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Abstract

In this paper we propose a non-Gibbsian Markov random field tomodel the
spatial and topological relationships between objects in structured scenes. The
field is formulated in terms of conditional probabilities learned from a set of
training images. A locally consistent labelling of new scenes is achieved by
relaxing the Markov random field directly using these conditional probabili-
ties. We evaluate our model on a varied collection of severalhundred hand-
segmented images of buildings.

1 Introduction

Recent years have seen notable improvements in the performance of object classifiers.
Greater robustness against occlusion and intraclass variability has been achieved by de-
scribing objects by a large number of local and largely view-invariant features (e.g. [15, 5,
18, 14]). For single classes efficient classification methods such as boosting allow recog-
nition to be in real-time (e.g. [17]). Some of these models have the additional benefit of
biological plausibility. The hierarchical feed-forward architecture of [13] aims to mimic the
ventral stream of visual information processing and is ableto predict with great accuracy
whether or not an object is present in a scene.

It seems, however, that in order to be able to scale to the several thousands of cat-
egories humans discriminate without effort, appearance based object classification needs
to be complemented by techniques that utilise contextual information. Context may be
described as any dependency between the object to be recognised and everything else in
the scene, be these other objects or the scene as a whole. Experimental evidence suggests
that humans do exploit both types of dependency during object recognition. It is well es-
tablished, for example, that the nature of a scene can be recognised based on low spatial
frequency information [11]. Recent neuro-imaging studiessupport the view that low spatial
frequencies are processed in the cortex at a very early stageduring visual recognition [2],
suggesting that perception involves top-down facilitation. Much like the gist of a scene, the
spatial relationships between objects can be determined without high frequency informa-
tion. Bar and Aminoff in [1] establish early activation of cortical “context networks” that
appear to store spatial relationships, pointing to a key role of spatial context as an early
facilitator during object recognition.



Our goal is to learn these spatial and topological relationships from the data and to
utilise this information in a Markov random field (MRF) modelto achieve a consistent
labelling of new scenes. The MRF is defined not over a pixel array but the set of regions that
correspond to objects. From training data we learn the probability distribution over labels
for a region, given the objects in its local neighbourhood. These supply the conditional
probabilities that define the MRF and are used during an iterative relaxation scheme to find
a probable realisation given the structural relationshipsobserved in a new scene.

Unlike the MRFs hitherto used in computer vision, the MRFs weuse here are non-
Gibbsian, i.e. they cannot be expressed in terms of cliques and a global cost function. This
is because the interactions between units are directional and non-symmetric (A influences
B differently from how B influences A). Such MRFs are characteristic of natural complex
systems and they may be used to model, for example, the interaction between neurons in
the human brain, population dynamics or company interactions. Complex systems subject
to such unit interactions tend to oscillate between different states rather than converge to a
single state [9]. In the case of human perception, the human brain is then somehow able
to select from the possible interpretations the most appropriate one. In this paper we use a
relaxation method appropriate for producing the states of such an MRF and a criterion that
allows us to select the right state.

We validate our approach on a set of about 250 photographs of buildings that were
manually segmented and labelled. This domain is particularly interesting as it exhibits
sufficiently tight structural constraints to benefit from our approach, and a fair amount of
structural variability to challenge it.

This paper is structured as follows. Section 2 presents related work. Section 3 intro-
duces the non-Gibbsian model. Section 4 details how it is used to label new scenes. Section
5 describes a series of experiments to validate our approach. Section 6 concludes the paper.

2 Related work

We here consider related works that are concerned with modelling peer-to-peer, rather than
hierarchical, dependencies. A natural choice for probabilistic modelling of local depen-
dencies are Markov random fields [8], defined either on a segmentation of the image as in
[10, 4] or on a rectangular grid as in [7, 6, 14]. The authors in[6] and [14] define a condi-
tional random field over individual pixels. In [14], contextual information is incorporated
by using the joint boosting algorithm [16] for learning potential functions and by employ-
ing a novel feature that captures local dependencies in appearance. Neither work explicitly
considers spatial relationships, although in [6] the absolute position of a site is included in
the potential function.

In [4], it is assumed that training images are associated with a bag of words with no
explicit mapping between regions and terms. This renders the learning task more difficult
but makes it easier to get hold of large amounts of training data. The MRF is specified
through single and pair-wise clique potential functions learned from the data. To make
the estimation problem tractable, potential functions aresymmetric with respect to their
arguments (labels of adjacent image regions). The model does not capture asymmetric
dependencies, nor does it take into account spatial relationships.

In [10], an MRF is defined over image regions by specifying theclique functions for
all types of single and pair-wise cliques. The potential functions are taken to be a weighted
sum ofm basis functions whose parameters are set manually.



Our objectives are similar to those in [4] and [10]. Unlike those two, however, we allow
neighbouring blobs to influence each other differently depending on their relative spatial
position. The asymmetry thereby introduced forbids the definition of cliques and thus the
formulation of the MRF in terms of a Gibbs distribution. Our model consists of conditional
probabilities that are learned directly from the data usingstructural information as can be
obtained from the low spatial frequency content of an image.

3 The model

3.1 Non-Gibbsian MRF

Let S= {1, . . . ,N} index a set of regions in an image. We assume that each region is
associated with a random variablefi which takes its value from a discrete set of class labels.
The fieldF = { fi : i ∈ S} is assumed to be Markovian in the sense that the probabilistic
dependencies amongfi are restricted to spatial neighbourhoodsNi , that is,

P( fi | fS−i ,R) = P( fi | fNi ,Ri), (1)

whereR denotes the matrix of pair-wise spatial relationships between regions, andRi the
row pertaining to regioni. We assume, therefore, that the conditional dependencies depend
not only on the identity of the neighbouring regions but alsoon their relative spatial rela-
tionships with theith region. This is an important component of our model as it allows us to
capture the non-isotropic nature of many scenes. For convenience, we refer to a particular
observation pair( fNi ,Ri) as theneighbourhood configurationor simplyconfiguration, and
to theith region associated with it as thefocal region.
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Figure 1: A particular configuration associated with a chimney (left), a schematic repre-
sentation of the configuration( fNi ,Ri) (middle) and the conditional probability distribution
over all labels associated with that configuration,P( fi | fNi ,Ri), as obtained from training
images (right). The distribution tells us that a region below sky and above a roof is a
chimney (71%) but may also be a dormer (14%) or another roof (10%).

3.2 Neighbourhoods

Since we need to learn the conditional distributions from a relatively small training set, we
limit the neighbourhood to at most six regions: the neighbour above, below, to the left and
to the right of regioni, as well as the region containing and being contained by region i. The



neighbourhood relation is reciprocal and two regions are neighbours if they are separated
by no more than a certain distance threshold. The distance between two regionsA,B⊂ R

2

is computed as
d(A,B) = ∑

i∈{x,y}
min

a∈A,b∈B
|ai −bi |, (2)

whereax represents thex coordinate of pointa. Other choices of a distance function are of
course conceivable. This particular one has the effect thattwo regions need not be the same
to have a zero distance but may be (i) overlapping, (ii) exactly adjacent or (iii) contained in
one another. For example, a wall that surrounds a number of windows has a zero distance
from each of them. If regions are non-overlapping, the distance along each direction is
given by the smallest Euclidean distance between any two points of the two regions. This
has the advantage that the distance between two regions is not affected by their respective
sizes (as would be the case under many metrics such as the Hausdorff metric). For a dis-
tance cutoff of 0, the neighbourhood consists of all regionswhose bounding boxes overlap
with or touch the focal region. Were the regions regularly arranged like pixels, the resulting
neighbourhood would be the familiar 8-pixel neighbourhood. The optimal distance cutoff
is learned through cross-validation. Figure 2 depicts the distribution over configuration
sizes for the optimal zero cutoff. The right figure illustrates how the configurations become
larger as the distance cutoff increases.

Given a distance threshold, the conditional probability distributions (eq. 1) are learned
by noting for each regioni observed in a set of training images its corresponding configu-
ration( fNi ,Ri). The results can conveniently be stored in the form of a hashtable with the
key being a particular configuration and the value being the conditional probabilities over
labels for the focal region. Given a region with known neighbourhood configuration, we
can thus rapidly obtain a probability distribution over labels at the focal region. To ensure
that the joint distribution of the MRF is nowhere zero, we adda small positive value to each
zero-valued conditional probability and subsequently normalise.
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Figure 2: Frequency distribution of different configuration sizes for a distance cutoff of
zero (left). As we increase the distance threshold, the configurations become larger (right).

4 Labelling of new scenes

This section details how to obtain probable realisations ofthe MRF given a new scene.
We make the assumption that scenes have been segmented into regions where each region
corresponds to an object to be recognised. How these regionsare obtained in the first place



is a problem in its own right and outside the focus of this work. We shall simply take it for
granted that an appropriate segmentation has been achieved.

4.1 Global Gibbsian versus local non-Gibbsian relaxation

A standard technique to find a probable realisation of an MRF is simulated annealing which
allows a stochastic label update at a site to be retained witha certain probabilityPr even
if the new realisation of the field is less probable. By letting Pr converge to zero, the
field eventually settles at a maximum of the joint probability distribution. In other words,
simulated annealing strives to find solutions that are globally maximally consistent.

Because of the impossibility to define cliques, our non-Gibbsian field is formulated
purely in terms of local, conditional probability distributions (Equation 1). We aim to
find labellings that are locally consistent by repeatedly sampling from these conditional
distributions.

4.2 Graph colouring

In order to iteratively update regions based on the current labelling of their neighbourhood,
we partition the set of regions into a set of codings. The ideaof a coding was first introduced
by Besag [3] in the context of the iterated conditional mode algorithm for MRF parameter
estimation. A coding is equivalent to the concept of a vertexcolouring of a graph, that
is, it constitutes a partitioning of the set of vertices (= regions) so that no two adjacent
vertices (= neighbouring regions) belong to the same partition. Because of the assumption
of Markovianity, the likelihood over vertices of the same colour reduces to a simple product
of the respective conditional probabilities. We employ a greedy strategy to achieve a vertex
colouring, in which vertices are visited in order of decreasing vertex degree (i.e. number
of neighbours). Each vertex is assigned the first possible colour from a list of colours. One
example of a colouring is given in Figure 3. The wall has the largest number of neighbours
and is correspondingly assigned the first colour (‘1’).

Figure 3: Original image (left). Hand-segmented and hand-labelled training image (mid-
dle). Vertex colouring of the neighbourhood graph (right):vertices with the same number
have non-overlapping neighbourhoods.

4.3 Choosing a solution

Regions are updated within each coding by retrieving and sampling from the probability
distribution corresponding to that region’s current neighbourhood configuration. If the con-
figuration has not been seen before, because it was not observed in the training set, the new
label is drawn from a uniform distribution. This scheme on its own is not guaranteed to



converge and indeed it seems to have no tendency to do so. Following each update, we
compute for each codingC j

P( fC j |R) = ∏
i∈C j

P( fi | fNi ,R)

Our estimate of the overall probability of the data is obtained by averaging overP( fC j |R).
Because the codings are generally of different size, the arithmetic average sometimes used
for regular MRF is unsuitable. Instead, we estimate the joint probability as

P( f1, . . . , fN) ≈ 1
N ∑

j
|C j |

[

∏
i∈C j

P( fi | fNi ,R)

]
1

|C j |

. (3)

Let p be the ratio between the estimated joint probability after and before the update. We
accept the change with probability 1 ifp > 1 and with probabilityp

1
T otherwise.T is the

temperature parameter whose value decreases exponentially with time. Figure 4 shows an
example of how the value given by eq. 3 increases over successive iterations. One iteration
here involves the update of the labels of all regions.
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Figure 4: Dynamics of stochastic updating process with and without maximisation of the
pseudolikelihood. The dotted line marks the pseudolikelihood associated with the true
labelling. The continuous line shows the proportion of misclassified regions. In both di-
agrams, regions are updated based on the conditional probabilities. For the left diagram,
a new labelling is always accepted, for the right diagram, a labelling is accepted when it
improves the current optimum or when it is worse by no more than a value that decreases
with time.

5 Experiments

For our experiments, we collected 253 images of buildings from the World Wide Web.
Each image was manually segmented into regions that correspond to parts of the building
or parts of the environment such as sky or vegetation. Each region was labelled by hand
using an annotation tool similar to LabelMe. The complete dataset contains nearly 6,000
regions covering a dozen of classes.1

1The images along with the annotation and segmentation information is available at
http://www.commsp.ee.ic.ac.uk/∼dheesch/ngmrf/data/



We allow for the following seven labels (with respective frequencies): ‘window’ (0.507),
‘chimney’ (0.054),‘roof’ (0.053), ‘door’ (0.087), ‘wall’(0.089) , ‘dormer’ (0.015), ‘sky’
(0.055), ‘other’ (0.14). The ‘other’ label aggregates all remaining structures that were an-
notated (e.g. ’pipes’ and ’balcony’). We report performance of different algorithms in
terms of classification accuracy, i.e. the proportion of regions that have been labelled cor-
rectly. To estimate how the algorithm will be able to predictdata that it was not trained on,
we use the leave-one-out method of cross-validation, i.e. we remove one image from the
set at a time to be our test image and train on the remaining 252images.

5.1 Comparison with other methods

We compare our non-Gibbsian MRF model with two other classification models, a non-
contextual Bayes classifier and an alternative contextual model that uses probabilistic re-
laxation to find a locally consistent labelling.

5.1.1 Non-contextual Bayes classifier

As a non-contextual benchmark we implemented a Parzen classifier that classifies regions
based on the posterior probabilities given measurements ofa number of low-level features
from the region. We use a set of three features that can easilybe obtained from the low-
frequency content of a scene: the mean intensity, the normalised area of the region and its
vertical position. For each feature, the posterior probabilities over classes is given by Bayes
rule with the class-conditional densities being approximated using a Parzen window with a
Gaussian kernel function centred on a set of class exemplarsEc

p(x|c) ∝ ∑
xi :i∈Ec

1√
2πσ

exp

(

−|x−xi |
2σ2

)

, (4)

whereσ is learned through cross-validation. We assume each feature to be conditionally
independent given the class, and thus compute the overall class probability density as a
product of feature-specific posteriors.

5.1.2 Probabilistic relaxation

The second comparison is with an alternative contextual labelling technique known as prob-
abilistic relaxation [12]. The contextual information consists of the conditional probabil-
ities of a label, given that another label is found in a particular relative position to the
first. In each iteration of the relaxation process, the labelprobabilities are updated based
on the probabilities at the previous time step, modulated bythe support a particular labelfi
receives from neighbouring labels,

P(n+1)( fi = c) =
P(n)( fi = c)Qi(c)

∑µ∈L P(n)( fi = µ)Qi(µ)
(5)

with support function

Qi(c) = ∑
j: f j∈Ni

∑
ν∈L

P( fi = c| f j = ν , r i j )P( f j = ν). (6)



HereL denotes the label set. The compatibilities are learned fromthe data in a similar way
as are the conditional distributions for neighbourhood configurations in the MRF model.
Note that unlike the MRF model, which allows configurations to comprise up to six regions,
this particular formulation of probabilistic relaxation is limited to binary dependencies.
This makes statistical learning of dependencies easier butcomes at the expense of limited
modelling power.

5.1.3 Results

Table 1 shows the results for probabilistic relaxation and our NG-MRF when using the
output of the Parzen classifier to initialise the labelling.In order to assess the variability in
performance, we have opted for a leave-one-out strategy. The results are the average over
253 images with more than 5,000 regions.

The best results are obtained by the non-Gibbsian MRF, followed closely by the non-
contextual classifier. It is noteworthy that this particular version of probabilistic relaxation,
instead of improving the results of the non-contextual Parzen method, makes them worse.

Regions Unique cfgs Prior Parzen PR NG-MRF
5,682 0.904 0.521 (0.0006) 0.690 (0.125) 0.568 (0.134) 0.729 (0.124)

Table 1: Performance comparison for different classification methods. Prior: each region
is given the same, most frequently occuring label; Parzen: non-contextual classification;
PR: probabilistic relaxation; NG-MRF: non-Gibbsian Markov random field. Performance
is measured in terms of the proportion of regions classified correctly (standard deviation in
brackets). The second column gives the proportion of uniqueconfigurations in the test set
for which a conditional distribution has been learned from the training images.

Table 1 does not show how performance varies between different classes. As the confu-
sion matrix in Table 2 indicates, by far the greatest accuracy is achieved for windows. That
many other classes are misclassified as windows may be attributed to the strong prior on
the ‘window’ class that influences the result through the non-contextual Parzen initialisa-
tion. Note that doors in particular are frequently mistakenfor windows as these two classes
exhibit very similar spatial relationships with other building parts whilst having markedly
different priors.

wi ch ro do wa do sk ot
window 2848 50 5 81 0 0 25 131
chimney 20 151 50 5 0 5 10 15

roof 25 20 101 0 30 10 25 76
door 348 5 0 20 5 0 0 96
wall 40 0 25 5 292 10 10 91

dormer 30 15 20 5 5 15 5 0
sky 15 10 10 0 5 5 192 30

other 217 15 15 40 30 5 25 343

Table 2: Confusion matrix for NG-MRF labelling. The top row entries are indexed by the
first two letters of the respective label. The matrix elementai j gives the number of regions
of the ith class that have been classified as belonging to thejth class.



5.2 Robustness to initialisation

We investigate two different initialisation schemes to assess the robustness of the contextual
inference to initial conditions. The first scheme assigns each region the most frequently
occuring label (in this case ‘window’), the second draws labels randomly from the prior
distribution, i.e. it will result in a similar initial distribution of classes within the image but
with random assignment of classes to regions. The results are shown in Table 3. While we
notice a performance degradation compared to non-contextual initialisation, the contextual
model continues to improve over the new baselines of 0.52 and0.32, respectively.

Initialisation scheme Initial NG-MRF
Non-contextual 0.690 0.729 (0.124)
Max Prior 0.521 0.654 (0.127)
Random 0.315 0.621 (0.135)

Table 3: Dependence of contextual classification on initialconditions. The second column
shows the accuracy after initialisation with the three different schemes discussed in the text.
The initial accuracy of the random assignment is 1−∑c pc(1− pc) wherepc is the prior of
thecth class.

6 Conclusions

We presented a Markov random field model for contextual labelling of objects in structured
scenes. In our model the context of a region consists not onlyof the identity of neighbour-
ing regions but also, crucially, on their relative spatial and topological relationships. By
incorporating what are typically asymmetric relationships, the Markov random field is ca-
pable of modelling the non-isotropic nature of typical scenes. The asymmetry makes the
field non-Gibbsian as it no longer admits to a factorisation into cliques, so that the model
is formulated in terms of conditional distributions that are learned from training data.

Given a new scene, the Markov random field is relaxed by iteratively sampling from
conditional probability distributions. We proposed an objective function to help us iden-
tify good labelling solutions. The objective function is based on the vertex colouring of
the region neighbourhood graph and is not the global cost function usually associated with
Gibbsian MRFs. A comparison with a non-contextual and an alternative contextual classi-
fier suggests the validity of the approach.

There are several ways how to take the work further. For this study we hand-segmented
and hand-labelled several hundred images. To demonstrate the robustness of the tech-
nique, a next step is to learn configurations from automatically segmented, but possibly
hand-labelled training exemplars. Also, we currently makeno attempt to generalise from
observed configurations to new ones. As some configurations are supersets of smaller con-
figurations, or are otherwise similar to each other, endowing the configuration space with
some distance metric would allow more accurate label distributions to be inferred for pre-
viously unseen configurations.
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