
Robust Homing for Autonomous Robots

Igor Bogoslavskyi Mladen Mazuran Cyrill Stachniss

Abstract— In autonomous exploration tasks, robots usually
rely on a SLAM system to build a map of the environment
online and then use it for navigation purposes. Although there
has been substantial progress in robustly building accurate
maps, these systems cannot guarantee the consistency of the
resulting environment model. In this paper, we address the
problem of robustly guiding a robot back to its starting location
after exploring an unknown environment—even if the mapping
system fails to produce a consistent map. To tackle this problem,
we propose a two-step procedure. First, we check if the current
map is consistent using a statistical test. If the map is consistent,
we navigate the robot back to its starting location using a
standard navigation system. In case of an inconsistent map,
however, we propose to rewind the trajectory from the current
location to the start without relying on a map. We implemented
the proposed system in ROS and showcase its effectiveness on an
autonomous exploration robot in real underground and office
environments.

I. INTRODUCTION

The ability to robustly operate without user intervention is
an important capability for exploration robots, especially if
there are no means for communication between the robot and
an operator. State estimation processes in the robot’s navi-
gation system, however, may fail and there is no guarantee
that they will operate flawlessly throughout the time the robot
navigates. Thus, it is of great importance to design a system
that enables the robot to navigate back to its starting position
without the risk of it getting lost, even if a component as
central as the mapping system fails. This is the problem that
we address in this paper.

Our work is motivated by the autonomous exploration
robot depicted in Figure 1. It is used to explore difficult-
to-access underground environments such as ancient Roman
catacombs. As no communication between the robot and an
operator is possible most of the time, the platform has to
be truly autonomous. During the course of an exploration
task, the robot constructs a map of the environment via a
graph-based SLAM system. As long as this map is consistent,
the robot can perform autonomous navigation by planning
the shortest path—for example using A*—from its current
location to its starting point using the map. Although modern
SLAM systems are fairly robust, they may still fail, for
example, due to wrong data associations generated by the
SLAM front-end. Even current state-of-the-art SLAM system
cannot guarantee the consistency of the resulting map, nor do
they provide robust means to decide whether the constructed

Igor Bogoslavskyi and Cyrill Stachniss are with Institute for Geodesy and
Geoinformation, University of Bonn, Germany. Mladen Mazuran is with the
Autonomous Intelligent Systems Lab, University of Freiburg. This work has
partly been supported by the European Commission under the grant number
FP7-ICT-600890-ROVINA.

map inconsistent

Fig. 1. When the statistical map consistency tester provides the robot
with the information that the map is not consistent anymore the robot starts
rewinding the trajectory using our method.

map is consistent or not. Computing a path based on an
inconsistent map, however, is likely to lead to a failure and
a possibility of losing the robot if operating in a hazardous
environment.

To avoid that the robot gets lost, we propose a novel
robust homing system consisting of two distinct parts. The
first part performs a statistical analysis of the map and thus
provides information about its consistency. We build upon
our previous work [7] for performing a cascade of pair-wise
consistency checks using observations perceived from the
same areas. To avoid performing such checks on the overall
map, we reduce the area to analyze by planning the shortest
homing route for the robot assuming a consistent map. We
then analyze the map consistency only along that path and
can estimate online if the map around this path is consistent
or not with a given confidence level. The second part of
our approach is responsible for driving the robot back to its
starting location by rewinding the trajectory that the robot
took to reach its current pose. This operation is performed
without any map knowledge (as the map is inconsistent). If
the motions of the robot were perfect, i.e., if they would
lead exactly to the desired robot pose in the world frame,
we would be able to simply invert the motion commands
performed by the robot and could safely reach the start
location. Both motion execution and odometry, however,
are often noisy and can generate erroneous estimates. As a
result, simply following inverse motion commands will not
bring the robot to the starting location in the real world.
Therefore, we take into account the sensor information to



guide the robot back by matching the observations with the
measurements taken in the past.

II. RELATED WORK

In robotics, most approaches to exploration focus on
selecting view points that minimize the time needed to cover
the terrain, such as the method of Yamauchi [16]. In order to
address the robots pose uncertainty, extension of this explo-
ration method have been proposed. For example information-
theoretic methods that seek to minimize the uncertainty in the
belief about the map and the trajectory [14], [6]. Similarly,
Sim et al. [12] select vantage points to optimize map
accuracy by striving for loop closures. Carillo et al. [1] use
the Shannon and Rényi entropies to employ an exploration
strategy that jointly reduces the map and the localization
uncertainties. All these methods seek to build consistent
maps and allow the robot to navigate in the maps during
exploration.

A key problem in autonomous exploration, however, is that
in case of a SLAM failure, the map becomes inconsistent.
This can prevent the robot from continuing its exploration
mission and—even worse—from being able to navigate back.
It is therefore important to be able to perform reliable
navigation without relying on a map. We are, however, not
aware of any robotic navigation system that monitors the
map to detect a SLAM failures to trigger a homing action if
the map becomes inconsistent. Our idea of homing has been
proposed in brief as part of an article on exploration [15],
however the work lacks a real world evaluation.

Rewinding a trajectory is related to teach-and-repeat nav-
igation systems. One of important outposts of teach-and-
repeat is visual teach-and-repeat (VT-R). Works of Fur-
gale et al. [3], [2], Nitsche et al. [8] and Ostafew et al. [9]
show that this approach is indeed suitable to steer a robot
in complicated environments based solely on visual sensors
without relying on a consistent map. These visual methods,
however, need substantial adaptation in order to be used
in a setup similar to ours: using monocular cameras to
localize through feature detection relies on having enough
visual information, which ancient catacombs typically do not
possess.

Teach-and-repeat approaches have also been used in lidar-
based settings. Sprunk et al. [13] present an approach that
relies on precise localization of the robot based on lidar
measurements recorded during a trajectory demonstration.
Similarly, Furgale et al. [4] perform an ICP-based teach-
and-repeat approach on an autonomous robot equipped with
a high precision 3D spinning lidar. They extend the standard
teach-and-repeat approach by adding a local motion planner
to account for dynamic changes in the environment. Our
method to rewind the trajectory is similar to the teach-and-
repeat setup in this formulation. However, in contrast to
the mentioned methods, we use a substantially less accurate
robot and thus have to cope with somewhat larger deviation
from the reference trajectory. Further, we are rewinding
a trajectory, not repeating it, and the sensor suite also
differs significantly: Sprunk et al. use a high-precision 2D

SICK laser range finder, which allows for accurate position
correction. Furgale et al. also rely on a precise lidar sensor
which is able to provide them with more information than
our RGB-D camera setup, thus simplifying scene matching.

III. ROBUST HOMING
USING MAP CONSISTENCY CHECKS

Under the assumption of map consistency, homing can be
solved with existing tools. This can be done by computing a
collision-free path from the current to the start location and
executing this path with a standard navigation pipeline. Such
a navigation system would, for instance, localize the robot in
the map built so far and plan the shortest path towards home
using A* or a similar approach. If the map, however, is not
consistent due to a failure in the underlying SLAM system,
this approach is likely to lead to a deadlock situation from
which the robot cannot escape easily.

We address the problem of robust homing in a two-stage
approach. First, we plan a path from the current location
towards home under the assumption of a consistent map.
Then, we apply our previously proposed map consistency
estimation approach [7] to evaluate if the map along the
planned path is consistent with a given confidence, but
use a Kinect-style sensor and no laser range finder. In the
second stage, we navigate the robot back home. If the path
towards the start is consistent, we simply execute this plan.
Otherwise, we aim at reversing the trajectory that the robot
has executed so far by aligning the current observation
with the observations obtained on the way from the starting
location to the current one. As we show throughout this
paper, this yields a robust strategy to bring a robot home
to its starting location.

A. Map Consistency Test

Our previously proposed map consistency estimation ap-
proach [7] builds upon a pose-graph representation of the
environment, containing the viewpoints of the robot from
which individual observations have been taken. We start with
evaluating the consistency of pairs of range readings. The
approach of Mazuran et al. has been formulated for 2D laser
range scans and describes the discrepancy between two scans
by computing how much the two range scans occlude each
other’s free space.

To estimate the occlusion of the free space, the approach
computes for each scan the polygon over the area covered by
the scan at the robot pose, which it then checks against the
end points of another scan. The intuition in the noiseless case
is that if both scans are consistent with each other, all end
points should lie outside or at the boundary of the polygon.
A so-called inconsistency distance d(p) is then defined for
a point p, which lies inside the polygon of another scan,
as the Euclidean distance of p to the closest point on the
polygon boundary of the other scan. Intuitively speaking, for
a consistent map, we assume that the inconsistency distances
d(p) are in line with the sensor noise of the proximity sensor.
Substantially larger values for d(p) typically indicate that



A
B

C D

A

B

C
D

Fig. 2. The top image shows the map built so far with the detected
inconsistencies (inconsistent scans are shown in red). The middle one shows
a submap that is built using only the scans recorded around the A* path
from A to B computed in the full map. In this example, no inconsistencies
are present and none are detected. The bottom image is done in the same
way as the middle one, but the A* path is computed from C to D and here,
the map inconsistencies are correctly detected.

the scans are not properly aligned and the map may be
inconsistent in a local neighborhood of the scans.

More concretely, we can expect that, under the assumption
of a correct alignment of two scans, on average half of the
end points from the first scan have an inconsistency distance
d(p) > 0 in the second scan and vice versa. This is due
to the sensor noise in the range measurements. According
to [7], we can formulate a statistical test for the sum of
inconsistency distances d(p). This test evaluates if pairs of
scans are consistent given the sensor noise or reveal a larger
error and thus an inconsistency.

To assess global map consistency, we could conduct this
test for all pairs of scans and consider a map to be consistent
if all tests are successful. The problem, however, is that
a single statistical test will produce a wrong result with
probability α. Thus, if we test a single scan, which overlaps
with r other scans, this yields a type I error probability
of 1 − (1 − α)r and thus renders the direct application of
the pairwise approach unsuitable. The key trick is to model
the outcome of the pairwise hypothesis test as a Bernoulli-
distributed random variable with parameter α. As a result of
that, the number of failed tests follows a binomial distribution
with parameters α and r. Given that, we can compute the
maximum number ξ̂ of tests that are allowed to fail at a
confidence level 1− α′ as

ξ̂ = min
0≤ξ≤r

ξ
∣∣∣∣∣∣

r∑
i=ξ+1

(
r

i

)
αi(1− α)r−i ≤ α′

 . (1)

Fig. 3. An example of the point cloud from the double Xtion system we
use to log data in the Priscilla catacomb. The red line shows the “scan” line
to generate the simulated 2D scan from 3D point cloud. We discretize all the
points within the red line into bins according to their horizontal dispersion
from the camera viewing direction shown here as a floating red arrow.

This allows for computing a cascaded hypothesis test for
all overlapping scans: We perform all pairwise hypothesis
tests and if the number of failed tests is smaller than ξ̂, the
overall consistency test is positive otherwise negative. For
more details, we refer to reader to our previous work [7].

B. Map Consistency Estimate for the Way to Home

Given the consistency test presented above, we can per-
form a mathematically sound statistical test to evaluate if
a map is consistent or not. However, what the robot really
needs to know is not the consistency of the full map. Instead,
it is sufficient to know if it can safely move along a specific
path through the environment to the start location. Thus,
we plan a path with A* assuming that the current map
is consistent and extend our previous statistical consistency
check to consider only the scans along that path. To achieve
this, we select all recorded locations that were closer than
twice the maximum sensor range away from the trajectory
planned with A*. Examples of such partial maps can be
found in Figure 2. The top image shows an inconsistent
2D map of the Priscilla catacomb. Directly applying our
previous work [7] would label the whole map as inconsistent.
In contrast to that, if the robot only takes into account the
shortest route from A to B, it can still safely perform the
navigation task, as shown in the middle image of the same
figure. This is not the case if the robot wants to go from C
to D as it will encounter an inconsistent part of the map on
its way.

We make use of the statistical consistency check algorithm
designed for 2D laser scans. There are two different ways of
how this method can be applied in our setting. It can either
be extended towards 3D data by substituting the polygons
with triangulations of the full Kinect-generated 3D scan or,
alternatively, the 3D scans can be reduced to a 2D scan
and analyzed in a similar way to the original approach. We
argue that there is no need for the more complex 3D-based
approach1 as the robot is a track-based platform that is—at

1We refer only to the consistency check and not to the SLAM system,
which takes into account all six degrees of freedom.



least locally—operating roughly on a plane. We found that
the 2D solution is well suited for the task at hand, at least
for our type of environment.

On our robot, each 3D point cloud is created by combining
the point clouds generated by two Asus Xtion cameras, see
Figure 3. For every local 3D point (x, y, z) that is within
a small margin from the height of the scan line illustrated
by the red stripe in the image, we compute its bearing from
the center of the robot (red arrow in the figure). The relative
bearing can directly be computed through α = atan2(y, x)
and the virtual range reading by the Euclidean distance from
the robot’s center to (x, y). For our setup, this results in an
approximate field of view of [−π/4, π/4]. Such virtual range
scans are used for the statistical consistency check described
above. A map combined from the scans generated in this
manner can be seen in the Figure 2.

C. Homing by Rewinding the Trajectory

Once the consistency check has identified that the submap
including the path is inconsistent, we need to perform the
trajectory rewinding to bring the robot home safely. We can
view the robot’s forward trajectory as a series of poses of
the robot P = {p0, . . . , pn}, where pi = [xi, yi, θi]

>. The
trajectory is expressed as a sequence of 2D positions (xi, yi)
and orientations θi as we can only steer the robot on a ground
plane. The task of rewinding the trajectory is to drive the
robot from pn to p0 backwards. This however requires us
to correct the error in odometry. We do this correction by
aligning the sequence of point clouds that the robot perceives
with the ones taken before (corresponding to pn, . . . , p0). We
subsample the trajectory in such a way that each pose in P
is either 1 m away from the previous one or that there is a
rotation of at least 10◦ between two poses.

Without loss of generality, we consider that the robot has
to carry out an action to move from pi to pj and at the
same time to compensate for the error in odometry. To do
so, at each time step t, the robot exploits the point cloud ct
obtained after executing the movement from pi to pj . In an
ideal scenario, the command should have brought the robot
to the pose pj . In reality, there is an error caused by slippage,
uneven ground, etc. Thus, we align current cloud ct with the
expected one, i.e. the previously stored during the forward
pass cloud cj . To achieve that, we use a recently proposed,
highly robust variant of the ICP algorithm called NICP [11]
to find the discrepancy between the point cloud that the robot
expects to perceive and the one that it actually perceives.
The NICP method extends the point-to-plane error metric
proposed in Generalized ICP [10] by accounting not only for
the metric distance between the points but also the curvature
of the underlying surface. The transformation between the
point clouds provided by the matching algorithm is a SE(3)
transformation between the poses at which the two point
clouds ct and cj were taken. As our robot moves on the
ground, we project the poses onto the ground plane in order
to obtain a SE(2) transformation. This transformation is
parameterized by ∆p = [∆x,∆y,∆θ]. The coordinates ∆x
and ∆y are the coordinates of the point cloud ct expressed in

the local coordinate frame defined by the position where the
robot expects to arrive. Knowing the pose pj and the local
position of ct enables us to compute the current position of
the robot in the global odometry frame. Using homogeneous
coordinates, this is [xt, yt, 1] = Tj [∆x,∆y, 1]

>, where Tj is
a transformation matrix:

Tj =

cos θj − sin θj xj
sin θj cos θj yj

0 0 1

 . (2)

In addition to a 2D pose, we find the orientation of the
robot θt as a sum of θj and ∆θ normalized to (−π, π].
We use this new pose pt to generate a motion command to
reach the next pose chosen from the recorded trajectory. We
continue this process until the robot is within dmax = 1 m
from the starting pose p0.

Note that our method relies on matching point clouds,
typically seen from similar view points, i.e., no global
search is performed. A vanilla ICP algorithm may converge
to a local minimum while performing the optimization of
the objective function. This usually happens in either very
cluttered environments (where the objective function has
very high variation with multiple local minima) or, on the
contrary, in the ones that are very feature-scarce (few distinct
very narrow local minima). We found that using the NICP
variant of ICP avoids such shortcomings in most practical
situations, particularly when dealing with small view point
changes, as is the case for our homing strategy. We refer
to the work of Serafin and Grisetti [11] for a robustness
analysis.

D. Scalability

The map consistency test requires each scan to be tested
against all other scans in its vicinity, therefore the number
of checks grows with the length of the trajectory under test.
However, we only need to perform the consistency check
when the robot plans a new path, i.e. before the actual
movement. Therefore it is safe to spend even longer time
for the consistency check should it be needed, although
our experiments in real-world catacombs show that doing
a consistency check along a planned path usually takes
substantially less than a second.

The path rewinding homing procedure computations do
not depend on the length of the trajectory. At each moment
only two point clouds need to reside in memory and ICP is
performed pairwise. The rest of the point clouds are stored
on a hard disk in a strict order and are loaded in a sequential
order into memory on demand.

IV. EXPERIMENTS

The evaluation is designed to illustrate the capabilities of
our approach and to support the claims made in this paper.
Our two main claims are that (i) the map consistency check
works on the virtual 2D scans and is able to evaluate map
consistency in an online fashion and (ii) we can rewind tra-
jectories in case of failures of the mapping system and yields
a homing behavior not reliant on a map. All experiments have



been conducted based on real world data and on a real robot.
All components are ROS nodes and operate on the notebook
computer installed on the robot.

The robot is controlled through an own navigation system
that uses the ROS communication infrastructure. Its SLAM
system is a pose graph-based system [5] that aligns the depth
images from the cameras. The optimization is done with
g2o and loop closure hypotheses are generated based on the
similarity of local maps stored in the nodes of the graph.

In terms of the persistent data structure that is used to store
all the information, we use a generalization of a pose graph.
Each node in the graph corresponds to a pose of the robot
at time t. In addition to that, each node stores the original
odometry pose pt and the corresponding 3D point cloud ct
from the RGB-D cameras. To efficiently handle this data
structure even for large environments, the pose graph with
the nodes pt itself is kept in memory but the corresponding
point clouds ct are stored on disk and are loaded on demand.

The data is gathered using a setup with two Asus Xtion
RGBD cameras. Both cameras point forward, one slightly
rotated to the left and the other one to the right with a
minimal overlap in the middle. The robot computes the point
clouds and generates 2D scans from the point clouds for the
consistency check as described above.

First, Figure 2 illustrates an example of the statistical map
consistency check performed on the real data (virtual 2D
scans from Kinect-generated point clouds) from the Priscilla
catacomb in Rome. The partial maps computed around the
shortest path are usually substantially smaller than the map
of the whole environment, especially if the environment
has multiple alternative branches and forms a complicated
network of corridors or rooms. This is often the case in cata-
combs or underground mines. Testing smaller maps results in
a significant speed-up of the statistical consistency evaluation
procedure. The timings for the maps presented in Figure 2 are
as follows, top map: 2.93 s; middle map: 0.14 s; bottom map:
0.17 s. The maps in the figure contain, respectively, 1101,
137 and 164 different scans. The computational time depends
on the number of scans to analyze and the gain in speed
grows with the reduction in size of the tested map, and with
the reduction of overlap between the scans. We performed
the map consistency test on 5 different maps recorded in
real catacombs and the consistency check always generated
correct results. In sum, we prove that it is feasible to test
a map in less than 200 ms, and therefore also to execute
the algorithm online. Furthermore, if needed, most of the
computations can be cached during navigation. This is the
case when dealing with huge maps. In such instances, the test
would require a recomputation only if the SLAM back-end
changes the configuration of the pose graph substantially.

As a second step, we need a robust method to return the
robot to the starting location if the statistical consistency
check claims the map to be inconsistent. Thus, the next set
of experiments is designed to backup our second claim, i.e.,
that our approach can robustly rewind trajectories yielding a
homing behavior that does not rely on a map. We evaluate
the ability of our approach to rewind the trajectory by

odometry forward
pure odometry backward

picked odometry destinations
corrected destination positions

Fig. 4. Illustration of rewinding the trajectory through the office environ-
ment. The robot is steered from the bottom “tail” of the depicted trajectory
to the upper-right one. The black line denotes the odometry poses saved
while the robot is steered, gray denotes the odometry on the way back, red
shows the temporary destination poses picked from the odometry and blue
shows the same poses after the ICP correction. The pictures show several
example locations visited by the robot. These feature tight doors to rooms
as well as feature-scarce corridors.

carrying out 20 experiments in our lab environment as well
as 10 experiments in a catacomb-like, man-made cave in
Niederzissen near Bonn. The latter consists of long tunnels
and several small room-like structures.

In Figures 4-7 we depict different tracks from our homing
procedure. The original odometry measurements from the
forward path are drawn in black (hardly visible as the red
trajectory overlays it). The red line illustrates the subsampled
trajectory that the robot has selected as its sequence P for
rewinding the trajectory. Both trajectories overlay because
the robot does not use any map (it would be inconsistent)
and relies solely on the observations and poses it recorded on



odometry forward
backward odometry destinations

corrected positions

odometry forward
backward odometry destinations

corrected positions

odometry forward
pure odometry back

backward odometry destinations
corrected positions

Fig. 5. Three experiments performed in different settings. The meaning of
the lines is the same as in Figure 4. The average deviation from the original
trajectory is between 4 cm (top dataset) and 6 cm (middle dataset).

the forward path to navigate back. The blue line shows the
poses from P (poses on the red line) after the alignment by
NICP, thus yielding an estimate of the robot’s real position
in the odometry frame.

One of the lab experiments is illustrated in Figure 4. Here,
we steered the robot on a trajectory through an obstacle
parkour containing narrow passages as well as areas with
numerous flat walls. The robot activated the “trajectory
rewind” behavior after we manually introduced a fault in
the SLAM system (by adding incorrect constraints). Conse-
quently, the robot followed the way in reverse order using
pair-wise point-cloud alignment with the NICP-based pose
correction. Three examples are illustrated in Figure 5. In
all 20 experiments, we varied the trajectory as well as the
obstacle parcour and we did not encounter any failure of the
homing behavior.

We also executed the same system in the cave of
Niederzissen, see Figure 6 and Figure 7. Here, the floor is
covered with dust and dirt and it is quite uneven, which
causes substantial track slippage and a comparatively poor
odometry. Even under such conditions, the robot is able to
rewind the trajectory as illustrated in Figure 6. Again, we
varied the trajectory 10 times, a second longer experiment
is shown in Figure 7 and we were always able to robustly
drive the robot back to the start location.

As can be seen from the close similarity between the
rewinding and corrected trajectories in Figures 4-7, our
approach ensures that the robot is able to accurately rewind
its trajectory. The deviation of the rewinding trajectory (blue
line) from the original trajectory (black line) is approximately
5 to 7 cm in the shown datasets and is largely caused by
the imprecise motion command execution and strong track
slippage. The gray line depicts the pure odometry measure-
ments recorded while rewinding the trajectory. From the gray
trajectory, we can see that the matching of observations must
be taken into account—otherwise, the robot would deviate
substantially from the reference path (and would collide with
walls and obstacles).

Overall, our evaluation suggests that our robot is able
to rewind its trajectories through different environments.
While rewinding the trajectory, the robot moved backwards
most of the time and thus it cannot observe obstacles on
the path before it fully passed them. Only by following
the reference trajectory precisely, the robot can return. We
illustrated here that even when there is a substantial amount
of track slippage on the ground, our method is still capable of
robustly handling corridor-like environments with multiple
narrow passages such as the doorways or narrow winding
corridors.

V. CONCLUSION

The ability to robustly operate without user intervention
is an important capability for exploration robots and safely
returning after the mission is a key requirement in real-world

odometry forward
pure odometry backward

picked odometry destinations
corrected destination positions

start

stop

stop

start

Fig. 6. An experiment in a man-made cave in Niederzissen near Bonn
that consists of long tunnels and several small room-like structures. The
narrow passages allow for approx. 10 cm margin for fitting a robot. The
schematic drawing (top image) shows the approximate robot path drawn on
top of a map. The bottom image shows the actual movement of the robot
in the odometry frame while being steered from “start” to “stop” (black
lines) as well as the waypoints the robot has chosen returning from “stop”
to “start”. The blue lines show the positions of the robot reported after ICP
registration. The gray lines show pure odometry while performing homing.



start

stop

odometry forward
pure odometry backward
picked odometry destinations
corrected destination positions

stop

start

Fig. 7. Second experiment the cave as in Figure 6. The robot was steered from “start” to “stop” and has performed homing autonomously from “stop”
to “start”. In the left corner of the top picture, the robot was steered forward and then backwards. It has repeated the same path during the homing route
as can be seen in the bottom of the second image. The length of the trajectory in this experiment is approx. 70m.

settings. In this paper, we presented a complete homing sys-
tem that addresses the problem of returning a robot operating
in an unknown environment to its starting position even if
the underlying SLAM system fails. We combined a statistical
map consistency test with a scan alignment approach to
rewind a previously taken trajectory. The approach can be
executed online on a notebook computer with two Asus
Xtion RGBD cameras recording 3D point cloud information.
We implemented our approach in ROS and executed it
on a real autonomous robot designed to explore and map
hard-to-access underground environments. We evaluated the
consistency check in our lab environment as well as on
real-world data acquired in the Priscilla catacomb in Rome
and in a cave in Nierderzissen near Bonn. The evaluation
suggests that our approach is well suited for homing in
situations in which the mapping system failed. We illustrated
that our proposed method can accurately rewind trajectories
guiding the robot back to its starting location. It does so
in challenging real-world settings in which the robot has to
navigate through narrow passages and over uneven ground.

REFERENCES

[1] H. Carrillo, P. Dames, V. Kumar J.A., and Castellanos. Autonomous
robotic exploration using occupancy grid maps and graph slam based
on shannon and rényi entropy. In Proc. of the IEEE Int. Conf. on
Robotics & Automation (ICRA), 2015.

[2] P. Furgale and T. Barfoot. Stereo mapping and localization for
long-range path following on rough terrain. In Proc. of the IEEE
Int. Conf. on Robotics & Automation (ICRA), pages 4410–4416, 2010.

[3] P. Furgale and T.D Barfoot. Visual teach and repeat for long-range
rover autonomy. Journal on Field Robotics, 27(5):534–560, 2010.

[4] P. Furgale, P. Krüsi, F. Pomerleau, U. Schwesinger, F. Colas, and
R. Siegwart. There and back again-dealing with highly-dynamic scenes
and long-term change during topological/metric route following. In

ICRA14 Workshop on Modelling, Estimation, Perception, and Control
of All Terrain Mobile Robots, 2014.

[5] G. Grisetti, R. Kümmerle, C. Stachniss, and W. Burgard. A tutorial on
graph-based SLAM. IEEE Transactions on Intelligent Transportation
Systems Magazine, 2:31–43, 2010.

[6] A.A. Makarenko, S.B. Williams, F. Bourgoult, and F. Durrant-Whyte.
An experiment in integrated exploration. In Proc. of the IEEE/RSJ
Int. Conf. on Intelligent Robots and Systems (IROS), 2002.

[7] M. Mazuran, G.D. Tipaldi, L. Spinello, W. Burgard, and C. Stachniss.
A statistical measure for map consistency in slam. In Proc. of the
IEEE Int. Conf. on Robotics & Automation (ICRA), 2014.

[8] M. Nitsche, T. Pire, T. Krajnik, M. Kulich, and M. Mejail. Monte
carlo localization for teach-and-repeat feature-based navigation. In
Advances in Autonomous Robotics Systems, volume 8717 of Lecture
Notes in Computer Science, pages 13–24. Springer, 2014.

[9] C.J. Ostafew, A.P. Schoellig, and T.D. Barfoot. Visual teach and
repeat, repeat, repeat: Iterative learning control to improve mobile
robot path tracking in challenging outdoor environments. In Proc. of
the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS),
pages 176–181, Nov 2013.

[10] A. Segal, D. Haehnel, and S. Thrun. Generalized-icp. In Proc. of
Robotics: Science and Systems (RSS), volume 2, 2009.

[11] J. Serafin and G. Grisetti. NICP: Dense normal based point cloud
registration and mapping. In Proc. of the IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems (IROS), 2015. Currently under review.

[12] R. Sim and N. Roy. Global a-optimal robot exploration in slam.
In Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA),
Barcelona, Spain, 2005.

[13] C. Sprunk, G.D. Tipaldi, A. Cherubini, and W. Burgard. Lidar-based
teach-and-repeat of mobile robot trajectories. In Proc. of the IEEE/RSJ
Int. Conf. on Intelligent Robots and Systems (IROS), 2013.

[14] C. Stachniss, G. Grisetti, and W. Burgard. Information gain-based ex-
ploration using rao-blackwellized particle filters. In Proc. of Robotics:
Science and Systems (RSS), pages 65–72, Cambridge, MA, USA, 2005.

[15] D. Perea Ström, I. Bogoslavskyi, and C. Stachniss. Robust exploration
and homing for autonomous robots. Robotics & Autonomous Systems.
Conditionally accepted for publication.

[16] B. Yamauchi. Frontier-based exploration using multiple robots. In
Proc. of the Int. Conf. on Autonomous Agents, pages 47–53, 1998.


