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Abstract

In this paper we propose a non-Gibbsian Markov random fielchadel the
spatial and topological relationships between objecttrutsired scenes. The
field is formulated in terms of conditional probabilitiesmtaed from a set of
training images. A locally consistent labelling of new seelis achieved by
relaxing the Markov random field directly using these candl probabili-
ties. We evaluate our model on a varied collection of sevawaldred hand-
segmented images of buildings.

1 Introduction

Recent years have seen notable improvements in the perioara object classifiers.

Greater robustness against occlusion and intraclasshildyichas been achieved by de-
scribing objects by a large number of local and largely vievariant features (e.g. [15, 5,
18, 14]). For single classes efficient classification meth&gth as boosting allow recog-
nition to be in real-time (e.g. [17]). Some of these modelgehthe additional benefit of

biological plausibility. The hierarchical feed-forwamthitecture of [13] aims to mimic the

ventral stream of visual information processing and is &bleredict with great accuracy
whether or not an object is present in a scene.

It seems, however, that in order to be able to scale to theaetrousands of cat-
egories humans discriminate without effort, appearansedabject classification needs
to be complemented by techniques that utilise contextdalnmation. Context may be
described as any dependency between the object to be reedgamid everything else in
the scene, be these other objects or the scene as a wholainkpial evidence suggests
that humans do exploit both types of dependency during bbgeognition. It is well es-
tablished, for example, that the nature of a scene can bgme=u based on low spatial
frequency information [11]. Recent neuro-imaging studigsport the view that low spatial
frequencies are processed in the cortex at a very early dtagey visual recognition [2],
suggesting that perception involves top-down facilitatiMuch like the gist of a scene, the
spatial relationships between objects can be determinguti high frequency informa-
tion. Bar and Aminoff in [1] establish early activation ofrtical “context networks” that
appear to store spatial relationships, pointing to a keg dblspatial context as an early
facilitator during object recognition.



Our goal is to learn these spatial and topological relatigpssfrom the data and to
utilise this information in a Markov random field (MRF) model achieve a consistent
labelling of new scenes. The MRF is defined not over a pixaldbut the set of regions that
correspond to objects. From training data we learn the fibtyadistribution over labels
for a region, given the objects in its local neighbourhoodheS§e supply the conditional
probabilities that define the MRF and are used during antitereelaxation scheme to find
a probable realisation given the structural relationshipserved in a new scene.

Unlike the MRFs hitherto used in computer vision, the MRFsuse here are non-
Gibbsian, i.e. they cannot be expressed in terms of cligudsalobal cost function. This
is because the interactions between units are directiorthan-symmetric (A influences
B differently from how B influences A). Such MRFs are charsstie of natural complex
systems and they may be used to model, for example, the dtitardbetween neurons in
the human brain, population dynamics or company interasti€omplex systems subject
to such unit interactions tend to oscillate between difiestates rather than converge to a
single state [9]. In the case of human perception, the humain s then somehow able
to select from the possible interpretations the most apjatgpone. In this paper we use a
relaxation method appropriate for producing the statesictfi an MRF and a criterion that
allows us to select the right state.

We validate our approach on a set of about 250 photographsilofirigs that were
manually segmented and labelled. This domain is partilgulateresting as it exhibits
sufficiently tight structural constraints to benefit fronr @pproach, and a fair amount of
structural variability to challenge it.

This paper is structured as follows. Section 2 presentseethork. Section 3 intro-
duces the non-Gibbsian model. Section 4 details how it id tskabel new scenes. Section
5 describes a series of experiments to validate our appr&sadtion 6 concludes the paper.

2 Related work

We here consider related works that are concerned with rilogl@leer-to-peer, rather than
hierarchical, dependencies. A natural choice for prolsliilmodelling of local depen-
dencies are Markov random fields [8], defined either on a satatien of the image as in
[10, 4] or on a rectangular grid as in [7, 6, 14]. The author®]rand [14] define a condi-
tional random field over individual pixels. In [14], conteal information is incorporated
by using the joint boosting algorithm [16] for learning pati@l functions and by employ-
ing a novel feature that captures local dependencies inaagpee. Neither work explicitly
considers spatial relationships, although in [6] the altegbosition of a site is included in
the potential function.

In [4], it is assumed that training images are associated aibag of words with no
explicit mapping between regions and terms. This render¢etirning task more difficult
but makes it easier to get hold of large amounts of training.ddhe MRF is specified
through single and pair-wise clique potential functionarfed from the data. To make
the estimation problem tractable, potential functions sm@metric with respect to their
arguments (labels of adjacent image regions). The moded dotcapture asymmetric
dependencies, nor does it take into account spatial rakdtips.

In [10], an MRF is defined over image regions by specifyingdhgue functions for
all types of single and pair-wise cliques. The potentiatfions are taken to be a weighted
sum ofm basis functions whose parameters are set manually.



Our objectives are similar to those in [4] and [10]. Unlikesk two, however, we allow
neighbouring blobs to influence each other differently aelr@y on their relative spatial
position. The asymmetry thereby introduced forbids thendtedn of cliques and thus the
formulation of the MRF in terms of a Gibbs distribution. Ouode| consists of conditional
probabilities that are learned directly from the data usitrgctural information as can be
obtained from the low spatial frequency content of an image.

3 The model
3.1 Non-Gibbsian MRF

Let S={1,...,N} index a set of regions in an image. We assume that each region i
associated with a random varialflavhich takes its value from a discrete set of class labels.
The fieldF = {f; : i € S} is assumed to be Markovian in the sense that the probabilisti
dependencies amorfgare restricted to spatial neighbourhood§ that is,

P(fil fs-i,R) = P(fi[f,Ri), (1)

whereR denotes the matrix of pair-wise spatial relationships leetwregions, ang; the
row pertaining to region We assume, therefore, that the conditional dependenejeend
not only on the identity of the neighbouring regions but asatheir relative spatial rela-
tionships with theth region. This is an important component of our model adate us to
capture the non-isotropic nature of many scenes. For coewes, we refer to a particular
observation pai(f s, R;) as theneighbourhood configuratioor simply configuration and
to theith region associated with it as tfecal region
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Figure 1: A particular configuration associated with a chegpfleft), a schematic repre-
sentation of the configuratidif_ s, R;) (middle) and the conditional probability distribution
over all labels associated with that configurati®fi|f ,R), as obtained from training
images (right). The distribution tells us that a region bekky and above a roof is a
chimney (71%) but may also be a dormer (14%) or another rdisfo]l

3.2 Neighbourhoods

Since we need to learn the conditional distributions froralatively small training set, we
limit the neighbourhood to at most six regions: the neightaiove, below, to the left and
to the right of region, as well as the region containing and being contained bpnagirhe



neighbourhood relation is reciprocal and two regions aightmurs if they are separated
by no more than a certain distance threshold. The distarteesba two region#, B C R?
is computed as

d(A,B) = iegy} Lmin_la — b, @)
whereay represents thr coordinate of poina. Other choices of a distance function are of
course conceivable. This particular one has the effecttategions need not be the same
to have a zero distance but may be (i) overlapping, (ii) dxaatjacent or (iii) contained in
one another. For example, a wall that surrounds a numberrafomis has a zero distance
from each of them. If regions are non-overlapping, the distaalong each direction is
given by the smallest Euclidean distance between any twatpof the two regions. This
has the advantage that the distance between two regions adfacted by their respective
sizes (as would be the case under many metrics such as theddtfiusetric). For a dis-
tance cutoff of 0, the neighbourhood consists of all regiwhese bounding boxes overlap
with or touch the focal region. Were the regions regulartaaged like pixels, the resulting
neighbourhood would be the familiar 8-pixel neighbourhodbe optimal distance cutoff
is learned through cross-validation. Figure 2 depicts fis&ridution over configuration
sizes for the optimal zero cutoff. The right figure illusasthow the configurations become
larger as the distance cutoff increases.

Given a distance threshold, the conditional probabilistriiutions (eq. 1) are learned
by noting for each regiohobserved in a set of training images its corresponding config
ration (f_4,R;). The results can conveniently be stored in the form of a latwith the
key being a particular configuration and the value being threlitional probabilities over
labels for the focal region. Given a region with known neighithood configuration, we
can thus rapidly obtain a probability distribution overédéhat the focal region. To ensure
that the joint distribution of the MRF is nowhere zero, we adinall positive value to each
zero-valued conditional probability and subsequentlymadise.
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Figure 2: Frequency distribution of different configuratisizes for a distance cutoff of
zero (left). As we increase the distance threshold, the gordtions become larger (right).

4 Labelling of new scenes

This section details how to obtain probable realisationthefMRF given a new scene.
We make the assumption that scenes have been segmenteggiimiosrwhere each region
corresponds to an object to be recognised. How these regierabtained in the first place



is a problem in its own right and outside the focus of this walle shall simply take it for
granted that an appropriate segmentation has been achieved

4.1 Global Gibbsian versus local non-Gibbsian relaxation

A standard technique to find a probable realisation of an MRdiulated annealing which
allows a stochastic label update at a site to be retainedanitbrtain probability? even
if the new realisation of the field is less probable. By lajtih converge to zero, the
field eventually settles at a maximum of the joint probapiditstribution. In other words,
simulated annealing strives to find solutions that are diplb@aximally consistent.

Because of the impossibility to define cliques, our non-Gibb field is formulated
purely in terms of local, conditional probability distrifions (Equation 1). We aim to
find labellings that are locally consistent by repeatedip@ing from these conditional
distributions.

4.2 Graph colouring

In order to iteratively update regions based on the curedlling of their neighbourhood,
we partition the set of regions into a set of codings. The afe@ecoding was first introduced
by Besag [3] in the context of the iterated conditional molge@dthm for MRF parameter
estimation. A coding is equivalent to the concept of a vedebouring of a graph, that
is, it constitutes a partitioning of the set of vertices fegions) so that no two adjacent
vertices & neighbouring regions) belong to the same partition. Bezatfithe assumption
of Markovianity, the likelihood over vertices of the saméowo reduces to a simple product
of the respective conditional probabilities. We employ eegly strategy to achieve a vertex
colouring, in which vertices are visited in order of deciegsvertex degree (i.e. number
of neighbours). Each vertex is assigned the first possititeicérom a list of colours. One
example of a colouring is given in Figure 3. The wall has tgdat number of neighbours
and is correspondingly assigned the first colour (‘1’).

Figure 3: Original image (left). Hand-segmented and haflled training image (mid-
dle). Vertex colouring of the neighbourhood graph (righBrtices with the same number
have non-overlapping neighbourhoods.

4.3 Choosing a solution

Regions are updated within each coding by retrieving andpfieghfrom the probability

distribution corresponding to that region’s current néigirhood configuration. If the con-
figuration has not been seen before, because it was not elserthe training set, the new
label is drawn from a uniform distribution. This scheme andtvn is not guaranteed to



converge and indeed it seems to have no tendency to do sawhull each update, we
compute for each codingj

P(fs,

R) =[] P(filf.%,R)
i€
Our estimate of the overall probability of the data is obeditvy averaging ove?( fe; R).

Because the codings are generally of different size, thieradtic average sometimes used
for regular MRF is unsuitable. Instead, we estimate the jmiabability as

Gl

Let p be the ratio between the estimated joint probability aftet before the update. We
accept the change with probability 1pf> 1 and with probabilityp% otherwise.T is the
temperature parameter whose value decreases exponewitalitime. Figure 4 shows an

example of how the value given by eq. 3 increases over sugedtgsations. One iteration
here involves the update of the labels of all regions.
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Figure 4. Dynamics of stochastic updating process with aitldowt maximisation of the
pseudolikelihood. The dotted line marks the pseudolikelth associated with the true
labelling. The continuous line shows the proportion of raissified regions. In both di-
agrams, regions are updated based on the conditional pliibab For the left diagram,
a new labelling is always accepted, for the right diagramabeelling is accepted when it
improves the current optimum or when it is worse by no mora th&alue that decreases
with time.

5 Experiments

For our experiments, we collected 253 images of buildingsfthe World Wide Web.
Each image was manually segmented into regions that camedp parts of the building
or parts of the environment such as sky or vegetation. Eagibrrevas labelled by hand
using an annotation tool similar to LabelMe. The completasiet contains nearly 6,000
regions covering a dozen of clasges.

1The images along with the annotaton and segmentation infmatis available at
http://www.commsp.ee.ic.ac.uk/~dheesch/ngmrf/data/



We allow for the following seven labels (with respectiveguencies): ‘window’ (0.507),
‘chimney’ (0.054),roof’ (0.053), ‘door’ (0.087), ‘wall(0.089) , ‘dormer’ (0.015), ‘sky’
(0.055), ‘other’ (0.14). The ‘other’ label aggregates alinaining structures that were an-
notated (e.g. 'pipes’ and ’balcony’). We report performaraf different algorithms in
terms of classification accuracy, i.e. the proportion ofarg that have been labelled cor-
rectly. To estimate how the algorithm will be able to prediata that it was not trained on,
we use the leave-one-out method of cross-validation, ieremove one image from the
set at a time to be our test image and train on the remainingi2ages.

5.1 Comparison with other methods

We compare our non-Gibbsian MRF model with two other classifbn models, a non-
contextual Bayes classifier and an alternative contextualainthat uses probabilistic re-
laxation to find a locally consistent labelling.

5.1.1 Non-contextual Bayes classifier

As a non-contextual benchmark we implemented a Parzenf@askat classifies regions
based on the posterior probabilities given measuremerasiafber of low-level features
from the region. We use a set of three features that can dasibptained from the low-
frequency content of a scene: the mean intensity, the nigatbhrea of the region and its
vertical position. For each feature, the posterior proliiads over classes is given by Bayes
rule with the class-conditional densities being approxedaising a Parzen window with a
Gaussian kernel function centred on a set of class exeniplars

P 5 oxp(-T5t). @)

whereo is learned through cross-validation. We assume each #&e#iure conditionally
independent given the class, and thus compute the ovesath grobability density as a
product of feature-specific posteriors.

5.1.2 Probabilistic relaxation

The second comparison is with an alternative contextuallialy technique known as prob-
abilistic relaxation [12]. The contextual information @ists of the conditional probabil-
ities of a label, given that another label is found in a pat#c relative position to the
first. In each iteration of the relaxation process, the lginebabilities are updated based
on the probabilities at the previous time step, modulatethbysupport a particular labé|
receives from neighbouring labels,

n (I: ) ()
i +1)(f‘:°>:zuegp<><f: W) ®

with support function

Qi(C)z Z z P(fi=C|fj:V,l’ij)P(fj:V). (6)
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Here.# denotes the label set. The compatibilities are learned fherdata in a similar way

as are the conditional distributions for neighbourhoodfigmmations in the MRF model.

Note that unlike the MRF model, which allows configuratiomsdmprise up to six regions,
this particular formulation of probabilistic relaxatios limited to binary dependencies.
This makes statistical learning of dependencies easierdmaes at the expense of limited
modelling power.

5.1.3 Results

Table 1 shows the results for probabilistic relaxation and MG-MRF when using the
output of the Parzen classifier to initialise the labellirgorder to assess the variability in
performance, we have opted for a leave-one-out strategy.rds$ults are the average over
253 images with more than 5,000 regions.

The best results are obtained by the non-Gibbsian MRFvieltbclosely by the non-
contextual classifier. It is noteworthy that this partiewlarsion of probabilistic relaxation,
instead of improving the results of the non-contextual Earnethod, makes them worse.

Regions Unique cfgs Prior Parzen PR NG-MRF
5,682 0.904 0.521 (0.0006) 0.690 (0.125) 0.568 (0.134) 0.729 (0.124)

Table 1: Performance comparison for different classificatnethods. Prior: each region
is given the same, most frequently occuring label; Parzem-gontextual classification;
PR: probabilistic relaxation; NG-MRF: non-Gibbsian Mavkandom field. Performance
is measured in terms of the proportion of regions classifiedectly (standard deviation in
brackets). The second column gives the proportion of uniquréigurations in the test set
for which a conditional distribution has been learned frow training images.

Table 1 does not show how performance varies between diffelasses. As the confu-
sion matrix in Table 2 indicates, by far the greatest acguisaachieved for windows. That
many other classes are misclassified as windows may beutilto the strong prior on
the ‘window’ class that influences the result through the-oontextual Parzen initialisa-
tion. Note that doors in particular are frequently mistatf@mwindows as these two classes
exhibit very similar spatial relationships with other laliflg parts whilst having markedly
different priors.

wi ch ro do wa do sk ot
window 2848 50 5 81 0 0 25 131
chimney 20 151 50 5 0 5 10 15
roof 25 20 101 O 30 10 25 76
door 348 5 0 20 5 0 0 96
wall 40 0 25 5 292 10 10 91
dormer 30 15 20 5 5 15 5 0
sky 15 10 10 0 5 5 192 30
other 217 15 15 40 30 5 25 343

Table 2: Confusion matrix for NG-MRF labelling. The top rowtees are indexed by the
first two letters of the respective label. The matrix elenagngives the number of regions
of theith class that have been classified as belonging tgtthelass.



5.2 Robustness to initialisation

We investigate two different initialisation schemes teessshe robustness of the contextual
inference to initial conditions. The first scheme assigrcheagion the most frequently
occuring label (in this case ‘window’), the second drawselabvandomly from the prior
distribution, i.e. it will result in a similar initial distbution of classes within the image but
with random assignment of classes to regions. The resa@tsteown in Table 3. While we
notice a performance degradation compared to hon-corkiitialisation, the contextual
model continues to improve over the new baselines of 0.520a888%] respectively.

Initialisation scheme Initial NG-MRF

Non-contextual 0.690 0.729 (0.124)
Max Prior 0.521 0.654 (0.127)
Random 0.315 0.621 (0.135)

Table 3: Dependence of contextual classification on inigaiditions. The second column
shows the accuracy after initialisation with the threead#iht schemes discussed in the text.
The initial accuracy of the random assignmentis 1. pc(1— pc) wherep is the prior of
thecth class.

6 Conclusions

We presented a Markov random field model for contextual laduedf objects in structured
scenes. In our model the context of a region consists notatitye identity of neighbour-
ing regions but also, crucially, on their relative spatiatlaopological relationships. By
incorporating what are typically asymmetric relationshifhe Markov random field is ca-
pable of modelling the non-isotropic nature of typical ssenThe asymmetry makes the
field non-Gibbsian as it no longer admits to a factorisatito cliques, so that the model
is formulated in terms of conditional distributions tha¢ &&arned from training data.

Given a new scene, the Markov random field is relaxed by iteigtsampling from
conditional probability distributions. We proposed aneathive function to help us iden-
tify good labelling solutions. The objective function issea on the vertex colouring of
the region neighbourhood graph and is not the global costifumusually associated with
Gibbsian MRFs. A comparison with a non-contextual and aeréditive contextual classi-
fier suggests the validity of the approach.

There are several ways how to take the work further. For thidyswve hand-segmented
and hand-labelled several hundred images. To demonstrateobustness of the tech-
nigue, a next step is to learn configurations from automijficegmented, but possibly
hand-labelled training exemplars. Also, we currently ma&eattempt to generalise from
observed configurations to new ones. As some configuratiersupersets of smaller con-
figurations, or are otherwise similar to each other, endgulire configuration space with
some distance metric would allow more accurate label digions to be inferred for pre-
viously unseen configurations.
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