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This document describes the evaluation of the AdaBoost image processing module (IPM)
described in more detail in [5]. The structure of the evaluation is motivated by the project
deliverable D2.5 description [1] and Wolfgang Förstner’s presentation on the Performance Char-
acteristics for Classification and Learning [2] from Hamburg Project Meeting in March 2007.

The AdaBoost IPM is evaluated, both in learning and classification phase, in terms of its
(i) performance on the ground truth data provided by the teacher and (ii) in terms of the self-
awareness of its abilities. The AdaBoost IPM is tested on two types of objects – T-style windows
and triangular cornices.

In the following, the AdaBoost IPM is described briefly in Section 1 and the experimental
evaluation is given in Section 2. Conclusion remarks and future plans are presented in Section 3.

1 Brief IPM description

The AdaBoost image processing module (IPM) was designed to work as a lower-level image
interpretation module, working directly with images. Its outputs are confidence-rated hypotheses
of positions of objects of interest in the image. A higher-level reasoning module (e.g. SCENIC) is
expected to run the module, use its outputs for further reasoning and send “down” feedback on
both learning and classification results of the IPM. This process can be repeated (reasoning loop)
until satisfactory scene interpretation is obtained. A more detailed description of the design and
the provided functionality of the IPM can be found in [5].

The module allows to train and apply to images a discrete AdaBoost classifier [3]. Currently,
only gray-scale images are used for training and classification. Only rectified images of building
facades are considered. The classifier uses Haar-like features in a manner similar to [7] except
that the cascade is not build. To train a full cascaded classifier, very large training sets are
required which is prohibitive in the eTRIMS project where the emphasis in put on the reasoning
loop which may start from very small evidence, rather than training from a large datasets.

2 Experimental evaluation

The AdaBoost IPM provides both learning and classification operators to the higher-level rea-
soning modules (e.g. SCENIC) [5]. The evaluation thus needs to consider both learning and
classification tasks. Quality of solution of both tasks is measured in terms of the module’s
performance on the ground truth data and the self-awareness of its performance.
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win T-win +-win †-win corn _-corn 4-corn
train set 146 482 0 14 97 41 44
test set 556 268 25 82 106 49 51

Table 1: Summary of annotated datasets. For examples of annotated object types see Figure 1.

Figure 1: Examples of annotated objects. From left to right, top row: T-style window, †-style
window, +-style window, example of “other” window, bottom row: 4-style cornice, _-style
cornice, “other” cornice.

The learning part of the AdaBoost IPM needs labelled data (ground truth) as its input.
To evaluate the ground truth performance of the learning process, the training error is thus a
natural choice.

The self-awareness can be measured by the upper bound on the training error which is min-
imised by the AdaBoost learning, and the error of the weak classifiers added to the AdaBoost
ensemble. If the error is close to 0.5, or the upper bound does not converge to zero, the training
starts to be inefficient. In such case, the problem is too difficult for the IPM. Another measure
which is of interest for the learning self-awareness evaluation is the training samples margin.
Although, the margin is not directly measurable, the AdaBoost has been shown [4] to maximise
the margin even after the training error drops to zero (i.e. it is worth to continue training even
if the training error is zero).

For the classification evaluation of the AdaBoost IPM, the standard way is to use the
receiver operation curve (ROC) as a ground truth performance measure. The AdaBoost classifier
returns a confidence value of the object being of the given type. For the self-awareness evaluation,
the confidence value is directly related to the classifier’s trust in the returned hypothesis. The
classifier should return higher confidence values on positive examples than on negative ones.

Two other measures for the classifiers robustness are presented. First, in the world of facades
where the AdaBoost IPM is being applied, the confusion matrix is a measure showing the
expected behaviour of the classifier on the objects of other types than the classified one. Second,
the algorithm assumes rectified images. These images are currently obtained by semi-manual
rectification tool with relatively high precision. However, an automatic rectification tool is being
developed where the precision is expected to vary. A test on classifier sensitivity to image
rotation is performed to test the robustness of the classifier to image transformations.

The following experiments have been done on two datasets of rectified classical facades
(mostly baroque and pseudo-historical). The training dataset consists of 27 and test set of
45 annotated images. Table 1 summarises the number of annotated objects and an example of
each type is depicted in Figure 1.

Classifiers for two object types – a T-style window and a triangular cornice – have been
trained to evaluate the applicability of the AdaBoost learning approach. The first object type,
T-style window, has clear structure and the AdaBoost working on Haar-like features should
perform well for it. The triangular cornice object type shows the limits of the approach. Both
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Figure 2: Positive examples from the training set for the T-style window detector.

object types have been chosen as important facade elements with interesting relations among
objects of the same type (windows appear usually in rows) and also among objects of different
types (a cornice is typically located above a window). Having detectors for such objects allows
higher-level reasoning algorithms to study spatial relations of hypothesised entities.

2.1 T-style windows

A training set consisting of 482 T-style windows from classical facades was used to train an
AdaBoost classifier. The positive samples in the training set are depicted in Figure 2. Only
the gray scale versions of the samples are used. To generate the positive training samples, a
border of 20 % of the annotated window size has been added to the original annotation so that
the samples contain small surrounding of the window. The negative part of the training set
consists of 2000 random samples from the same set of facade images generated from inside of
the facade (facade annotation was available) such that their size approximately corresponds to
the true (annotated) windows and they do not overlay the ground truth windows more than by
half of its area.

One hundred weak classifiers were combined into an AdaBoost T-style window classifier. The
statistics of the training process are shown in Figure 3a. The training error drops to zero around
the 20th training step, which indicates the task is relatively easy. Due to easiness of the learning
task, useful weak classifiers (with error significantly below 0.5) are found even after the training
error drops to zero. The effect of further training is depicted in Figure 3b. Although the positive
and negative samples are already separated, the margin is further widened by adding more weak
classifiers to the ensemble.

The resulting classifier have been tested on the test set described above (see Table 1). The
ROC plot is shown in Figure 5a. Some of the detection results are shown in Figure 6. Note that
the average confidence value is higher for the images with T-style windows than for the images
without T-style windows. The ROC plot shows that about 95 % of the windows are correctly
detected. This is important for initialising the reasoning loop. The better is the initialisation,
the easier is to continue with further reasoning. Important is that the positions of the false
positives in the detection examples in Figure 6 are mostly random as opposed to the correct
detections. Knowing more about the scene at the higher reasoning levels where more cues are
combined together, the false positives could be very likely removed. The left image in the middle
row of Figure 6 also demonstrates robustness of the method to unremoved radial distortion.

Table 2 summarises the detection results on different window types (only for the maximum
false positive ROC point). The successful detection rate on the general windows is probably
due to high false positive rate and due to similar structures appearing more likely in window-
like regions. Very high confusion percentage is obtained for †-style windows where the main
(and only) difference is the crossbar dividing the top windowpane which is not captured by the
classifier.
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(a) (b)

Figure 3: Training process for the T-style window classifier. Left plot shows the training error,
the upper bound and the error of lastly added weak classifier to the ensemble. The right plot
shows the distribution of the classifier responses on positive (red) and negative (blue) samples
for the training steps 20, 50 and 100 (from top to bottom).

win +-win †-win
56.3% 56.0% 76.5%

Table 2: Percentage of different window types detected by the T-style window detector on the
test set. For total number of examples in the test set see Table 1.

Another test has been performed to prove the classifier robustness to image rotation which
may occasionally happen due to inaccurate rectification. One hundred annotated T-style win-
dows from the test set have been rotated (the annotation stayed the same – non-rotated) and
evaluated by the classifier. The result of the experiment is depicted in Figure 4a. The T-
style window classifier can be reliably applied in the range −8 to +8 degrees which is sufficient
for manual rectification. Nevertheless, further experiments will be needed when the automatic
rectification tool is available (the tool is being developed currently).

Another example of incomplete rectification can be seen in the left image of middle row of
Figure 6. Even though the radial distortion has not been removed, the detection results are
comparable to those without radial distortion.

The speed of the classifier is about 10s on full resolution image (aprox. 1200 × 1500). This
may be limiting while running the reasoning loop for more than a single iteration. Since the
offline cascaded classifier [7] or time-optimised WaldBoost [6] need very large training sets, there
is a need for online time-optimised version of AdaBoost algorithm.

2.2 Cornices

The training set for the4-style cornices consists of only 44 positive examples while 2000 negative
examples are generated randomly from the facade images as for the T-style windows. One
hundred weak classifiers are trained and combined into an ensemble.

The training process statistics are shown in Figure 7. Again the learning task is very easy.
Training error drops to zero in less than 10 training steps, the error of the lastly added weak
classifier is even lower than in the case of T-style windows, and the margin is widened after the
training error is drops to zero.

Nevertheless, after evaluating the classifier on the test set, see Figure 5b, the performance is
significantly worse than for T-style windows. The reason for this discrepancy in the confidence
of the classifier and its performance on the test dataset can be used by higher-level reasoning
algorithm as a tool for learning good enough classifiers. If there is a strong high-level evidence
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(a) (b)

Figure 4: Sensitivity of the (a) T-style window and (b) 4-style cornice detector to rotation.

(a) (b)

Figure 5: ROC of (a) T-style window and (b) triangular cornice detector on the test dataset.
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Figure 6: Examples of the T-style window detector output on images from the test set. The
bottom row show the result when there are no T-style windows in the facade. Average confidence
value for the images (left to right, top to bottom), T-style windows present: 16.4, 14.9, 16.4,
15.7, no T-style windows: 12.6, 14.1. Note that the radial distortion is not removed from the
left image in the middle row and still good results are obtained.
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general cornice _-style cornice
3.9% 14.3%

Table 3: Percentage of different cornice types detected by the 4-style cornice detector on the
test set. For total number of examples in the test set see Table 1.

(a) (b)

Figure 7: Training process for the 4-style cornice classifier. Left plot shows the training error,
the upper bound and the error of lastly added weak classifier to the ensemble. The right plot
shows the distribution of the classifier responses on positive (red) and negative (blue) samples
for the training steps 20, 50 and 100 (from top to bottom).

for an object in an image and the IPM does not “see” this object and still the learning statistics
were rather confident, the “unseen” object is a good example for further training. On the other
hand, if the learning algorithm statistics show that the problem is already difficult, no further
training will help and the higher-level reasoning algorithm has to use another IPM to support
his hypothesis.

Table 3 summarises the confusion percentage for another types of cornices detected by the
4-style cornice detector. The table shows that the 4-style cornices can be reasonably well
distinguished from all the other cornice types.

The 4-style classifier is slightly less robust to the image rotation (see Figure 4b). The range
where the results are not degraded too significantly is approximately −3 to +3 degrees. This
range is very likely at the edge of usability for manual rectification.

The speed of the classifier is again in order of seconds. For improvement see the discussion
in preceding section.

3 Conclusions

The AdaBoost IPM has been tested on two types of objects – T-style windows and triangular
cornices. The evaluation examined the module’s performance in terms of (i) precision on ground-
truth data, and (ii) self-awareness of its own abilities for both, learning and classification. These
measures can be used by the higher-level reasoning algorithms to control the quality of IPM’s
outputs and to test its usability for a given task.

The experiments shows that a reliable detector can be trained if sufficient amount of training
data is available. The experiment with 4-style cornices outlines the way, the higher reasoning
level can use the measures provided by the AdaBoost IPM to check its expected performance
and to improve its real performance. First experiments on combination of the AdaBoost IPM
with higher-level reasoning modules are described in deliverable D1.2.
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