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Abstract In this paper we propose the first version of
FAIR, a low-dimensional image neighborhood descriptor
that shows performance comparable to SIFT introduced by
Lowe. The dimension of FAIR we tested is 30, compared
to the dimension of 128 in SIFT. Sensitivity of the FAIR de-
scriptor to skew, rotation, image blur and noise is similar
to SIFT. FAIR shows better localization in scale-space than
SIFT. Several extensions of FAIR that could improve its per-
formance are discussed.

1 Introduction

Local image representations are an important component
for establishing reliable and robust image correspondences
in wide-baseline matching, panoramic image stitching, im-
age retrieval and video mining, recognition, robot local-
ization and obstacle avoidance, range image registration,
etc. Basic types of complex neighborhood representations
include SIFT [5] and its variant PCA-SIFT [2], Spin Im-
ages [3], GLOH [7], Shape Context [1], MSER [6] and a
number of others. A comprehensive review and a compari-
son of state-of-the art point descriptors based on these rep-
resentations is given in [7].

This paper proposes an efficient descriptor that is affinely
quasi-invariant, shows good performance and has a rela-
tively low dimension (30). Around identity, its sensitivity
to affine image domain transformation and to image blur is
similar to that of SIFT but its sensitivity to noise is better
than in SIFT that was shown to be among the best descrip-
tors for textured scenes [7]. FAIR is sector-based but has
more sectors than SIFT which implies FAIR has the poten-
tial to improve the estimate of the neighborhood orientation
(rotation) during matching.

The next section describes the construction of FAIR,
Sec. 3 presents a thorough sensitivity testing and compar-
ison to SIFT and Sec. 4 concludes the paper by discussing
possible improvements.

α

w Fig. 1. The neighborhood representa-
tion of an interest point (black) con-
sists of a star-like configuration of
points over a set of concentric shells
(left). The neighborhood is formed
by a sector of fixed width w rotated
by angle α in fixed-size increments
giving a curvilinear descriptor.

2 The Elements of FAIR

The FAIR descriptor includes three components: (1) an
image point neighborhood representation, (2) an invariant
measurement and (3) a metafeature.

The neighborhood is somewhat similar to both spin im-
age [3] and SIFT [5] and is represented by an angular sector
of width w that is rotated around the central pixel in angu-
lar increments dα, see Fig. 1. In practice, the neighborhood
can be adapted by corrective affine mapping that is obtained
from affine adaptation [4].

The next component is the affinely invariant measure-
ment. Let x be a point in image domain and let ∇f(x)
be image gradient at that point. Under affine mapping A
the point transforms x 7→ Ax, so the gradient transforms
∇f(x) 7→ A−>∇f(x). As shown in the appendix, the
product

m1(x) = x>∇f(x) (1)

does not change under any non-singular affine mapping.
Hence, we propose the invariant measurement to be m1(x).
Invariance to brightness change b in f(·) 7→ af(·) + b is
given by the fact we use image gradient, invariance to con-
trast a in will be obtained through normalization described
below.

The last component of FAIR is a metafeature defined
over the elementary affinely invariant measurements. Let
the neighborhood sectors be indexed by their bisector angle
α. As in SIFT, one can collect a histogram of elementary
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Fig. 2. Typical FAIR descriptor at two image points. The
red line is µ(α), the dashed dark green line is σ(α) and the
points are the raw measurements m1(x) plotted as a func-
tion of α. The FAIR neigborhood has radius of 15 pixels
(red circle).

measurements over the sector to be that sector’s descriptor.
But since the sector is smaller than in SIFT, it does not con-
tain a sufficient number of independent measurements, we
therefore represent it by a collection of sample statistics: In
this paper we use the sample mean and variance. Hence, we
compute the mean µ(α) and the standard deviation σ(α) of
all elementary measurements m1(x) over all points x that
fall in the respective sector.1 We will call the pair of curves
(µ(α), σ(α)) a descriptor of an image point. Fig. 2 shows
descriptors of two different points in a real image.

To gain an insight into affine invariance of FAIR, sup-
pose for a moment that the neighborhood consisted from
only a single 360◦ sector and that we used a full histogram
of that sector. In addition, suppose the neighborhood was
infinite and the sampling was continuous (infinitely dense).
In such case the entire histogram would be affinely invari-
ant. The invariance has two sources. First, the individ-
ual measurements are affinely invariant and second, under
affine mapping, which is bijective, a point in the neighbor-
hood maps to another point in the neighborhood, i.e. no
point escapes nor enters the neighborhood and we collect
the same histogram. Once the sectors are smaller than 360◦,
some of the points can escape from their original sector and
enter another. In such case theoretical invariance is lost. But
the loss can be compensated during similarity computation.
This is done by relative rotation of the two descriptors by an
angle. Under such compensation we re-establish rotational
and scaling2 invariance. Invariance to skew could be re-

1Other statistics like the maximum and the minimum can be used but
they are more sensitive, especially to image blur.

2As long as the neighborhood remains infinite.

established by warping the signals (µ(α), σ(α)) onto each
other, see the end of Sec. 2 for further discussion.

The version of FAIR that uses measurement m1(x) given
by (1) will be called FAIR-1. The collection of image val-
ues m0(x) = f(x) can also be used to construct a FAIR de-
scriptor, the construction being exactly the same as FAIR-1.
We will call this version FAIR-0. The FAIR-0 has the same
sources of invariance as discussed in the previous para-
graph. As shown in Sec.3, FAIR-0 is inferior to FAIR-1.

The invariance of the measurement m1, m0, together
with the splitting of the neighborhood to large sectors are
responsible for small sensitivity of FAIR to affine trans-
formations of discrete image domain. The complexity of
descriptor curves is responsible for the discriminability3 of
FAIR.

Note that due to sectoring, rotational invariance of the
descriptor is lost, as in SIFT. One either has to use a align-
ment procedure as in [5] or design a similarity measure that
includes the alignment.

Given an image, the complete procedure for computing
FAIR features for matching proceeds as follows:

1. Select interest points xj , j = 1, 2, . . . m (IP) and their
natural scale by e.g. the DoG detector as in [5].

2. Find affinely-invariant neighborhood Sj for each IP as

in [4]. The affine correction S
1
2
j x is used to transform

the FAIR neighborhood shown in Fig. 1.

3. Determine the natural orientation of the neighbor-
hood, e.g. based on image gradient distribution, as in
SIFT [5].

4. For each IP xj at its natural scale and orientation:
Collect the mean value µ(αi) and standard deviation
σ(αi) from measurements m(xj) over each sector αi.
This gives vectors µ(xj) = [µ(αi)]

s
i=1 and σ(xj) =

[σ(αi)]
s
i=1 where s is the number of sectors. Record

the descriptor D(xi) which is a pair of normalized vec-
tors (a 2× s matrix)

D(xi) =
(

µ(xi)
‖µ(xi)‖

,
σ(xi)
‖σ(xi)‖

)
. (2)

To construct the FAIR descriptor, we use s = 30 sectors,
each 24◦ wide, i.e. the angular increment is dα = 12◦. The
overlap of the sectors acts as a filter on the descriptor and
helps improve invariance breaking due to measurements ex-
iting/entering a sector. The FAIR descriptor thus consists
of 60 scalar values. Note that SIFT is represented by 128
scalar values. The diameter in pixels of the FAIR neigh-
borhood is 15 pixels, which corresponds to 16 × 16 pixel
neighborhood used by SIFT.

3In newer literature discriminability is sometimes called ‘distinctive-
ness.’



The reason we normalize in (2) is two-fold: We not
only achieve invariance to image contrast but, as we have
observed, we significantly improve insensitivity to image
blur. This can be explained by the fact that the magni-
tude of image gradients decreases with blurring and that the
normalization compensates the loss. This observation also
strengthens the case for normalization in SIFT [5].
The feature distance between interest points x and y is de-
fined as

d(x, y) =
1√
2
‖D(x)−D(y)‖F (3)

where ‖ · ‖F is the Frobenius matrix norm. The distance
is a harmonic mean of the vector norms for the individ-
ual components of the descriptor and it falls in the inter-
val 0 ≤ d(x, y) ≤ 2. This is consistent with the distance
recommended for SIFT [5].

Note that affine transformation does not change the order
given by α. This means that under affine transformation the
FAIR curves µ(α), σ(α) warp by a monotonic function.4

Future work includes a dynamic programming based warp-
ing of FAIR curves that could result in descriptors that work
under non-rigid transformations as well.

3 Experiments
We compare both FAIR-1 and FAIR-0 to SIFT. Our goal is
to compare the performance of these descriptors itself, not
of the whole IP location, orientation normalization, similar-
ity computation and matching pipeline. We therefore use
DoG interest points at their natural scale but we neither de-
tect the affinely invariant image neighborhoods, nor normal-
ize the image neighborhood orientations nor warp the FAIR
descriptors, i.e. we omit Steps 2 and 3 in the above proce-
dure. The fixed-size image neighborhoods of IPs are thus
considered independent samples from the ‘world of all im-
ages.’ This way we are able to observe design parameters
of the descriptor itself.

In each test case there are two images: the original image
I and its synthesized version Ĩ altered by the corresponding
transformation. Interest points are located in I and mapped
by known affine mapping A to a sub-pixel location in the
other image.

Distance d(xi, x̃i) is evaluated for all IPs i =
1, 2, . . . , n, where xi is in the domain of I and x̃i = Axi is
in the domain of Ĩ . From all pairs (xi, x̃i) we construct an
n×n distance matrix C. In this matrix we count the number
t of cases when both the row and the column minimum falls
onto the diagonal. In a good descriptor, all n cases falls on
the diagonal and t = n. In a descriptor that has poor perfor-
mance, some of the cases fall off the diagonal. We therefore
measure an ‘overall performance ratio’

r =
t

n
(4)

4The function is in fact even more constrained under affine mapping.

(a) textured (b) structured

Fig. 3. Test data: textured (a) and structured images (b) [7].

of the descriptor as the ability to recognize correspondences
by nearest-neighbor search. A good descriptor has r = 1.
This ratio is influenced by both discriminability of the de-
scriptor and insensitivity to degradation factors.

To capture finer differences and decouple invariance
from discriminability, we proceed as follows. From the n
values on the diagonal of C we compute the mean eD and
standard deviation sD. Then we set all diagonal elements of
C to infinity. A set of all extremal pairs E = {(i, j)} such
that C(i, j) has the lowest value over the corresponding row
i and column j is collected. Finally, we compute the mean
eE and standard deviation sE over E.

The eE estimates the distance to the nearest neighbor in
feature space containing all possible measurements. This
space has spherical topology due to normalization of the
descriptors to unit vectors. A descriptor has a good dis-
criminability if the eE is large. The sE estimates the uni-
formity of the density of all measurements in the feature
space. Hence, a good-discriminability descriptor also has
good sE .

A descriptor has good invariance5 if eD and eE are wide
apart, significantly wider than their standard deviations sD,
sE . The standard deviation sD is small when the affine
mapping does not redistribute the points in feature space
non-uniformly. Hence, sD should be small in a descriptor
of good invariance.

Note that at the point when eE = sE the expected per-
formance r is about 50%. This is corroborated by the plots
shown in this section.

Data used in the following experiment are shown in
Fig. 3. Following the methodology of [7], we selected the
two images to cover the character of typical scenes. The
images are converted to gray-scale and normalized to the
interval [0, 1]. We have used n = 1500 IPs per image.

Performance is evaluated on each image independently
and the results are averaged over the two images. The tested
descriptor does not know the actual affine mapping, blur or
noise level.

We study four variants of image descriptors: FAIR-0 and
FAIR-1 as defined above, SIFT, which is the standard SIFT

5We use the term ‘invariance’ loosely, as a shortcut for ‘low sensitivity.’



feature with the rotational normalization of the neighbor-
hood switched off and SIFT-O in which we left the rota-
tional normalization on, as in the standard implementation
of SIFT.

The result of each experiment is shown in five plots (see,
e.g. Fig 4): The top wide plot shows the overall perfor-
mance ratio r as a function of a degradation factor under
study, the bottom four small plots are discriminability eE

(red curve) and sensitivity to the distortion eD (blue curve),
together with their respective standard deviations sE and sD

(dashed). The ranges of eE , eR are [0, 2] for both FAIR and
SIFT, see (3), and the values are comparable since essen-
tially the same norm is used in both SIFT and FAIR. The red
curve is higher if the descriptor has greater discriminability.
The blue curve is higher for any given factor’s strength if
the descriptor has greater sensitivity under the factor. Note,
however that it is not possible to directly compare discrim-
inabilities and sensitivities of two descriptors of different
dimension. Hence, comparison of discriminability eE and
invariance eD is not possible between SIFT and FAIR in this
experiment. We can only compare FAIR-0 with FAIR-1 and
SIFT with SIFT-O.

In all plots in Fig 4–6 we see that the discriminability of
FAIR-1 is better than that of FAIR-0 (the red curve is higher
in FAIR-1) and that discriminability of SIFT-O is slightly
worse that in SIFT. Discriminability results are (and should
be) almost unaffected by the type of degradation.

Fig. 4 compares the influence on the performance of ro-
tation A = R(φ) and small shift of the interest point. Fig. 5
show results under scale change A = sE and under Gaus-
sian image blur of standard deviation σ. Except for the ro-
tation, the remaining three tests are related to localization in
scale-space. In the top-right plot of Fig. 4 and the top-left
plot in Fig. 5 we see FAIR localizes with greater precision
than SIFT.

The plots in Fig. 6 compare the influence of skew in the
form

A =
[
1 q
0 1

]
and Gaussian noise with standard deviation σ. The noise is
applied to the input image. In skew, we again see similar
performance of FAIR-1 and SIFT.

In noise, FAIR-1 shows performance comparable to
SIFT. Although FAIR-0 and FAIR-1 have similar sensitiv-
ity to noise (blue curves in Fig. 6) the overall performance
of FAIR-1 is better compared to FAIR-0 because of the bet-
ter discriminability (red curve). Overall, FAIR-1 is signifi-
cantly less sensitive to noise than FAIR-0. Greater sensitiv-
ity of SIFT-O to noise is due to the loss of discriminability
by rotational normalization. Since image values are scaled
to the interval of [0, 1], the maximum noise corresponds to
SNR=20dB.
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Fig. 4. Performance under rotation (left) and shift (right).

4 Conclusions and Future Work

In this paper we have proposed a local image neighborhood
descriptor suitable for matching under affine distortion. The
goal was not to achieve total affine invariance of the de-
scriptor itself but rather reasonable insensitivity to residual
affine transformation after affine adaptation process. Affine
aggregation region is a necessary component of any finite
affine descriptor since when comparing two such descrip-
tors one must be able to compare the same image measure-
ments. Therefore good behavior means that the descrip-
tor degrades slowly for affine mappings near identity. The
goal of such slow degradation has been reached as has been
demonstrated by the experiments. For a good recognition
performance, discriminability is a more critical parameter.
A suitable method for direct comparison of discriminabili-
ties between descriptors of different dimensions remains an
open problem.

FAIR has significantly smaller dimension (30) than SIFT
(128). Small representation allows us to use more elaborate
matching method, as has been hinted in Sec. 2.

Localization of FAIR in scale space is about twice better
than in SIFT which allows for greater accuracy when used
for structure from motion problems.

From the computational complexity point of view, the
most expensive part of FAIR is image interpolation needed
to collect raw measurements m0 or m1. The interpolation
should be at least linear. This is similar to SIFT. The means
and standard deviations needed to construct the descriptor
are not expensive, one could consider replacing the stan-
dard deviation of m1 with the mean of m0 for speeding the
preprocessing up.
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Fig. 5. Performance under scale (left) and blur (right).

In our future work we will try maximizing the perfor-
mance of FAIR by trying alternative neighborhood sam-
pling schemes, by varying the shape of the neighborhood
and its other parameters like sampling rate, sector width,
and the angular step. We will find the optimal dimension of
the feature, the dimension used here was chosen arbitrarily.
The dynamic programming warping method should be very
fast and is also a topic for further work. We also plan exper-
imenting with the use of additional statistics describing the
individual segment histograms.
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A Invariance of m1

Let f(x) be the original image and g(Ax) be the image
with its domain affinely distorted so that

g(Ax) = f(x). (5)

We show the measurement m1 defined by (1) is invariant
to A, i.e. it holds y>∇y g(y) = x>∇xf(x) if y = Ax
is the domain transformation, where we have abbreviated
∇x = ( ∂

∂x1
, ∂

∂x2
). Applying the gradient operator to both

sides of (5) we have

∇x g(Ax) = ∇xf(x). (6)
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Fig. 6. Performance under skew (left) and noise (right).

By the chain rule on the left side of (6), we get ∇x g(y) =
A>∇yg(y) which transforms (6) to

∇y g(y) = A−>∇xf(x). (7)

We can then write y>∇y g(y) = x>A>A−>∇xf(x) =
x>∇xf(x), QED.
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