
Specification of the AdaBoost IPM

for use in SCENIC

Jan Šochman

jan.sochman@cmp.felk.cvut.cz

tel.: +420 2 2435 5731

Center for Machine Perception
Prague, Czech Republic

TN-eTRIMS-CMP-01-2006
version 2.1

January 11, 2007

This document describes AdaBoost image processing module (IPM) and its use for SCENIC
system. Its purpose is to clarify the IPM’s functionality and properties for easier incorporation
into SCENIC.

1 Prague’s vocabulary

In the following we use our own notions which can be slightly different from the one used in AI
community. However, we observe the terminology of the initial document [1] and use the terms
entity and operator accordingly.

Hence forward, the notion measurement region is used for the region in the image sup-
porting the decision about the object type of the entity (e.g. area covered by the entity polygon
plus small surrounding). We use the notion classifier whenever, given a measurement region
in the image, the operator’s task is to decide between two or more classes (i.e. object types
plus one general class “not an object”). The notion detector is used in similar meaning but
refers rather to repeated application of the classifier over a set of measurement regions (e.g.
over different positions in the image). We call training the process of learning the classifier’s
parameters based on a set of examples. Trained classifier’s parameters will be referred to as
classifier representation. The examples used for training can be divided into positive and
negative ones. Positive examples used in training is a set of measurement regions of the object
type we are interested in (e.g. doors). Negative examples is a set of measurement regions
which represent “everything else” except of the object type we are interested in (e.g. images of
anything but doors). Region of interest is used when we are interested in a particular part
of the image only, for instance because we want to examine certain region more closely. Since
we are working with rectified images where the notion of scale is meaningful, we use rectified
image scale for the number of pixels in the image per one metre in the scene.

2 Image description format

Recognised entities

The module is able to learn to recognise (classify) and detect (find in an image) any object either
from eTRIMS ontology or independent one with rather fixed structure and similar (within the
object type) width to height ratio. A counter example are for instance columns of different

1



heights. Examples include, but are not limited to, particular window type, doors, cornices,
chimneys, etc..

Description of entities

The IPM uses entities in two different ways. First, entities are used in the training phase as
positive and negative examples given to the IPM. In this phase, a polygon representing the entity
and a label (positive/negative, or ±1) is required for each entity. The polygon has to represent
a rectangular axis-parallel region in the image covering the whole entity.

Second, the output of already trained classifier (hypothesis of entities) is returned as a rect-
angular region and a real-valued confidence value. The region is again described by a polygon
and the rectangle is axis-parallel. The confidence value is an approximation to the log likelihood
ratio

R(x) = log
p(x|+ 1)
p(x| − 1)

,

where x stands for an entity, and the p(x|t) is a conditional probability that the entity x is of
type t (+1 is used for the type of interest and -1 for background or “everything else”). It is clear
that the confidence value can be either positive or negative and the higher the value the higher
is the probability of the entity being of the object type.

Interaction with LabelMe toolbox

The AdaBoost IPM is able to return its outputs and accept the input in the LabelMe toolbox
format.

Examples

See Figure 1 for an example of entities and their description used by AdaBoost IPM. Note that
the regions displayed do represent the measurement regions and not the entities directly. The
measurement regions cover also small surrounding of the entity so that the entity boundaries
are included and can be used during training (they contain a lot of useful information). The
enlargement of the entity polygon can be controlled by options attribute of the ‘train’ operator
(see below) and differs in general for different object types. For training, each entity is assigned
an object type (coded by colour in the figure). For detection/classification operators, each entity
is assigned a real valued confidence value (not shown here).

3 Operators description

Prerequisites to run the IPM

The whole IPM currently works on rectified images only. It is not advised to use the IPM on
non-rectified images. We will provide later an automatic rectification operator that rectifies the
image.

Provided interface operators

init Creates options structure filled with default values. This structure can be modified and
is used as one of the attributes to the operators. It controls internal parameters of the
operators. Moreover, the IPM Matlab paths are set by this operator. This operator is
called at system startup or during re-initialisation.

find object Given an image, a classifier representation for some object type, and a region of
interest, it finds all objects of the type in the region of interest. When the region of interest
is left empty, the whole image is searched.

get entity confidence Given an image, a classifier representation for some object type, and a
rectangle specifying the entity, it returns a confidence that the entity is of the type.

2



Figure 1: Examples of entities. Different colours are used for different object types.

train a classifier Given a set of positive examples representing one object type and a set
of negative examples (representing “everything else”) a classifier representation for the
positive examples type is trained.

update a classifier Given a classifier representation, an example and its label (’positive’ or
’negative’), the classifier representation is updated. This operator has currently null func-
tionality and is commented below.

detections filtering Given a set of hypothesised entities (outputs of previous operators) of
different object types this operator filters out obvious mistakes. Very simple configurable
rules are used (see parameters description).

draw entities Given an image and a set of hypothesised entities, the entities are drawn into
the image.

shutdown This operator is called at system shutdown. It has currently null functionality and is
included mainly for future enhancements and the AdaBoost IPM compatibility with other
IPMs.

Important property of the AdaBoost IPM is that the same operators can be used for different
object types (e.g. doors, windows, cornices, ...) by simple change of the classifier representation
given to the operator.

We are also developing the update a classifier operator for incremental (online) training
of the classifier. This means that only one example (positive or negative) is given to this operator
at a time together with a classifier representation and the classifier representation is updated
(instead of training it from scratch).

Besides these operators, a demonstration GUI application can be provided.

What parameters can be given to operators

Parameters given to the operators can be of several types listed in Table 1. In the following
operator list, input and output parameters are specified and the parameter types are indicated
in the parenthesis behind the parameters.

3



Type Description
filename Name of (usually) binary file (used for images, data files, etc.)
XMLfilename Name of a text file in XML format
structure Structure containing several fields
number Numerical value
string Text string
rectangle Description of a rectangle

Table 1: Operator parameter types

The entity description contained in the XML files have to contain 1. entity rectangular
polygon, 2. object type, 3. image filename to which the entity is related to (each entity can
be from a different image!), and 4. rectified image scale for each image. A star (∗) next to the
XMLfilename type indicates that the entities in the file have filled also the confidence value tag.
See Appendix A and B for XML file DTDs.

init
Input: configuration file name (filename)
Output: default options (structure), error message (string)

find object
Input: image (filename), rectified image scale (number), classifier representation (file-

name), region of interest (rectangle), options (structure)
Output: hypothesised entities (XMLfilename∗), error message (string)

get entity confidence
Input: image (filename), classifier representation (filename), entity (rectangle), options

(structure)
Output: confidence value (number)

train a classifier
Input: positive examples (XMLfilename), negative examples (XMLfilename), options

(structure)
Output: classifier representation (filename), error message (string)

update a classifier
Input: classifier representation (filename), image (filename), positive or negative example

(rectangle), label (string, ’positive’ or ’negative’), options (structure)
Output: classifier representation (filename), error message (string)

detections filtering
Input: hypothesised entities (XMLfilename∗), filtering rules (array of strings), options

(structure)
Output: filtered hypothesised entities (XMLfilename∗), error message (string)

draw entities
Input: image (filename), hypothesised entities (XMLfilename∗), options (structure)
Output: image (filename), error message (string)

shutdown
Input: options (structure)
Output: error message (string)

The options parameter influences internal parameters of the operator. The filtering
rules parameter specifies the rules which will be applied to the hypothesised entities and con-
tain an ordered list of strings from pre-specified set of rule names. The available filtering rules

4



are currently based on mutual overlap of detected entities (of a mixture of types). Each operator
has the error message output parameter indicating success of the operator. If the operator suc-
ceeds, the error message ouput parameter is an empty string, otherwise it contains description
of the error.

For all operators, Matlab help will be provided (use help function_name command in Mat-
lab to find out the operator syntax).

Example of usage

Here, an outline of the feedback loop is sketched. Many other variations are possible. The main
stress is not put on completeness but rather on the AdaBoost IPM usage understanding.

% initialise IPM
options = init(’cfg filename’)

% initial IMP classification – collect entity hypotheses
all hyp entities = []
roi = [] % empty region of interest ⇒ whole image
for all classifiers do

hyp entities ⇐ find object(img, r img scale, classifier, roi, options)
all hyp entities = all hyp entities ∪ hyp entities

end for
all hyp entities ⇐ detections filtering(all hyp entities, rules, options)

% main feedback loop
while interpretation not good enough do

case SCENIC REASONING(hyp entities)
’I am sure that “there” must be a window’:

roi = [row, col, width, height] % a rectangular region
options.winclas threshold −= 10 % higher sensitivity
new entities ⇐ find object(img, r img scale, winclas, roi, options)
% add new results to the hypothesis list
hyp entities = hyp entities ∪ new entities

’Could this entity be a cornice?’:
conf val ⇐ get entity confidence(img, corniceclas, entity rect, options)

’I have enough entities of the same type...’:
new entity clas ⇐ train classifier(pos examples, neg examples, options)

’I have found something, remember it’:
winclas ⇐ update classifier(winclas, img, interesting example, label, options)

’I need a debugging output’:
out img ⇐ draw entities(img, hyp entities, options)

end case

do some processing here...
end while

shutdown(options)

5



4 System requirements

• The IPM requires the Matlab environment with the Image Toolbox installed. It has been
developed on Matlab 7.2. but is easy to upgrade for newer version or downgrade for an
older version (not below 5.0).

• Parts of the module are written in C++, so also the compiler – gcc for Linux or Visual
.NET for Windows operating system – is needed. Each Matlab version requires different
gcc version so the appropriate one has to be used. The Visual .NET version 7.1 has been
tested.

• Both Windows XP/2000/NT and Linux operating systems are supported. Windows XP
and Gentoo Linux have been tested but the IPM should be easily transfered to similar
operating systems.

• The IPM does not require any additional libraries.

• Expected computation time for training is in order of minutes for larger tasks (hundreds of
positive and negative examples) and in order of seconds for detection/classification when
working with images larger then 1000x1000 pixels. Usually, smaller images are sufficient
for good performance.

References

[1] Lothar Hotz, Template for describing image processing modules. Hamburg Informatics Tech-
nology Centre, Hamburg, November 2006.

6



Appendix A. Found entities DTD

Following document type definition (DTD) describes XML files used by find object, detection
filtering and draw entities operators.

<!ELEMENT annotation (image+)>

<!ELEMENT image (filename, rect_img_scale, entity*)>

<!ELEMENT filename (#PCDATA)>
<!ELEMENT rect_img_scale (#PCDATA)>

<!ELEMENT entity (type, confidence, polygon)>

<!ELEMENT type (#PCDATA)>
<!ELEMENT confidence (#PCDATA)>

<!ELEMENT polygon (pt, pt, pt, pt)>

<!ELEMENT pt (row, col)>

<!ELEMENT row (#PCDATA)>
<!ELEMENT col (#PCDATA)>

Appendix B. Training examples DTD

Following document type definition (DTD) describes XML files used by train a classifier
operator.

<!ELEMENT annotation (image+)>

<!ELEMENT image (filename, entity*)>

<!ELEMENT filename (#PCDATA)>

<!ELEMENT entity (type, polygon)>

<!ELEMENT type (#PCDATA)>

<!ELEMENT polygon (pt, pt, pt, pt)>

<!ELEMENT pt (row, col)>

<!ELEMENT row (#PCDATA)>
<!ELEMENT col (#PCDATA)>

7


