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Abstract22

Counting crop seedlings is a time-demanding activity involved in di-23

verse agricultural practices like plant cultivating, experimental trials, plant24

breeding procedures, and weed control. Unmanned Aerial Vehicles (UAVs)25

carrying RGB cameras are novel tools for automatic field mapping, and26

the analysis of UAV images by deep learning methods can provide rel-27

evant agronomic information. UAV-based camera systems and a deep28

learning image analysis pipeline are implemented for a fully automated29

plant counting in sugar beet, maize, and strawberry fields in the present30

study. Five locations were monitored at different growth stages, and31

the crop number per plot was automatically predicted by using a fully32

convolutional network (FCN) pipeline. Our FCN-based approach is a sin-33

gle model for jointly determining both the exact stem location of crop34

and weed plants and a pixel-wise plant classification considering crop,35

weed, and soil. To determinate the approach performance, predicted36

crop counting was compared to visually assessed ground truth data. Re-37

sults show that UAV-based counting of sugar-beet plants delivers forecast38

errors lower than 4.6%, and the main factors for performance are related39

to the intra-row distance and the growth stage. The pipeline’s exten-40

sion to other crops is possible; the errors of the predictions are lower41

than 4% under practical field conditions for maize and strawberry fields.42

This work highlight the feasibility of automatic crop counting, which can43

reduce manual effort to the farmers.44

Keywords: deep learning, FCN, UAV, sugar beet, plant segmentation,45

time-series, intra-row distance, growth stage46
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1 Introduction47

The counting of sugar-beet seedlings is a time-demanding activity nec-48

essary in diverse aspects of beet production such as plant cultivating,49

experimental trials, plant breeding, plant phenotyping, and weed control.50

At the beginning of the cultivation season and few days after sowing (das),51

plant population and location becomes a relevant parameter to describe52

plant distribution’s homogeneity on the field.53

Previous studies highlighted the relevance of plant density in final beet54

yield and quality, as well as for the white sugar yield (WSY; Märländer,55

1990). Sub-optimal plant distribution can be caused not only by biotic56

factors like insects or fungi but also by abiotic factors like drought, crust57

formation, hail, wind, or frost damage (Smit, 1993). In Germany, farmers58

determine plant population by an intensive manual counting of sugar-beet59

seedlings at a growing stage (BBCH) 10-12 in a previously defined and60

representative patches of 10 m2, the average value of all counts are ex-61

trapolated to the entire field. In Europe, the counted number of emerged62

plants defines the decision of resowing, where fields with a population63

lower than 45 thousand plants per hectare are decided to be replanted.64

Moreover, plant populations between 82 and 110 thousand plants per65

hectare are considered as optimal (Märländer, 1990), where seeds are fre-66

quently sown with a row distance of 45 and 50 cm and an intra-row dis-67

tance from 18 to 25 cm. In experimental fields, a narrow sowing method68

is used where seeds are sown with a intra-row distance from 4 to 16 cm69

(Durrant et al., 1985; Pospǐsil et al., 2000; Söğüt and Arioglu, 2004) to70

achieve two or three times the population number employed in the prac-71

tice, later young plants are commonly thinned out to manually achieve72

the optimal population.73

Automatic counting of sugar-beet plants presents a potential for experi-74
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mental fields. In the European Union (EU), the demand for improvements75

in the sugar-beet cultivation to secure the crop yield and fulfill the princi-76

ples of integrated pest management (IPM) leads to constant evaluations77

of new sugar-beet varieties, fungicides, insecticides and herbicides. Unlike78

counting made by sugar-beet growers, counting in field experiments varies79

according to experimental aims and requires a precise number of emerged80

plants per plot. Manual counting of field trials could amount from 12081

to 250 person-hours per counted hectare, and counted area can represent82

20 to 50% of the entire experimental field. Plant breeding trials also83

require the detailed monitoring of plant emergence, germination capacity84

of seeds under the field conditions is a time-demanding key parameter to85

quantify seed quality. Emergence rate, together with vigorous seedlings,86

determine if a new sugar-beet variety is accepted or rejected by the market87

(Milošević et al., 2010). Finally, competition for light and nutrients be-88

tween uncontrolled weed and sugar beet can cause root yield losses from89

up to 95% (Petersen, 2004); therefore, modern post-emergence weed90

control activities like weeding through tractor-mounted hoes or herbicide91

application in weed-infested areas demands techniques for precise weed92

detection, location and distribution on the field to ensure crop yield and93

avoid the environmental impact of intensive herbicide application (Cioni94

and Maines, 2010; Kunz et al., 2015).95

Unmanned Aerial Vehicles carrying RGB cameras appear as a novel au-96

tomatic approach to sequential images for field mapping. Advantages for97

plant phenotyping are related to ease of operation, high spatial resolu-98

tion, and acquisition of data on demand (Deng et al., 2018). RGB and99

RGB-NIR images were used in the past to detect sugar beet and weeds.100

The image processing pipeline includes the use of an end-to-end trainable101

fully convolutional network acquired from field robot platforms (Lottes102

et al., 2018b; Wu et al., 2020; McCool et al., 2017). This algorithm can103
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deliver information to track crops and weeds, including the number of104

plants, their location, and distribution on the field. The FCN is also able105

to detect stem position of sugar beets and weeds from RGB images with a106

ground sampling distance (GSD) of 2 mm (Lottes et al., 2018a). To em-107

ulate the complexity of field conditions, an improvement of this algorithm108

approach was also developed for field robot platforms and RGB-NIR im-109

ages with 1 mm GSD to detect sugar-beet and weed stems under varying110

weed pressure, various weed types, and for different locations and growth111

stages of 2-, 4-leaf and 6-to-8-leaf (Lottes et al., 2019). Nevertheless,112

and although mentioned advantages of the image processing approach,113

there is still a lack of knowledge in following aspects: (1) the possibility to114

extend the approach to UAV-RGB systems and its robustness in different115

locations and in time-series, especially because UAV-systems in compari-116

son with field robots deliver, due to distance camera-object, higher spatial117

resolution and output images quality depends of the sunlight conditions;118

(2) behavior of forecast performance for crop counting between different119

growth stages; and (3) the effect of different intra-row distances in the120

forecast performance of crop counting, considering the most demanding121

counting activities for experimental fields but also for practice.122

Besides, the performance of UAV-recorded RGB images and a FCN123

pipeline to determine the plant number in other crops is also unknown124

but valuable for practitioners to predict the yield. RGB images and deep-125

learning approaches were already reported to be useful for counting diverse126

plant species like rice plants and acacia trees (Lu et al., 2021; Tong et al.,127

2021). The use of a previously trained model to other crop species has to128

consider differences in shape and color which could decrease the robust-129

ness of the methodology. Despite this disadvantage, two points might be130

beneficial in the extension of the method to other crops: (1) the reliabil-131

ity of the plant identification step (plant-soil segmentation), and (2) the132
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ability of previously trained FCN based approach to differentiate diverse133

weeds of various botanical families (crop-weed discrimination). Whereas134

the sugar-beet experimental fields include natural weed development, it is135

proposed to evaluate a practical approach close to the productive appli-136

cation on strawberry and maize fields. In this study, the described FCN137

pipeline, which is modeled for sugar beet will be adapted and applied to138

strawberries, and maize for crop counting.139

The general objectives of this study are: (1) evaluate the performance140

of forecasting the number of sugar-beet plants on the field by using a141

FCN-based approach and RGB images of mapped fields with two different142

intra-row distances, (2) determinate the best performance of the approach143

comparing different growing stages and in time-series and (3) evaluate144

the possibility of extending the methodology established for sugar-beets145

to strawberry and maize.146

2 Materials and methods147

2.1 Experimental fields148

Location 1 - sugar-beet variety trial This field presented a simpli-149

fied sugar-beet variety trial design, and was located in Göttingen, Lower150

Saxony, Germany. The design showed 24 plots arranged in six rows, each151

plot with a size of 2.7 m× 8.0 m. The trial field presented two sugar-beet152

varieties with different leaf orientation, a planophile and an erectophile.153

Seeds were sowed on the 9th of April in 2019; the initial intra-row distance154

was 6.8 cm, and the distance between row was 45 cm. Two days before155

the UAV-measurement, plant population was reduced to 1/3 in order to156

increase intra-row to 21 cm. The soil type was Chromic Luvisol.157
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Location 2 - proof of concept A second trial was located in Börßum,158

Lower Saxony, Germany (Figure 1a). The design was structured into 84159

plots with a size of 1.35 m× 7 m. The trial field presented 21 sugar-beet160

varieties. Seeds were sown on the 10th of April in 2019, with an original161

intra-row distance of 6.8 cm and 45 cm between rows. Previous to UAV-162

measurement, plant population was reduced as location 1 to 21 cm. The163

soil type was Chromic Luvisol.164

Monitoring and preliminary evaluation of data from locations 1 and 2165

were performed as a background for a ”proof of concept” and support the166

design for a time-series monitoring to determinate crop population under167

”harsh weed conditions.”168

Location 3 - time-series monitoring in harsh weed condi-169

tions for sugar beet The field trial for weed control was located170

in Höckelheim, Lower Saxony, Germany. The design was originally struc-171

tured into 40 plots with a size of 1.35 m× 7 m. The sowing date was the172

15th of August 2019, and the initial intra-row distance was 6.8 cm and173

45 cm between rows. Previous to UAV-measurement, plant population174

was reduced to 1/2. No herbicides were applied to this field. The soil175

type was Chromic Luvisol.176

Location 4 and 5 - maize and strawberry These fields were lo-177

cated in Klein-Altendorf, North Rhine-Westphalia, Germany. The maize178

dataset (location 4) had originally no plot structure (Figure 1b). There-179

fore, 20 images were extracted from a single row, each representing a plot180

with a size of 0.56 m× 28.9 m. The dataset contains almost no weeds and181

reflects maize plants in its post-emergence growth stage. However, some182

of the maize plants were already overlapped. The strawberry dataset (lo-183

cation 5) presents also no plot structure. Thus, we define 40 squared184
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regions of 9 m× 9 m. The dataset also contains small weeds that are185

located between and within the rows of strawberry plants. The soil type186

for both trials was Haplic Luvisol.187

2.2 UAV monitoring systems188

Three UAV-monitoring systems were used for the present study. Technical189

specifications are described in table 1.190

Table 1: Technical specifications of our UAV-based monitoring systems.

setup UAV camera manufacturer sensor size resolution focal length

1 Inspire 2 Zenmuse X5S DJI 4/3-inch 5280×3956 px 45 mm

2 Phantom 4 RTK gimbal-attached DJI 1-inch 5472×3648 px 8.8 mm

3 Phantom 4 PRO gimbal-attached DJI 1-inch 5472×3648 px 8.8 mm

2.3 UAV-Monitoring campaign and flight planning191

The monitoring campaign started when plants achieved the growing stages192

between BBCH 12 and 16 for sugar beets, and BBCH 13-17 and BBCH193

13-16 in the case of the maize and strawberry fields, respectively. Flights194

were performed in all locations in on one occasion with the exception of195

location 3 (time-series monitoring), which was monitored on three occa-196

sions (Table 2). For this location, ground control points (GCPs) were197

installed in the field corner points. In all locations, flights were performed198

within three hours of local solar noon. Flight mission was established199

using the software UgCS (SPH Engineering, Riga, Latvia), and the flight200

time was between 12 and 22 minutes. RGB images were captured in201

the photo mode (single shot) by distance with a shutter speed between202

1/1400 s and 1/1000 s, and a sidelap/frontlap of 80%. The resolution203
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in GSD was fitted to field size between 1.5 and 3 mm (Table 2). Im-204

age stitching to an orthomosaic was performed using AgiSoft MetaShape205

(Agisoft LLC, St. Petersburg, Russia).206

Sky conditions of each UAV-measurement was categorized in four207

classes: (1) clear, (2) low cloudy, (3) middle cloudy, and (4) cloudy;208

according to cloud covers from 0 to 33, 34 to 65, 66 to 95, and 96 to209

100% of effective cloud amounts (Schreiner et al., 1993).210

Table 2: Trial fields, location, crop, growing stage and flight specifications

No. location GPS-coordinates crop BBCH flight date sky setup height GSD

1 (1) Göttingen 51◦33N 9◦53E sugar beet 14-16 22.05.2019 cloudy 1 40 m 3.0 mm

2 (2) Börßum 52◦40N 10◦35E sugar beet 16-18 28.05.2019 middle cloudy 1 40 m 3.0 mm

3

(3) Höckelheim 51◦42N 9◦57E sugar beet

12 03.09.2019 cloudy 2 6 m 1.5 mm

4 12-14 11.09.2019 clear 2 6 m 1.5 mm

5 14-16 20.09.2019 low cloudy 2 6 m 1.5 mm

6 (4) Klein-Altendorf 50◦36N 6◦59E maize 13-17 25.05.2018 low cloudy 3 10 m 3.0 mm

7 (5) Klein-Altendorf 50◦36N 6◦59E strawberry 13-16 28.06.2018 low cloudy 1 40 m 3.0 mm

2.4 Collecting ground truth211

Ground truth object (GT) was defined as the number of crops counted212

per plot. Crops were labeled and counted manually in images for each213

plot from the segmented orthomosaic image. In total, 24, 84, 120, 20,214

and 40 plots were counted for locations 1-5, respectively. In the case of215

location 3, the counts were done separately for each flight date (Table216

2).217

2.5 Estimation of crop density and distance218

Crop density (CD) in crops per m2 was calculated per plot by using the219

ground truth counts. Because the size of the plots in each location was220

the same but different between locations, the average GT (counted crops)221
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and the average CD was calculated per location. Intra-row distance (D)222

was calculated by using GT and the number of rows and row length of223

each plot.224

2.6 Fully convolutional network-based plant clas-225

sification226

In this publication, the principal axis of the young shoot of sugar-beet227

seedling will be consider as stem. Keeping this clarification in mind, this228

section describes our FCN-based approach for joint plant classification and229

stem detection, which is based on a previous publication which was im-230

plemented in Python (Keras) (Lottes et al., 2018a). This system provides231

two outputs simultaneously. First, a plant mask represents a pixel-wise232

classification considering the classes crop, weed, and background (mostly233

soil). Second, the stems’ positions for the detected crop and weed objects234

are represented by a stem mask. The approach’s key architectural design235

feature is that the network shares the encoded features for classifying the236

stem regions and the pixel-wise classification using one encoder network237

and two task-specific decoder networks.238

The processing pipeline executes the following key steps and is il-239

lustrated in Figure 2. First, each image was preprocessed. Next, the240

preprocessed images were fed into the one-encoder-two-decoder struc-241

tured fully convolutional network. Outputs first include a per-pixel prob-242

ability distribution P (ωplant | Z) for describing the plant classification243

over the desired class labels ωplant ∈ {crop,weed, soil} for each observed244

pixel (Z); second, a per-pixel probability distribution P (ωstem | Z) with245

ωstem ∈ {crop,weed, soil} representing regions within the image, which246

correspond to crop and weed stems. The label for each pixel is determined247

as the one with the highest probability by:248
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ω∗ = argmax
ω

P (ωplant | Z). (1)

Finally, pixel-accurate stem positions were extracted, i.e., the stem249

mask, through a post-processing step, which will be described in Section250

2.7.251

2.6.1 Image preprocessing252

The preprocessing step was applied to image patches obtained from or-253

thomosaics. These images presented a width and height dimension of254

512 pixels, and 1 mm of GSD after downsampling. To deliver high per-255

formance of the classifiers the different input data was preprocessed. In256

preprocessing steps, transformations were applied to the data to reduce257

its complexity and standardize it to some degree, increasing the chance258

that the machine-learning algorithm can provide better performance than259

without preprocessing it. Technically speaking, preprocessing can im-260

prove a classification system’s generalization capabilities by aligning the261

training and test data distribution. The preprocessing was performed262

independently for each image and separately on all channels, i.e., red,263

green, blue. First, noise from each channel was removed by performing a264

blurring operation using a [5 × 5] Gaussian kernel given by the standard265

normal distribution, i.e., µ = 0 and σ2 = 1. Second, each image channel266

was standardized by its mean and standard deviation, respectively. Third,267

contrast stretch of the intensities to the range [−0.5, 0.5] was performed,268

which implies a zero-centering of the data.269

2.6.2 One-encoder two-decoder network architecture270

Figure 2 depicts the proposed architecture of our joint plant and stem271

detection approach. This approach’s main processing steps are the pre-272
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processing (red), the encoder, the plant decoder, the stem decoder, and273

the stem extraction (brown).274

Two separate feature volumes were generated from the encoded and275

compressed visual code, one specialized for pixel-wise plant classification,276

and another for stem detection. Thus, two task-specific decoders were277

obtained, which perform an upsampling using a stridden transpose con-278

volution (Dumoulin and Visin, 2016) with [2 × 2] kernel and a stride of279

2. Both decoders also use dense blocks as their main building blocks and280

follow the same architectural design to produce the plant features and281

stem features. Moreover, both task-specific decoders use feature maps282

produced by the encoder through skip connections. The corresponding283

feature maps was concatenated by sharing the same spatial resolution284

from the encoder before using dense blocks for feature computation. Skip285

connections from the encoder to the decoders facilitate the recovery of286

spatial information (Badrinarayanan et al., 2015). Finally, the feature287

maps produced by the stem decoder and the plant decoder was trans-288

formed into the pixel-wise probability distribution over their respective289

class labels by a [1× 1] convolution followed by a softmax layer to obtain290

P (ωplant | Z) and P (ωstem | Z). Note that It was tried to predict the area291

of the stem instead of regressing the stem location. This is key to use292

the same architecture for learning plant classification and stem locations.293

2.6.3 FCN training294

For learning, an NVIDIA 2080 TI card with 11 GB of VRAM was part of295

the equipment for our experiment. A dataset of 500 RGB images were296

used in a ratio of 75%, 5% and 20%, from these 375 images were consid-297

ered for training and 25 images for validation as mentioned in Lottes et al.298

(2018b) and Lottes et al. (2018a). Additional 100 images were used as299

testing dataset. For better results, all datasets were diversified according300
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image conditions by considering weed pressure, illumination, and growing301

stage. A multi-task loss L was used combining the loss for the plant302

segmentation Lplant and the loss for the stem region segmentation Lstem303

as follows:304

L = (1− α)Lstem + αLplant, (2)

where α = 0.5. The loss Lplant is the weighted cross-entropy, where305

errors regarding the crop plants and weeds were penalized by a factor306

of 10. The loss Lstem is based on an approximation of the intersection307

over union (IoU) metric, as it is more stable with imbalanced class labels308

(Rahman and Wang, 2016), which is the case in our problem with under-309

represented stems as compared to the amount of soil. The multi-task loss310

also enables the sharing of information for learning the encoder, which311

can use the loss information from both decoders in the backward pass of312

the backpropagation. The stem locations were encoded as blobs with a313

diameter of 10 mm in object space for training.314

2.7 Stem Extraction315

Given the probability distribution P (ωstem | Z) encoding regions within316

the image, which correspond to crop stems and weed stems, a well-defined317

stem detection by a specific pixel location for the crop and weeds was318

desired. To this end, it was firstly calculated the stem mask according319

to Equation 1 by selecting the class with the highest label probability for320

each pixel. Next, the connected components Oω
j was determined for the321

crop and weed class and computed the weighted mean x̄ω
j of the pixel322

locations by:323

x̄ω
j =

∑
x∈Oω

j
P (ω = ω | x) · x∑

x∈Oω
j
P (ω = ω | x) , (3)
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with ω = crop,weed. The weighted means x̄ω
j for class c are then the324

stem detections that are reported by our approach.325

2.7.1 FCNs applicability for crop counting using adapted326

transfer learning327

Trained data based on a from previous work for sugar beets was used and328

can therefore realize a stable primary classifier. The classifiers’ adaptation329

to strawberries and maize was made with additional training data from330

earlier projects in a supervised transfer learning manner, i.e., through a re-331

training of the model with further training data that includes strawberries332

and maize samples. The dataset used for training individual classifier for333

strawberry and maize, consisted of 130 RGB images per crop, considering334

from this total 120 images for training and 10 images for testing with a335

resolution of 512 × 512 pixels (Sec. 2.6.1). No validation set was used in336

this transfer learning stage because it was tried to minimize modifications337

in hyperparameter settings. For processing the test dataset, patch images338

presented a resolution of 2048 × 2048 pixels, and the processing-time per339

image was around 0.4 seconds with the hardware mentioned on Sec. 2.6.3.340

2.8 Evaluation Metrics341

After checking the absence of outliers, normality of variables, linearity, and342

homoscedasticity of each location, the Pearson Product-Moment Correla-343

tion Coefficient (PPMC) was calculated to determine the degree of linear344

correlation and whether significant differences exist between prediction345

(P) and GT in terms of counted crops.346

Forecast error of pipeline approach was determined by calculating the347

mean bias error (MBE), mean absolute error (MAE), and mean absolute348

percentage error (MAPE) (Shcherbakov et al., 2013; Kato, 2016). For a349
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better agricultural interpretation, MAE was calculated per unit of evalu-350

ated area (MAEA) and the area for unitary predicted error is given as Ae.351

The systematic error to under- or over-forecast of the pipeline approach352

was evaluated by using the MBE parameter, this was defined by equation353

4:354

MBE = 1
N

N∑
i=1

(Pi −GTi) (4)

where:355

• N = total number of forecast events356

• i = forecast event for plant counting in a plot357

• GTi = ground truth count358

• Pi = prediction count359

The magnitude of the forecast error was determined by the MAE of the360

predicted event given by:361

MAE = 1
N

N∑
i=1
|Pi −GTi| (5)

Based on the ground truth plant count, a percentage error of all forecast362

events was quantified using the MAPE of predicted numbers of crop plants363

by the following eq. 6:364

MAPE = 1
N

N∑
i=1

100× |GTi − Pi

GTi
| (6)

By considering MAE as a scaled magnitude of forecast error of events365

and as a forecast event is applied in a specific area of the field, the MAEA366

expresses the number of crop units, which are under- or over-counted per367

unit area (Eq. 7):368

MAEA = MAE

a
(7)

where:369
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• MAE = mean absolute error expressed in counted crop units370

• a = area of forecast event371

The area for unitary forecast error (Ae) is derived from MAEA. It is372

interpreted as the area to under- or over-count a crop by the employed373

pipeline approach (Eq. 8):374

Ae = 1
MAEA

(8)

3 Results375

For all locations the average of counted and predicted crops presented a376

strong and significant correlation (Table 3).377

3.1 Proof of concept assessments378

The average of counted and predicted plant numbers were 232.3 and379

228.1, and 95.9 and 95.8 plants for location 1 and 2, respectively (Table380

3). The number of counted plants allows determining the CD values for381

locations 1 and 2, 10.75 and 10.15 plants/m2. The average intra-row382

distance calculated was 21 and 22 cm, respectively, for locations 1 and 2.383

The use of FCN pipeline delivers a negative MBE value in both lo-384

cations or tends to under-count sugar-beet plants (Table 3). In location385

1, MAE’s magnitude is four sugar-beet plants in a plot area of 21.6 m2386

and with plants at BBCH 14-16. According to the definition of MAEA387

and Ae, in location 1 and at BBCH 14-16; for every 4.8 m2, one sugar-388

beet plant is wrongly considered in the count. In location 2, the pipeline389

presents the lowest MAE and the highest correlation (PPMC=0.95), the390

magnitude for the count error is less than a plant for every plot area of391

9.5 m2 at BBCH 16-18. The Ae value shows that one sugar-beet plant is392
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wrongly counted every 26.0 m2 under field arrangement conditions of lo-393

cation 2 and at BBCH 16-18. The lowest MAPE value is shown between394

both locations with the growing stage of BBCH 16-18 in sugar beet.395

3.2 Low intra-row distance in time series396

The time-series assessment of location 3 delivers the counted number of397

crop plants per plot between 181.6 and 185.4, with the highest plant num-398

ber at 17 das. The predicted average number of crops presents a range399

from 180.8 to 181.4 plants per plot, with the highest amount of counted400

plants at 34 das (Table 3). The average value of crop density in the trial401

decreased from 19.6 to 19.2 plants/m2 through the three measurements.402

Over the monitoring period, predictions present negative MBE values403

or a tendency to under-count crop plants similarly to locations 1 and 2404

(Table 3). The magnitude of the error count range between 7 and 8 sugar405

beets per plot. The Ae value range between 1.3 and 1.5 m2. Either the406

smallest error or the highest degree of correlation was found at BBCH407

14-16 with a MAPE value of 3.96% and a PPMC of 0.83.408

Sugar-beet plants presented an average soil cover of 1.14 ± 0.31%,409

1.95 ± 0.67%, and 2.90 ± 0.88% at 17, 25 and 34 das (Figure 5).410

Furthermore, weeds covered the soil with average values of 1.05%, 1.19%,411

and 1.80% at the previously mentioned dates, and the respective standard412

deviations were 0.03%, 0.26%, and 0.46%.413

3.3 Generalized application of trained FCN to maize414

and strawberry415

The average of counted and predicted crop numbers for the maize and416

strawberry field was 153.6 and 157.4, 29.1 and 30.2 plants, respectively417

(Table 3). The CD value for the maize field was 9.49 plants/m2, and in418
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the case of the strawberry field, crop density was 0.36 plants/m2.419

The forecast events for counting maize and strawberry plants present420

positive MBE values or a tendency to over-count crops in the plot (Table421

3). In the maize field, MAE’s magnitude is almost four plants per plot.422

In the strawberry field, the MAE value is more than one plant in a plot.423

The Ae value is 4.1 and 7.8 respectively for the maize and strawberry.424

4 Discussion425

4.1 Effect of the monitoring system and the sys-426

tem resolution for plant counting427

A relevant task is the development of approaches which can be gener-428

alized across measuring systems, different fields and/or different crops.429

By using three different sensor and UAV setups, this contribution con-430

firms that the previously tested and used pipeline (Lottes et al., 2018a),431

can be generalized to evaluate RGB UAV-based images. Nevertheless,432

the principal difference was observed during the establishment of a flight433

plan, setup 1 in comparison with setup 2 and 3 (Table 1), presented a434

bigger sensor size (4/3-inch against 1-inch) and a longer focal length (45435

against 8.8 mm), that allows a greater field of view in high resolution as436

mentioned in Pepe et al. (2018), and therefore this system was able to437

map bigger field area with the same flight time. No advantages in terms438

of reduced flight lines and use of fewer GCPs were observed for the setup439

2 with real-time kinematic (RTK) system (Rabah et al., 2018), probably440

related to the small size of the mapped area and the less challenging and441

planar characteristics of the observed object, in this case, the trial field442

with small vegetation during first growing stages.443

The principal changing factor, the ground sample distance, is not a444
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limiting factor for the dataset with lower resolution (GSD of 0.3 cm).445

Sa et al. (2018) mentioned that a resolution of 0.85 - 1.18 cm (GSD)446

can compromise performance of weed detection by using a Deep Convo-447

lutional encoder-encoder architecture for crop/weed segmentation. This448

study found that in early season a classification between crops and weeds449

is difficult because of morphological similarities. Using image resolutions450

of 0.02, 0.2, and 0.5 cm (GSD) and a similar image processing approach,451

Lottes et al. (2017) mentioned that field arrangement is the best sup-452

porter for detection of crop and weeds, highlighting the importance for row453

detection and the spatial relationships among multiple individual plants454

which remain constant at the mentioned image resolutions.455

4.2 Sky conditions456

In the past, it was affirmed that the use of spectral images in high resolu-457

tion for the analysis of vegetation could negatively affect the classification458

of areas under shadows. This phenomenon could lead to a false inter-459

pretation of physiological and metabolic activities (Zarco-Tejada et al.,460

2013). In our time-series case using RGB-images, the lowest forecast er-461

ror is acquired under clear sky conditions, which tells us that the used462

FCN pipeline approach could be used in shaded scenarios without losing463

performance. Another possibility is to expect a lower MAPE value un-464

der more favorable sky conditions; this means that under the same date465

and place of experimental field, but different sky condition like cloudy/466

no-shaded scenario, the forecast error can be lower than 3.96% (Table467

3). The employed time series analysis has to be contrasted with similar468

categories of crop growth stage conditions (BBCH 12, 12-14 and 14-16)469

and weed pressure and in various sky conditions to determine the effect470

of shadow in the counting performance.471
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4.3 Intra-row distance as a critical factor for a472

FCN pipeline473

In this study, the experimental field with 11-12 cm intra-row distance474

presented a high emergence of wheat from previous seasons, correctly475

classified as weeds. We furthermore avoid using herbicide in this experi-476

ment to increase the chances of emerging intra-row weeds. The detection477

of sugar-beet stems and hence counting of crop plants can be performed478

with an average precision of 78.8% by using UAV-RGB images in grass479

plants’ presence according to past results (Lottes et al., 2018a), support-480

ing observed outputs of the time-series analysis. In the past, a similar481

study based on mask R-CNN approach using robot-based RGB images482

for detection of common beans and maize presented similar precision val-483

ues for crop segmentation (60-80%) and highlighted the importance of484

the weed cover for misdetection (Champ et al., 2020), this study found485

that small weed cover presents a high probability to be pixel-wise clas-486

sified and counted as a crop by calculating the barycenter. A YOLOv3487

CNN architecture also mentioned a high mean average precision of 86%488

for counting stems in cotton seedling, although the effect of weed pres-489

sure was not evaluated, there are some disadvantages by overlapping and490

detecting small seedling (Oh et al., 2020).491

The intra-row distance of 21-22 cm presented, over all categories of492

growing stages, less counting error than the intra-row distance of 11-493

12 cm. In the past, CNN and FCN pipelines for crop/weed detection used494

images containing crops arranged in a typical distribution, 15-25 cm of495

intra-row distance, and 30-60 cm distance between rows (Sa et al., 2018;496

Lottes et al., 2018b). For the employed pipeline, images for training497

presented crops distributed in the same fashion. By observing the output498

images, an explanation of the higher rate of under-counting crops by low499
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intra-row distance is that neighbor sugar-beet stems are difficult to count.500

Sometimes two plants are counted as one, mostly if the midrib and tip501

leaf is aligned and substantially close to the neighbor crop stem (Figure502

6a).503

4.4 Importance of growing stage for successful504

counting505

In this paper, one of our main purpose is to specify optimal conditions506

for plant counting. In the vegetation period, crop growth is dynamic, and507

UAV-flights to capture images have to be performed on time to obtain the508

best results. To provide crop numbers, the determination of stem position509

in different growth stages is a crucial point, the performance to detect510

stems of plants with two-leaf to later growth stages can achieve 95.5% of511

precision and 98.0% of recall according to a past experience, but the best512

growth stage was not specified (Lottes et al., 2019). This study specifies513

that the optimal growth stage is dependent on intra-row distance. For514

the case of practice fields or intra-row distance of 20-21 cm and 45 cm515

between rows, the flight has to be performed in preference between 16-18516

BBCH stage compared with the BBCH 14-16. In experimental fields with517

an intra-row distance of 11-12 cm, UAV-flight provides the best results518

with the BBCH stage of 14-16.519

4.5 RGB-UAV for monitoring sugar beet/weed com-520

petition521

In a past experiment, Lottes et al. (2018b) determined plant-soil cover522

by labeling pixel-wise images into crop and weed; for their objective,523

they used RGB-NIR images containing sugar beets in different growth524
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stages obtained from field robot platform and a similar FCN pipeline.525

After optimization and analysis of performance, the pixel-wise approach526

achieved 91% of F1-score. Our study is based on the above-mentioned527

excellent performance to determine the soil cover of weeds and sugar528

beets. In this way, we have used a similar approach that focuses on529

UAVs’ importance for agronomic application. This includes using the530

advantage of UAVs for flexible image acquisition in the agronomic goal of531

weed control (Peña et al., 2013) and the possibility to support the decision532

for weeding during the entire critical period of competition, which usually533

takes place between BBCH 14 and 32 during approximately 21-28 days534

under normal growing conditions (Petersen, 2004). A point to clarify in535

future studies is which threshold of sugar beet/weed coverage is the most536

effective to reduce yield losses by using a specific weed control method.537

4.6 Pipeline extension to additional crops538

By analyzing the pipeline outputs, maize and strawberries’ over-counting539

is related to crop counting of stems belonging to weeds located in the540

intra-row space (Figure 6b). A similar phenomenon of overestimation was541

observed in the past, but not by over-counting but by over-segmenting542

(Bosilj et al., 2019). The mentioned work also transferred learning from543

a SegNet CNN model by retraining from sugar beets to onions data. This544

tendency of overestimation must slightly impact the Precision from the545

transferred crop and is an aspect to study in future investigations. Despite546

this, calculated results show low counting errors, and as mentioned on547

Sec. 4.1 crops distribution, and regular intra-row distance should be the548

principal reasons for controlling the counting after retraining a model on549

a small scale.550

In this extension, the counting error for other dicot as strawberry is551

higher than the error from a monocot as maize. The same effect was552
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observed in a past study using transfer of knowledge of a CNN approach553

from sugar beets to carrots and onions (Bosilj et al., 2019). In this experi-554

ence, the monocot crop presented 2% less performance drop than a dicot555

crop by a pixel-wise classification of the input image. Quan et al. (2019)556

mentioned, that a pixel-wise segmentation of maize seedlings can achieve557

a segmentation of up to 98% using RGB-images and a faster R-CNN558

approach, and sunny conditions can negatively influence the performance559

of seedling detection. Furthermore, a precision of up to 95% was re-560

ported using RetinaNet and CenterNet CNN architectures for counting561

maize seedling (Karami et al., 2020). Nevertheless, the performance of562

this approach could not be contrasted due to the lack of a labeled testing563

dataset. This paper confirms the feasibility of using a pipeline developed564

and modeled for sugar beets and applying it with less labeling effort on565

maize and strawberry fields. Counting error is lower than 4% and less or566

as high as the experimental field with low intra-row distance.567

5 Conclusion568

Monitoring and counting crops on the field are of high interest for farmers,569

experimental fields, and the seed-producing industry. The presented UAV-570

RGB image processing pipeline can deliver the number of sugar beets on571

the field with an error lower than 4.6%. The intra-row distance and the572

growing stage of sugar beets are relevant parameters for accurate plant573

counting. This evaluated variables present the most effective constellation574

with a crop distance of 21-22 cm and at BBCH 16-18. In experimental-575

field plant density, with an intra-row distance of 11-12 cm, the smallest576

forecast error for crop number is shown at BBCH 12-14. The extension of577

the previously trained FCN pipeline to other crops is possible with a small578

training dataset, the errors of predictions are lower than 4% by evaluating579
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practical fields of maize and strawberry, which highlights the potential580

use of the image processing approach to wide numbers of crops. Overall,581

considering the parameters as mentioned earlier, automatic monitoring of582

crop fields using UAV-images followed by proper processing of these can583

output reliable information that increases efficiency in the crop production584

by reducing the manual counting effort of the farmers.585
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Figure 1: Experimental fields: (a) UAV-acquisition and analysis of a sugar-

beet field at 28th May 2019 in Börßum (location 2), 1) plot segmentation, 2)

row detection, 3) stem detection and crop counting. (b) UAV-acquisition and

analysis of maize field in Klein-Altendorf (location 4), 1) stem detection and

plant counting
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Figure 2: FCN architecture. Encode of input images using the encoder and

following by the pass the feature volumes to the task-specific decoders, the stem

and the plant decoder. Obtained outputs were: the plant mask considering the

classes crop, weed, soil for the pixel-wise classification of the plants, and the

stem mask considering the classes crop, weed, soil for the segmentation crop-

weed stem regions. Finally, the extraction of the stem positions from the stem

mask in the stem extraction. Inside the layers, it is shown the number of output

features maps. L represents the number of stacked consecutive 2D convolutional

layers.
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Figure 3: Extraction of pixel-wise stem locations by computing a weighted

center of mass of the stem regions predicted by the FCN. For the weighting,

it was considered the predicted probabilities for each pixel belonging to a stem

region.
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Figure 4: Illustration of difficult conditions for counting plants using vision-

based classification approaches. Left: Mutually overlapping sugar beets. Right:

Due to narrow seeding, the sugar beets overlap early after the emergence phase.

In addition, individual and contiguous plants are separated by straw in the image

space.

Figure 5: Development of vegetation cover: time series labeling of sugar beet

(green) and weed (red) covered area at 17, 25 and 34 das. (*) Density estimation

of 40 plots of trial field located in Höckelheim (location 3). Evaluated field area

9.5 m2.
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Figure 6: Counting performance after classification in the upper left triangle:

(a) counted sugar-beet plants (white dots) and one under-count of sugar-beet

stem at 34 days after sowing in Höckelheim - location 3 (b) performance of

a sugar-beet image processing pipeline extended to a strawberry field, counted

strawberry (green dots) over-count case of false classification of weed (red dot)

- location 5. The lower right triangle shows the original RGB patch image.
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