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Abstract. Computation time is an important performance characteris-
tic of computer vision algorithms. This paper shows how existing (slow)
binary-valued decision algorithms can be approximated by a trained
WaldBoost classifier, which minimises the decision time while guaran-
teeing predefined approximation precision. The core idea is to take an
existing algorithm as a black box performing some useful binary decision
task and to train the WaldBoost classifier as its emulator.

Two interest point detectors, Hessian-Laplace and Kadir-Brady
saliency detector, are emulated to demonstrate the approach. The ex-
periments show similar repeatability and matching score of the original
and emulated algorithms while achieving a 70-fold speed-up for Kadir-
Brady detector.

1 Introduction

Computation time is an important performance characteristic of computer vision
algorithms. We show how existing (slow) binary-valued classifiers (detectors)
can be approximated by a trained WaldBoost detector [1], which minimises the
decision time while guaranteeing predefined approximation precision. The main
idea is to look at an existing algorithm as a black box performing some useful
binary decision task and to train a sequential classifier to emulate its behaviour.

We show how two interest point detectors, Hessian-Laplace [2] and Kadir-
Brady [3] saliency detector, can be emulated by a sequential WaldBoost classi-
fier [1]. However, the approach is very general and is applicable in other areas
as well (e.g. texture analysis, edge detection).

The main advantage of the approach is that instead of spending man-months
on optimising and finding a fast and still precise enough approximation to the
original algorithm (which can be sometimes very difficult for humans), the main
effort is put into finding a suitable set of features which are then automatically
combined into a WaldBoost ensemble. Another motivation could be an automatic
speedup of a slow implementation of one’s own detector.

A classical approach to optimisation of time-to-decision is to speed-up an
already working approach. This includes heuristic code optimisations (e.g. Fast-
SIFT [4] or SURF [5]) but also very profound change of architecture (e.g. classi-
fier cascade [6]). A less common way is to formalise the problem and try to solve
the error/time trade-off in a single optimisation task.
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Fig. 1. The proposed learning scheme

Our contribution is a proposal of a general framework for speeding up existing
algorithms by a sequential classifier learned by the WaldBoost algorithm. Two
examples of interest point detectors were selected to demonstrate the approach.
The experiments show a significant speed-up of the emulated algorithms while
achieving comparable detection characteristics.

There has been much work on the interest point detection problem [7] but
to our knowledge, learning techniques has been applied only to subproblems
but not to the interest point detection as a whole. Lepetit and Fua [8] treated
matching of detected points of interest as a classification problem, learning the
descriptor. Rosten and Drummond [9] used learning techniques to find parame-
ters of a hand-designed tree-based Harris corner classifier. Their motivation was
to speed-up the detection process, but the approach is limited to the Harris
corner detection. Martin et al. [10] learned a classifier for edge detection, but
without considering the decision time and with significant manual tuning. Nev-
ertheless, they tested a number of classifier types and concluded that a boosted
classifier was comparable in performance to these classifiers and was preferable
for its low model complexity and low computational cost.

The rest of the paper is structured as follows. The approximation of a black-
box binary valued decision algorithm by a WaldBoost classifier is discussed in
§2. Application of the approach to interest point detectors is described in §3.
Experiments are given in §4 and the paper is concluded in §5.

2 Emulating a Binary-Valued Black Box Algorithm with
WaldBoost

The structure of the approach is shown in Figure 1. The black box algorithm
is any binary-valued decision algorithm. Its positive and negative outputs form
a labelled training set. The WaldBoost learning algorithm builds a classifier se-
quentially and when new training samples are needed, it bootstraps the training
set by running the black box algorithm on new images. Only the samples not
decided yet by the so far trained classifier are used for training. The result of the
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process is a WaldBoost sequential classifier which emulates the original black
box algorithm.

The bootstrapping loop uses the fact that the black box algorithm can provide
practically unlimited number of training data. This is in contrast to commonly
used human labelled data which are difficult to obtain.

Next, a brief overview of the WaldBoost learning algorithm is presented.

2.1 WaldBoost

WaldBoost [1] is a greedy learning algorithm which finds a quasi-optimal se-
quential strategy for a given binary-valued decision problem. WaldBoost finds a
sequential strategy S∗ such that

S∗ = arg min
S

T̄S subject to βS ≤ β, αS ≤ α (1)

for specified α and β. T̄S is average time-to-decision, αS is false negative and βS

false positive rate of the sequential strategy S.
A sequential strategy is any algorithm (in our case a classifier) which evaluates

one measurement at a time. Based on the set of measurements obtained up to
that time, it either decides for one of the classes or postpones the decision. In
the latter case, the decision process continues by taking another measurement.

To find the optimal sequential strategy S∗, the WaldBoost algorithm combines
the AdaBoost algorithm [11] for feature (measurement) selection and Wald’s
sequential probability ratio test (SPRT) [12] for finding the thresholds which are
used for making the decisions.

The input of the algorithm is a labelled training set of positive and negative
samples, a set of features F - the building blocks of the classifier, and the bounds
on the final false negative rate α and the false positive rate β. The output is an
ordered set of weak classifiers h(t), t ∈ {1, . . . , T } each one corresponding to one
feature and a set of thresholds θ

(t)
A , θ

(t)
B on the response of the strong classifier for

all lengths t. During the evaluation of the classifier on a new observation x, one
weak classifier is evaluated at time t and its response is added to the response
function

ft(x) =
t∑

q=1

h(q)(x). (2)

The response function ft is then compared to the corresponding thresholds and
the sample is either classified as positive or negative, or the next weak classifier
is evaluated and the process continues

Ht(x) =

⎧
⎪⎨

⎪⎩

+1, ft(x) ≥ θ
(t)
B

−1, ft(x) ≤ θ
(t)
A

continue, θ
(t)
A < ft(x) < θ

(t)
B .

(3)

If a sample x is not classified even after evaluation of the last weak classifier,
a threshold γ is imposed on the real-valued response fT (x).
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Early decisions made in classifier evaluation during training also affect the
training set. Whenever a part of the training set is removed according to eq. 3,
new training samples are collected (bootstrapped) from yet unseen images.

In the experiments we use the same asymmetric version of WaldBoost as used
in [1]. When setting the β parameter to zero, the strategy becomes

Ht(x) =

{
−1, ft(x) ≤ θ

(t)
A

continue, θ
(t)
A < ft(x)

(4)

and only decisions for the negative class are made during the sequential eval-
uation of the classifier. A (rare) positive decision can only be reached after
evaluating all T classifiers in the ensemble.

In the context of fast black box algorithm emulation, what distinguishes train-
ing for different algorithms is the feature set F . A suitable set has to be found
for every algorithm. Hence, instead of optimising the algorithm itself, the main
burden of development lies in finding a proper set F . The set F can be very
large if one is not sure which features are the best. The WaldBoost algorithm
selects a suitable subset together with optimising the time-to-decision.

3 Emulated Scale Invariant Interest Point Detectors

In order to demonstrate the approach, two similarity invariant interest point de-
tectors have been chosen to be emulated: (i) Hessian-Laplace [2] detector, which
is a state of the art similarity invariant detector, and (ii) Kadir-Brady [3] saliency
detector, which has been found valuable for categorisation, but is about 100×
slower. Binaries of both detectors are publicly available1. We follow standard
test protocols for evaluation as described in [7]. Both detectors are similarity
invariant (not affine), which is easily implemented via a scanning window over
positions and scales plus a sequential test.

For both detectors, the set F contains the Haar-like features proposed by
Viola and Jones [6], plus a centre-surround feature from [13], which has been
shown to be useful for blob-like structure detectors [4]. Haar-like features were
chosen for their high evaluation speed (due to integral image representation) and
since they have a potential to emulate the Hessian-Laplace detections [4]. For
the Kadir-Brady saliency detector emulation, however, the Haar-like features
turned out not to be able to emulate the entropy based detections. To overcome
this, and still keep the efficiency high, “energy” features based on the integral
images of squared intensities were introduced. They represent intensity variance
in a given rectangle.

To collect positive and negative samples for training, a corresponding detector
is run on a set of images of various sizes and content. The considered detectors
assign a scale to each detected point. Square patches of the size twice the scale are
used as positive samples. The negative samples representing the “background”

1 http://www.robots.ox.ac.uk/~vgg/research/affine/
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Fig. 2. The non-maximum suppression algorithm scheme for two detections

class are collected from the same images at positions and scales not covered by
positive samples.

Setting α.There is no error-free classification, the positive and negative classes
are highly overlapping in feature space. As a consequence, the WaldBoost classifier
responses on many positions and scales – false positives. One way of removing less
reliable detections is to threshold the final response function fT at some higher
value γ. This would lead to less false positives, more false negatives and very slow
classifier (whole classifier evaluated for most samples). A better option is to set
α to a higher value and let the training to prune the negative class sequentially.
Again, it results in less false positives and controllable amount of false negatives.
Additionally, the classifier becomes much faster due to early decisions.

An essential part of a detector is the non-maximum suppression algo-
rithm. Here the output differs from that obtained from the original detectors.
Instead of having a real-valued map over whole image, sparse responses are re-
turned by the WaldBoost detector due to early decisions – value of ft, t < T
available for early decisions is not comparable to fT of positive detections. Thus
a typical cubic interpolation and a local maximum search cannot be applied.
Instead, the following algorithm is used.

Any two detections are grouped together if their overlap is higher than a given
threshold (parameter of the application). Only the detection with maximal fT

in each group is preserved. The overlap computation is schematically shown in
Figure 2. Each detection is represented by a circle inscribed to the box (scanning
window) reported as a detection (Figure 2, left). For two such circles, let us denote
radius of the smaller circle as r and radius of the bigger one as R. The distance
of circle centres will be denoted by d. The following approximation to the actual
circles overlap is used to avoid computationally demanding goniometric functions.

The measure has an easy interpretation in two cases. First, when the circle
centres coincide, the overlap is approximated as r/R. It equals to one for two
circles of the same radius and decreases as the radiuses become different. Second,
when two circles have just one point in common (d = r + R), the overlap is
zero. These two situations are marked in Figure 2, right by blue dots. Linear
interpolation (blue solid line in Figure 2, right) is used to approximate the overlap
between these two states. Given two radiuses r and R where r ≤ R and circle
centres distance dc, the overlap o is computed as
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o =
r

R

(
1 − dc

r + R

)
.

4 Experiments

This section describes experiments with two WaldBoost-emulated detectors -
Hessian-Laplace [2] and Kadir-Brady [3] saliency detector. The Hessian-Laplace
detector is expected to be easily emulated due to its blob-like detections. This
allows to keep the first experiment more transparent. The Kadir-Brady detector
is more complex one due to its entropy based detections. Kadir-Brady detector
shows rather poor results in classical repeatability tests [7] but has been suc-
cessfully used in several recognition tasks [14]. However, its main weakness for
practical applications is its very long computation time (in order of minutes per
image!).

4.1 Hessian-Laplace Emulation

The training set for the WaldBoost emulation of Hessian-Laplace is created from
36 images of various sizes and content (nature, urban environment, hand drawn,
etc.) as described in §3. The Hessian-Laplace detector is used with threshold
1000 to generate the training set. The same threshold is used throughout all the
experiments for both learning and evaluation.

Training has been run for T = 20 (training steps) with α = 0.2 and β = 0.
The higher α allows fast pruning of less trustworthy detections during sequential
evaluation of the detector.

The detector has been assessed in standard tests proposed by Mikolajczyk et
al. [7]. First, repeatability of the trained WaldBoost detector has been compared
with the original Hessian-Laplace detector on several image sequences with vari-
ations in scale and rotation. The results on two selected sequences, boat and
east south, from [15] are shown in Figure 3 (top row). The WaldBoost detector
achieves similar repeatability as the original Hessian-Laplace detector.

In order to test the trained detectors for their applicability, a matching appli-
cation scenario is used. To that effect, a slightly different definition of matching
score is used than that of Mikolajczyk [7]. Matching score as defined in [7] is
computed as the number of correct matches divided by the smaller number of
correspondences in common part of the two images. However, the matches are
computed only pairwise for correspondences determined by the geometry ground
truth. Here, the same definition of the matching score is used, but the defini-
tion of a correct match differs. First, tentative matches using the SIFT detector
are computed and mutually nearest matches are found. These matches are then
verified by the geometry ground truth and only the verified matches are called
correct.

Comparison of the trainer and the trainee outputs on two sequences is given in
Figure 3 (bottom row). The WaldBoost detector achieves similar matching score
on both sequences while producing consistently more detections and matches.
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Fig. 3. Comparison of Hessian-Laplace detector and its WaldBoost emulation. Top row:
Repeatability on boat (a) and east south (c) sequences and corresponding number
of detections (b), (d). Bottom row: Matching score (e), (g) and corresponding number
of correct matches (f), (h) on the same sequences.

Fig. 4. First centre-surround and energy feature found in WaldBoost Hessian-Laplace
(left) and Kadir-Brady (right) emulated detector. The underlying image is generated
as E(|xi − 127.5|) and E(xi) respectively, where E() is the average operator and xi is
the i-th positive training example.

The WaldBoost classifier evaluates on average 2.5 features per examined po-
sition and scale. This is much less than any reported speed for face detection [1].
The evaluation times are compared in Table 1. The WaldBoost emulation speed
is comparable to manually tuned Hessian-Laplace detector.

The Hessian-Laplace detector finds blob-like structures. The structure of the
trained WaldBoost emulation should reflect this property. As shown in Figure 4,
the first selected feature is of a centre-surround type which gives high responses
to blob-like structures.

The outputs of the trained WaldBoost emulation of Hessian-Laplace and the
original algorithm are compared in Figure 5. To find the original Hessian-Laplace
detection correctly found by the WaldBoost emulator, correspondences based
on Mikolajczyk’s overlap criterion [7] have been found between the original
and WaldBoost detections. The white circles show repeated correspondences.
The black circles show the detections not found by the WaldBoost emulation.
Note that most of the missed detections have a correct detection nearby, so the
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(a) (b)

Fig. 5. Comparison of the outputs of the original and WaldBoost-emulated (a) Hessian-
Laplace and (b) Kadir-Brady saliency detectors. The white circles show repeated de-
tection. The black circles highlight the original detections not found by the WaldBoost
detector. Note that for most of missed detections there is a nearby detection on the
same image structure. The accuracy of the emulation is 85 % for Hessian-Laplace and
96% for Kadir-Brady saliency detector. Note that the publicly available Kadir-Brady
algorithm does not detect points close to image edges.

corresponding image structure is actually found. The percentage of repeated
detections of the original algorithm is 85%.

To conclude, the WaldBoost emulator of the Hessian-Laplace detector is able
to detect points with similar repeatability and matching score while its speed
is comparable to speed of the original algorithm. This indicates that the pro-
posed approach is able to minimise the decision time down to a manually tuned
algorithm speed.

4.2 Fast Saliency Detector

The emulation of the Kadir-Brady saliency detector [3] was trained on the same
set of images as the WaldBoost Hessian-Laplace emulator. The saliency threshold
of the original detector was set to 2 to limit the positive examples only to those
with higher saliency. Note, that as opposed to the Hessian-Laplace emulation
where rather low threshold was chosen, it is meaningful to use only the top most
salient features from the Kadir-Brady detector. This is not true for Hessian-
Laplace detector since its response does not correspond to the importance of the
feature.

The Haar-like feature set was extended by the “energy” feature described in
§3. The training was run for T = 20 (training steps) with α = 0.2 and β = 0.

The same experiments as for the Hessian-Laplace detector have been per-
formed. The repeatability and the matching score of the Kadir-Brady detector
and its WaldBoost emulation on boat and east south sequences are shown in
Figure 6. The trained detector performs slightly better than the original one.
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Fig. 6. Comparison of Kadir-Brady detector and its WaldBoost emulation. Top row:
Repeatability on boat (a) and east south (c) sequences and corresponding number
of detections (b), (d). Bottom row: Matching score (e), (g) and corresponding number
of correct matches (f), (h) on the same sequences.

Table 1. Speed comparison on the first image (850×680) from the boat sequence

original WaldBoost
Hessian-Laplace 1.3s 1.3s

Kadir-Brady 1m 44s 1.4s

The main advantage of the emulated saliency detector is its speed. The clas-
sifier evaluates on average 3.7 features per examined position and scale. Table 1
shows that the emulated detector is 70× faster than the original detector.

Our early experiments showed that the Haar-like features are not suitable
to emulate the entropy-based saliency detector. With the energy features, the
training was able to converge to a reasonable classifier. In fact, the energy feature
is chosen for the first weak classifier in the WaldBoost ensemble (see Figure 4).

The outputs of the WaldBoost saliency detector and the original algorithm
are compared in Figure 5. The coverage of the original detections is 96%.

To conclude, the Kadir-Brady emulation gives slightly better repeatability
and matching score. But, most importantly, the decision times of the emulated
detector are about 70× lower than that of the original algorithm. That opens new
possibilities for using the Kadir-Brady detector in time sensitive applications.

5 Conclusions and Future Work

In this paper a general learning framework for speeding up existing binary-valued
decision algorithms by a sequential classifier learned by WaldBoost algorithm has
been proposed. Two interest point detectors, Hessian-Laplace and Kadir-Brady
saliency detector, have been used as black box algorithms and emulated by the
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WaldBoost algorithm. The experiments show similar repeatability and matching
scores of the original and emulated algorithms. The speed of the Hessian-Laplace
emulator is comparable to the original manually tuned algorithm, while the
Kadir-Brady detector was speeded up seventy times.

The proposed approach is general and can be applied to other algorithms
as well. For future research, an interesting extension of the proposed approach
would be to train an emulator with not only similar outputs to an existing
algorithm but also with some additional quality like higher repeatability or spe-
cialisation to a given task.
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