done. For loop closing, this
measure maybe even better than the commonly used distance
between the recorded positions of a pair of scans, since the
positions might be affected by drift and therefore unreliable.
The overlap predictions are independent of the relative poses
and can be therefore used to find loop closures without
knowing the correct relative pose between scans. Fig. 1 shows
the overlap of two scans as an example.

B. Definition of the Overlap between Pairs of LiDAR Scans

We use spherical projections of LiDAR scans as input data,
which is often used to speed up computations [3, 5, 8]. We
project the point cloud P to a so-called vertex map V : R2 7→
R3, where each pixel is mapped to the nearest 3D point. Each
point pi = (x, y, z) is converted via the function Π : R3 7→ R2

to spherical coordinates and finally to image coordinates (u, v)
by (

u
v

)
=

(
1
2

[
1− arctan(y, x)π−1

]
w[

1−
(
arcsin(zr−1) + fup

)
f−1
]
h

)
, (1)

where r = ||p||2 is the range, f = fup + fdown is the vertical
field-of-view of the sensor, and w, h are the width and height
of the resulting vertex map V .

https://github.com/PRBonn/OverlapNet


For a pair of LiDAR scans P1 and P2, we generate the
corresponding vertex maps V1, V2. We denote the sensor-
centered coordinate frame at time step t as Ct. Each pixel in
coordinate frame Ct is associated with the world frame W by
a pose TWCt

∈ R4×4. Given the poses TWC1
and TWC2

, we
can reproject scan P1 into the coordinate frame of the other’s
vertex map V2 and generate a reprojected vertex map V ′1:

V ′1 = Π
(
T−1WC1

TWC2
P1

)
. (2)

We then calculate the absolute difference of all correspond-
ing pixels in V ′1 and V2, considering only those pixels that
correspond to valid range readings in both range images. The
overlap is then calculated as the percentage of all differences
in a certain distance ε relative to all valid entries, i.e., the
overlap of two LiDAR scans OC1C2 is defined as follows:

OC1C2
=

∑
(u,v) I

{
||V ′1(u, v)− V2(u, v)|| ≤ ε

}
min (valid(V ′1), valid(V2))

, (3)

where I{a} = 1 if a is true and 0 otherwise. valid(V) is the
the number of valid pixels in V , since not all pixel might have
a valid LiDAR measurement associated after the projection.

We use Eq. (3) only for creating training data, i.e., only
positive examples of correct loop closures get a non-zero over-
lap assigned using the relative poses between scans, as shown
in Fig. 2(c). However, when performing loop closure detection
for online SLAM, the approximate relative poses from SLAM
before loop closure are not accurate enough to calculate usable
overlaps by using Eq. (3) because of accumulated drift. We
tried directly estimating overlaps using Eq. (3) assuming the
relative pose as identity and applying different orientations,
e.g., every 30 degrees rotation around the vertical axis, and
using the maximum over all these overlaps as an estimate.
Fig. 2 shows the estimated overlaps for all scans using a
query scan produced by this method and the result of the
estimated overlap for all scans using OverlapNet. We leave
out the 100 most recent scans because they will not be loop
closure candidates. In the case of the exhaustive approach,
many wrong loop closure candidates get high overlap values,
while our approach performs better since it produces a highly
distinctive peak around the correct location. Furthermore, it
takes on average 1.2 s to calculate the overlap for one pair of
scans using the exhaustive approach, which makes it unusable
in real-world scenarios. In contrast, the complete OverlapNet
needs on average 17 ms for one pair overlap estimation when
using depth and normal information only.

C. Overlap Network Architecture
The overview of the proposed OverlapNet is depicted in

Fig. 3. We exploit multiple cues, which can be generated from
a single LiDAR scan, including depth, normal, intensity, and
semantic class probability information. The depth information
is stored in the range map R, which consists of one channel.
We use neighborhood information of the vertex map to gener-
ate a normal map N , which has three channels encoding the
normal coordinates. We directly obtain the intensity informa-
tion, also called remission, from the sensor and represent the

(a) Exhaustive
evaluation of Eq. (3)

(b) OverlapNet
estimates

(c) Ground truth

Fig. 2: Overlap estimations of one frame to all others. The red arrow
points out the position of the query scan. If we directly use Eq. (3)
to estimate the overlap between two LiDAR scans without knowing
the accurate relative poses, it is hard to decide which pairs of scans
are true loop closures, since most evaluations of Eq. (3) show high
values. In contrast, our OverlapNet can predict the overlaps between
two LiDAR scans well.

intensity information as a one-channel intensity map I. The
point-wise semantic class probabilities are computed using
RangeNet++ [23] and we represent them as a semantic map S.
RangeNet++ delivers probabilities for 20 different classes. For
efficiency sake, we reduce the 20-dimensional RangeNet++
output to a compressed 3-dimensional vector using principal
component analysis. The information is combined into an input
tensor of size 64× 900×D, where 64, 900 are the height and
width of the inputs, and D depends on the types of data used.

Our proposed OverlapNet is a siamese network architec-
ture [6], which consists of two legs sharing weights and two
heads that use the same pair of feature volumes generated by
the two legs. The trainable layers are listed in Tab. I.

1) Legs: The proposed OverlapNet has two legs, which
have the same architecture and share the same weights. Each
leg is a fully convolutional network (FCN) consisting of 11
convolutional layers. This architecture is quite lightweight and
generates feature volumes of size 1×360×128. Note that our
range images are cyclic projections and that a change in the
yaw angle of the vehicle results in a cyclic column shift of the
range image. Thus, the single row in the feature volume can
represent a relative yaw angle estimate (because a yaw angle
rotation results in a pure horizontal shift of the input maps).
As the FCN is translation-equivariant, the feature volume will
be shifted horizontally. The number of columns of the feature
volume defines the resolution of the yaw estimation, which
is 1 degree in the case of our leg architecture.

2) Delta Head: The delta head is designed to estimate the
overlap between two scans. It consists of a delta layer, three
convolutional layers, and one fully connected layer.

The delta layer, shown in Fig. 4, computes all possible
absolute differences of all pixels. It takes the output feature
volumes Ll ∈ RH×W×C from the two legs l as input. These
are stacked in a tiled tensor Tl ∈ RHW×HW×C as follows:

T0(iW + j, k, c) = L0(i, j, c) (4)

T1(k, iW + j, c) = L1(i, j, c), (5)

with k = {0, . . . ,HW − 1}, i = {0, . . . ,H − 1} and
j = {0, . . . ,W − 1}.
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Fig. 3: Pipeline overview of our proposed approach. The left-hand side shows the preprocessing of the input data which exploits multiple
cues generated from a single LiDAR scan, including range R, normal N , intensity I, and semantic class probability S information. The
right-hand side shows the proposed OverlapNet which consists of two legs sharing weights and the two heads use the same pair of feature
volumes generated by the two legs. The outputs are the overlap and relative yaw angle between two LiDAR scans.

TABLE I: Layers of our network architecture

Operator Stride Filters Size Output Shape

L
eg

s

Conv2D (2, 2) 16 (5, 15) 30× 443× 16
Conv2D (2, 1) 32 (3, 15) 14× 429× 32
Conv2D (2, 1) 64 (3, 15) 6× 415× 64
Conv2D (2, 1) 64 (3, 12) 2× 404× 64
Conv2D (2, 1) 128 (2, 9) 1× 396× 128
Conv2D (1, 1) 128 (1, 9) 1× 388× 128
Conv2D (1, 1) 128 (1, 9) 1× 380× 128
Conv2D (1, 1) 128 (1, 9) 1× 372× 128
Conv2D (1, 1) 128 (1, 7) 1× 366× 128
Conv2D (1, 1) 128 (1, 5) 1× 362× 128
Conv2D (1, 1) 128 (1, 3) 1× 360× 128

D
el

ta
H

ea
d Conv2D (1, 15) 64 (1, 15) 360× 24× 64

Conv2D (15, 1) 128 (15, 1) 24× 24× 128
Conv2D (1, 1) 256 (3, 3) 22× 22× 256
Dense - - - 1

Note that T1 is transposed in respect to T0, as depicted in
the middle of Fig. 4. After that, all differences are calculated
by element-wise absolute differences between T0 and T1.

By using the delta layer, we can obtain a representation of
the latent difference information, which can be later exploited
by the convolutional and fully-connected layers to estimate
the overlap. Different overlaps induce different patterns in the
output of the delta layer.

3) Correlation Head: The correlation head [24] is designed
to estimate the yaw angle between two scans using the feature
volumes of the two legs. To perform the cross-correlation,
we first pad horizontally one feature volume by copying the
same values (as the range images are cyclic projections around
the yaw angle). This doubles the size of the feature volume.
We then use the other feature volume as a kernel that is
shifted over the first feature volume generating a 1D output of
size 360. The argmax of this feature serves as the estimate of
the relative yaw angle of the two input scans with a 1 degree
resolution.

D. Loss Functions

We train our OverlapNet end-to-end to estimate the overlap
and the relative yaw angle between two LiDAR scans at the
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Fig. 4: Delta layer. Computation of pairwise differences is efficiently
performed by concatenating the feature volumes and transposition of
one concatenated feature volume.

same time. Typically, to train a neural network one needs a
large amount of manually labeled ground truth data. In our
case, this is (I1, I2, YO, YY ), where I1, I2 are two inputs
and YO, YY are the ground truth overlaps and the ground truth
yaw angles respectively. We are however able to generate the
input and the ground truth without any manual effort in a fully
automated fashion given a dataset with pose information. From
given poses, we can calculate the ground truth overlap and
relative yaw angles directly. We denote the legs part network
with trainable weights as fL(·), the delta head as fD(·) and
the correlation head as fC(·).

For training, we combine the loss LO(·) for the overlap and
the loss LY (·) for the yaw angle using a weight α:

L (I1, I2, YO, YY ) =LO (I1, I2, YO)+αLY (I1, I2, YY ) . (6)

We treat the overlap estimation as a regression problem
and use a weighted absolute difference of ground truth YO
and network output ŶO = fD (fL (I1) , fL (I2)) as the loss
function. For weighting, we use a scaled sigmoid function:

LO (I1, I2, YO) = sigmoid
(
s
(∣∣∣ŶO − YO∣∣∣+ a

)
− b
)
, (7)

with sigmoid(v) = (1 + exp(−v))−1, a, b are offsets and s
being a scaling factor.

For the yaw angle estimation, we use a lightweight rep-
resentation of the correlation head output, which leads to a



one-dimensional vector of size 360. We take the index of the
maximum, the argmax, as the estimate of the relative angle in
degrees. As the argmax is not differentiable, we cannot treat
this as a simple regression problem. The yaw angle estimation,
however, can be regarded as a binary classification problem
that decides for every entry of the head output whether it is
the correct angle or not. Therefore, we use the binary cross-
entropy loss given by

LY (I1, I2, YY ) =
∑

i={1,...,N}
H
(
Y iY , Ŷ

i
Y

)
, (8)

where H(p, q) = p log(q) − (1 − p) log(1 − q) is the binary
cross entropy and N is the size of the output 1D vector.
ŶY = fC (fL (I1) , fL (I2)) is the relative yaw angle estimate.
Note that we only train the network to estimate the relative
yaw angle of a pair of scans with overlap larger than 30%,
since this minimum overlap was needed to result in correct
pose estimates of the ICP as explained in Sec. IV-A, but also
experimentally validated in Sec. IV-F.

E. SLAM Pipeline

We use the surfel-based mapping system called SuMa [3]
as our SLAM pipeline and integrate OverlapNet in SuMa
replacing its original heuristic loop closure detection method.
We only summarize here the steps of SuMa relevant to our
approach and refer for more details to the original paper [3].

SuMa uses the same vertex map VD and normal map ND
as discussed in Sec. III-B. Furthermore, SuMa uses projective
ICP with respect to a rendered map view VM and NM
at timestep t − 1, the pose update TCt−1Ct

and conse-
quently TWCt

by chaining all pose increments. Therefore,
each vertex u ∈ VD is projectively associated to a reference
vertex vu ∈ VM . Given this association information, SuMa
estimates the transformation between scans by incrementally
minimizing the point-to-plane error given by

E(VD,VM ,NM ) =
∑

u∈VD

(
n>u

(
T

(k)
Ct−1Ct

u− vu

))2

. (9)

Each vertex u ∈ VD is projectively associated to a reference
vertex vu ∈ VM and its normal nu ∈ NM via

vu = VM
(

Π
(
T

(k)
Ct−1Ct

u
))

(10)

nu = NM
(

Π
(
T

(k)
Ct−1Ct

u
))

. (11)

SuMa then minimizes the objective of Eq. (9) using Gauss-
Newton and determines increments δ by iteratively solving

δ =
(
J>δ WJδ

)−1
J>δ Wr, (12)

where W ∈ Rn×n is a diagonal matrix containing
weights wu, r ∈ Rn is the stacked residual vector, and Jδ ∈
Rn×6 the Jacobian of r with respect to the increment δ.

SuMa employs a loop closure detection module, which
considers the nearest frame in the built map as the candidate
for loop closure given the current pose estimate. Loop closure
detection works well for small loops, but the heuristic fails
in areas with only a few large loops. Furthermore, drift in

the odometry estimate can lead to large displacements, where
the heuristic of just taking the nearest frame in the already
mapped areas does not yield correct candidates, which will be
also shown in our experiments.

F. Covariance Propagation for Geometric Verification

SuMa’s loop closure detection uses a fixed search radius. In
contrast, we use the covariance of the pose estimate and error
propagation to automatically adjust the search radius.

We assume a noisy pose TCt−1Ct
= {T̄Ct−1Ct

,ΣCt−1Ct
}

with mean T̄Ct−1Ct and covariance ΣCt−1Ct . We can estimate
the covariance matrix by

ΣCt−1Ct
=

1

K

E

N −M
(
J>δ WJδ

)−1
, (13)

where K is the correction factors of the Huber robustized
covariance estimation [17], E is the sum of the squared
point-to-plane errors (sum of squared residuals) given the
pose TCt−1Ct

, see Eq. (9), N is the number of correspon-
dences, M = 6 is the dimension of the transformation between
two 3D poses.

To estimate the propagated uncertainty during the incremen-
tally pose estimation, we can update the mean and covariance
as follows:

T̄Ct−1Ct+1 = T̄Ct−1CtT̄CtCt+1 (14)

ΣCt−1Ct+1 ≈ ΣCt−1Ct + J>CtCt+1
ΣCtCt+1JCtCt+1 , (15)

where JCtCt+1 is the Jacobian of TCtCt+1 .
Since we need the Mahalanobis distance DM as a prob-

abilistic distance measure between two poses, we make use
of Lie algebra to express T as a 6D vector ξ ∈ se(3) using
ξ = logT, yielding

DM (TC1,TC2) =
√

∆ξ>C1C2Σ−1C1C2∆ξC1C2. (16)

Using the scaled distance, we can now restrict the search
space depending on the pose uncertainty to save computation
time. However, we can use our framework also without any
prior information, i.e., perform place recognition.

IV. EXPERIMENTAL EVALUATION

The experimental evaluation is designed to support the key
claims that our approach is able to: (i) predict the overlap and
relative yaw angle between pairs of LiDAR scans by exploiting
multiple cues without given poses, (ii) combine odometry
information with overlap predictions to detect correct loop
closure candidates, (iii) improve the overall pose estimation
results in graph-based SLAM yielding more globally consis-
tent maps, (iv) solve loop closure detection without prior pose
information, (v) initialize ICP using OverlapNet predictions
yielding correct scan matching results.

We train and evaluate our approach on the KITTI odometry
benchmark [13], which provides LiDAR scans recorded with
a Velodyne HDL-64E of urban areas around Karlsruhe in
Germany. We follow the experimental setup of Schaupp et
al. [27] and use sequence 00 for evaluation. Sequences 03−10
are used for training and sequence 02 is used for validation.
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Fig. 5: Precision-Recall curves of different approaches.

To evaluate the generalization ability of our method, we
also test it on the Ford campus dataset [25], which is recorded
on the Ford research campus and downtown Dearborn in
Michigan using a different version of the Velodyne HDL-64E.
In the case of the Ford campus dataset, we test our method
on sequence 00 which has several large loops. Note that we
never trained our approach on the Ford campus dataset.

For generating overlap ground truth, we only use points
within a distance of 75 m to the sensor. For overlap compu-
tation, see Eq. (3), we use ε = 1 m. We use a learning rate
of 10−3 with a decay of 0.99 every epoch and train at most 100
epochs. For the combined loss, Eq. (6), we set α = 5. For the
overlap loss, Eq. (7), we use a = 0.25, b = 12, and scale
factor s = 24.

A. Loop Closure Detection

In our first experiments, we investigate the loop closure
performance of our approach and compare it to existing
methods. Loop closure detection typically assumes that robots
revisit places during the mapping while moving with uncertain
odometry. Therefore, the prior information about robot poses
extracted from the pose graph is available for the loop closure
detection. The following criteria are used in these experiments:
• To avoid detecting a loop closure in the most recent scans,

we do not search candidates in the latest 100 scans.
• For each query scan, only the best candidate is considered

throughout this evaluation.
• Most SLAM systems search for potential closures only

within the 3σ area around the current pose estimate. We
do the same, either using the Euclidean or the Mahalanobis
distance, depending on the approach.

• We use a relatively low threshold of 30 % for the overlap
to decide if a candidate is a true positive. We aim to find
more loops even in some challenging situations with low
overlaps, e.g., when the car drives back to an intersection
from the opposite direction (as highlighted in the supple-
mentary video1). Furthermore, ICP can find correct poses
if the overlap between pairs of scans is around 30 %, as
illustrated in the experimental evaluation.

1https://youtu.be/YTfliBco6aw

We evaluate OverlapNet on both KITTI sequence 00 and
Ford campus sequence 00 using the precision-recall curves
shown in Fig. 5. We compare our method, trained with two
heads and all cues (labeled as Ours (AllChannel, TwoHeads))
with three state-of-the-art approaches, M2DP [15], His-
togram [26], and the original SuMa [3]. Since SuMa always
uses the nearest frame as the candidate for loop closure detec-
tion, we can only get one pair of precision and recall value re-
sulting in a single point. We also show the result of our method
using prior information, named Ours CovNearestOfTop10,
which uses covariance propagation (Sec. III-F) to define the
search space with the Mahalanobis distance and use the
nearest in Mahalanobis distance of the top 10 predictions of
OverlapNet as the loop closure candidates.

Tab. II shows the comparison between our approach and
the state of the art using the F1 score and the area under
the curve (AUC) on both KITTI and Ford campus dataset.
For the KITTI dataset, our approach uses the model trained
with all cues, including depth, normals, intensity, and a
probability distribution over semantic classes. For the Ford
campus dataset, our approach uses the model trained with
geometric information only, namely Ours (GeoOnly), since
other cues are not available in this dataset. We can see that our
method outperforms the other methods on the KITTI dataset
and attains a similar performance on the Ford campus dataset.
There are two reasons to explain the worse performance on
the Ford campus dataset. First, we never trained our network
on the Ford campus dataset or even US roads, and secondly,
there is only geometric information available on the Ford
campus dataset. However, our method outperforms all baseline
methods in both, KITTI and Ford campus dataset, if we
integrate prior information.

We also show the performance in comparison to variants of
our method in Tab. III. We compare our best model AllChannel
using two heads and all available cues to a variant which
only uses a basic multilayer perceptron as the head named
MLPOnly which consists of two hidden fully connected layers
and a final fully connected layer with two neurons (one for
overlap, one for yaw angle). The substantial difference of the
AUC and F1 scores shows that such a simple network structure
is not sufficient to get a good result. Training the network with
only one head (only the delta head for overlap estimation,
named DeltaOnly), has not a significant influence on the
performance. A huge gain can be observed when regarding the
nearest frame in Mahalanobis distance of the top 10 candidates
in overlap percentage (CovNearestOfTop10).

B. Qualitative Results

The second experiment is designed to support the claim
that our method is able to improve the overall mapping result.
Fig. 6 shows the odometry results on KITTI sequence 02.
The color in Fig. 6 shows the 3D translation error (includ-
ing height). The left figure shows the SuMa and the right
figure shows Ours CovNearestOfTop10 using the proposed
OverlapNet to detect loop closures. We can see that after
integrating our method, the overall odometry is much more



TABLE II: Comparison with state of the art.

Dataset Approach AUC F1
score

KITTI

Histogram [26] 0.83 0.83
M2DP [15] 0.83 0.87
SuMa [3] - 0.85
Ours (AllChannel, TwoHeads) 0.87 0.88

Ford Campus

Histogram [26] 0.84 0.83
M2DP [15] 0.84 0.85
SuMa [3] - 0.33
Ours (GeoOnly) 0.85 0.84

TABLE III: Comparison with our variants.

Dataset Variant AUC F1
score

KITTI

MLPOnly 0.58 0.65
DeltaOnly 0.85 0.88
CovNearestOfTop10 0.96 0.96
Ours (AllChannel, TwoHeads) 0.87 0.88

Ford Campus Ours (GeoOnly) 0.85 0.84
GeoCovNearestOfTop10 0.85 0.88

accurate since we can provide more loop closure candidates
with higher accuracy in terms of overlap. The colors represent
the translation error of the estimated poses with respect to
the ground truth. Furthermore, after integrating the proposed
OverlapNet, the SLAM system can find more loops even
in some challenging situations, e.g., when the car drives
back to an intersection from the opposite direction, which is
highlighted in the supplementary video1.

C. Loop Closure Detection without Odometry Information

The third experiment is designed to support the claim that
our approach is well-suited for solving the more general loop
closure detection task without using odometry information.

In this case, we assume that we have no prior information
about the robot pose. To compare with the state-of-the-art
method OREOS [27], we follow their experimental setup and
refer to the original paper for more details. The OREOS results
are those produced by the authors of OREOS.

The respective loop closure candidates recall results are
shown in Fig. 7. Our method outperforms all the baseline
methods with a small number of candidates and attains similar
performance as baseline methods for higher values of num-
bers of candidates. However, OREOS and LocNet++ attain a
slightly higher recall if more candidates are considered.

D. Yaw Estimation

We aim at supporting our claim that our network provides
good relative yaw angle estimates. We use the same experi-
mental setup as described in Sec. IV-C. Tab. IV summarizes
the yaw angle errors on KITTI sequence 00.

We can see that our method outperforms the other methods
in terms of mean error and standard deviations. In terms of
recall, OverlapNet and OREOS always provide a yaw angle
estimate, since both approaches are designed to estimate the
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Fig. 6: Qualitative result on KITTI sequence 02.
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Fig. 7: Loop closure detection performance on KITTI sequence 00.

relative yaw angle for any pairs of scans in contrast to the
RANSAC-based method that sometimes fails.

The superior performance can be mainly attributed to the
correlation head exploiting the fact that the orientation in
LiDAR scans can be well represented by the shift in the range
projection. Therefore, it is easier to train the correlation head
to accurately predict the relative yaw angles rather than a
multilayer perceptron used in OREOS [27]. Furthermore, there
is also a strong relationship between overlap and yaw angle,
which also improves the results when trained together.

Fig. 8 shows the relationship between real overlap and yaw
angle estimation error. As expected, the yaw angle estimate
gets better with increasing overlap. Based on these plots, our
method not only finds candidates but also measures the quality,
i.e., when the overlap of two scans is larger than 90%, our
method can accurately estimate the relative yaw angle with an
average error of about only 1 degree.

E. Ablation Study on Input Modalities

An ablation study on the usage of different inputs is shown
in Tab. V. As can be seen, when employing more input
modalities, the proposed method is more robust. We notice
that exploiting only depth information with OverlapNet can
already perform reasonable in terms of overlap prediction,
while it does not perform well in yaw angle estimation.
When combining with normal information, the OverlapNet
can perform well in both tasks. Another interesting finding
is the drastic reduction of yaw angle mean error and standard
deviation when using semantic information. One reason could



TABLE IV: Yaw estimation errors without ICP

Approach Mean[deg] std[deg] Recall[%]

FPFH+RANSAC* 13.28 32.19 97
OREOS* 12.67 15.23 100
Ours (AllChannel, TwoHeads) 1.13 3.34 100

*: The results are those produced by the authors of OREOS [27].
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Fig. 8: Overlap and yaw estimation relationship.

be that adding semantic information will make the input
data more distinguishable when the car drives in symmetrical
environments. We also notice that semantic information will
increase the computation time, see Sec. IV-G. However, from
the ablation study, one could also notice that the proposed
method can also achieve good performance by only employing
geometric information (depth and normals).

F. Using OverlapNet Predictions as Initial Guesses for ICP

We aim at supporting the claim that our network provides
good initializations for ICP with 3D laser scans collected on
autonomous cars. Fig. 9 shows the relation between the overlap
and ICP registration error with and without using OverlapNet
predictions as initial guesses. The error of ICP registration is
here depicted by the Euclidean distance between the estimated
relative translation and the ground-truth translation. As can be
seen, the yaw angle prediction of the OverlapNet increases the
chance to get a good result from the ICP even if two frames
are relatively far away from each other (with low overlap).
Therefore in some challenging cases, e.g. the car drives back
into an intersection from a different street, our approach can
still find loop closures (see in the supplementary video1). The
results also show that the overlap estimates measure the quality
of the found loop closure: larger overlap values result in better
registration results of the involved ICP.

G. Runtime

We tested our method on a system equipped with an Intel
i7-8700 with 3.2 GHz and an Nvidia GeForce GTX1080 Ti
with 11 GB memory.

For the KITTI sequence 00, we could exploit all input cues
including the semantic classes provided by RangeNet++ [23].
We need on average 75 ms per frame for the input data prepro-
cessing, 6 ms per frame for the legs feature extraction, 27 ms
per frame for the head matching. The worst case for the head
matching takes 630 ms for all candidates in the search space.

TABLE V: Ablation study on usage of input modalities.

Depth Normals Intensity Semantics overlap yaw angle[deg]
AUC F1 Mean Std

3 0.86 0.87 11.67 25.32
3 3 0.86 0.85 2.97 14.28
3 3 3 0.87 0.87 2.53 14.56
3 3 3 3 0.87 0.88 1.13 3.34
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Fig. 9: ICP using OverlapNet predictions as initial guess. The error of
ICP registration here is the Euclidean distance between the estimated
translation and the ground-truth translation.

For the Ford campus dataset, we used only geometric
information, which could be generated in 10 ms on average per
frame, 2 ms for feature extraction and 24 ms for matching with
the worst case of 550 ms. In real SLAM operation, we only
search loop closure candidates inside a certain search space
given by pose uncertainty using the Mahalanobis distance
(see Sec. III-F). Therefore, our method can achieve online
operation in long-term tasks, since we usually only have to
evaluate a small number of candidate poses.

V. CONCLUSION

In this paper, we presented a novel approach for LiDAR-
based loop closure detection. It is based on the overlap
between LiDAR scan range images and provides a measure for
the quality of the loop closure. Our approach utilizes a siamese
network structure to leverage multiple cues and allows us to
estimate the overlap and relative yaw angle between scans.
The experiments on two different datasets suggest that when
combined with odometry information our method outperforms
other state-of-the-art methods and that it generalizes well to
different environments never seen during training.

Despite these encouraging results, there are several avenues
for future research. First, we want to investigate the integration
of other input modalities, such as vision and radar information.
We furthermore plan to test our approach with other datasets
collected in different seasons.
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