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Abstract— Annotated datasets are essential for supervised
learning. However, annotating large datasets is a tedious and
time-intensive task. This paper addresses active learning in the
context of semantic segmentation with the goal of reducing the
human labeling effort. Our application is agricultural robotics
and we focus on the task of distinguishing between crop and weed
plants from image data. A key challenge in this application is the
transfer of an existing semantic segmentation CNN to a new field,
in which growth stage, weeds, soil, and weather conditions differ.
We propose a novel approach that, given a trained model on one
field together with rough foreground segmentation, refines the
network on a substantially different field providing an effective
method of selecting samples to annotate for supporting the
transfer. We evaluated our approach on two challenging datasets
from the agricultural robotics domain and show that we achieve
a higher accuracy with a smaller number of samples compared
to random sampling as well as entropy based sampling, which
consequently reduces the required human labeling effort.

I. INTRODUCTION

The ability to interpret the scene in front of a robot is key
for intelligent behavior in several applications. For example,
precision farming robots need to know which type of plant
they perceive or autonomous cars need to know which object
in their surroundings is a car, a pedestrian, or a cyclist. These
classification or semantic segmentation tasks are typically
tackled using convolutional neural networks (CNNs) operating
on image data. In order to perform well, neural networks
need to be trained with appropriately annotated datasets.

The performance of most supervised learning approaches
and especially deep learning systems is related to the
quality and quantity of training data. Annotated training data,
however, has a high cost as often a larger number of labeled
training data is required. In this work, we focus on optimizing
the training set generation for semantic segmentation of image
data obtained from a mobile robot. Semantic segmentation
refers to the task of computing a pixel-wise labeling of the
images. More concretely, we address the agricultural robotics
application in which robots should perform automated weed
control. For the semantic segmentation, this means that we
need to compute the semantic label “crop”, “weed”, or
“misc” for each pixel in the image. This task is particularly
challenging as the field conditions often change substantially
between years, regions, weather, and soil conditions as can
be seen in Figure 1.

One solution to adapt and refine existing semantic segmen-
tation systems to new field conditions is through additional
labeled data from the new field. As these new annotations
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Fig. 1. Sample images from the Bonn, Stuttgart, and Zurich sugar beet
datasets in the first, second, and third column, respectively. The first row
shows the RGB images and the second row shows their annotations (green
denotes crop while red denotes weed). As can be seen, the appearance differs
substantially.

need to be executed at the end-users site, one is interested in
keeping this effort as low as possible. Given annotated data
on one agricultural field and a CNN that was trained on it,
we address the problem of transferring this knowledge to new
fields with minimum effort. Datasets from different fields
reveal different crop and weed statistics. They often differ
by soil type, weather condition, or various small objects that
can be found on the ground, such as stones, dried vegetation,
or marks from agricultural machines, i.e., patterns that are
neither crop nor weed. Additionally, the robot can acquire
images of plants at a certain growth stage in one field, while
the growth state on the target field is different. Lastly, artifacts
such as contrast changes can be found in the camera images
captured from the various locations. As illustrated by Lottes
et al. [19], [20], these conditions make it difficult to simply
reuse a previously trained network from one field and infer
the labels on another.

The contribution of this work is to introduce and compare
three active learning strategies that intelligently pick images
taken under new conditions to re-train an existing network:
The first one picks samples based on a log-space ranking
of their loss with respect to pseudo labels. The second and
third approaches select training samples that are expected
to have a maximum effect on the network weights. Even
though similar ideas have been explored for active learning in
other application contexts, it is non trivial to apply them for
semantic segmentation. An important technical novelty in our
work is to exploit a pseudo ground truth, which we obtain
with very weakly supervised segmentation. Our approach
selects samples in batches, each time refining the network,
then computing a new ranking of the unlabeled data. The
best samples are then selected and the network is re-trained.
To compute the real gradients, corresponding ground truth



data is needed. Thus, in our approach, we approximate the
ground truth as the result of unsupervised segmentation to
estimate the gradient. We evaluated our framework using
three distinctive sugar beet datasets [5] that have different
characteristics. Our results indicate that our method produces
a higher accuracy on the datasets with a fewer number of
samples compared to random sampling for annotation as well
as entropy based sampling.

II. RELATED WORK

Several works focusing on the elimination or reduction
of herbicide use, through the incorporation of autonomous
ground robots in crop fields, have been introduced to the
community in the last years [7], [16], [21]. A key component
of each of these unmanned platforms is a core perception
system that has the ability to accurately distinguish crops from
weeds in order to effectively and selectively apply the desired
individual treatment [18], [22], [23], [24], [27]. These systems
allow autonomous robots to perform actuation in the fields
without human supervision, treating each plant individually.
All of the works referenced, however, are based on supervised
learning approaches which take large amounts of pixel-
accurate hand-labeled images for training. Accordingly, one
of the main bottlenecks of these visual processing pipelines
is the amount of expensive labeled training data required to
deploy them in real agricultural fields, which often limits their
applicability. In order to tackle this data starvation problem,
we propose an active learning based solution.

Numerous works on general active learning have been
presented in the community [30], [11], [12], [36]. The
most common measures for selecting samples are based
on the uncertainty of the network [38], [35], [10], [33]
and diversity [38], [8], [14]. Sener et al. [29] assert based
on the experiments they performed that uncertainty based
approaches are not effective for active learning with CNNs.
They hypothesize that this is not due to the inaccurate estimate
of uncertainty by the network, rather to the ineffectiveness
of uncertainty based approaches to cover the space of image
features. The Expected Model Output Change Principle
(EMOC) developed by Freytag et al. [9] tries to avoid
selecting samples that are redundant and Käding et al. [14]
follow this approach with deep neural networks. This principle
measures how a model would perform with and without
the candidate sample. Given that the labels are unknown, a
marginalization over the possible labels is needed. Uncertainty
estimation for active learning can be performed using Monte-
Carlo dropout as in [10] or with an ensemble of deep networks.
Beluch et al. [3] compare both of these approaches on
different datasets. They found that an ensemble of deep
classifiers has a superior performance even with a smaller
number of models. They conclude that Monte-Carlo dropout
approaches suffer from a lower diversity and a smaller model
capacity.

Weakly supervised segmentation is an active research
topic [34], [1], [32], [15]. In the context of self-learning,
Zhang et al. [37] use labels obtained with K-means graph cuts
as ground truth for their network. The predictions produced
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Fig. 2. Overview of our approach. The key idea is that we first perform a
very weakly supervised segmentation to obtain pseudo ground truth. Given
the labels and different ranking measures obtained from the network, we
rank the unlabeled samples and pick them accordingly for annotation. Those
samples are then used to refine the entire network.

by the model are then used as the target labels for the next
iteration of the process.

The works mentioned previously and the current state-
of-the-art methods for active learning including [10], [3],
[28], [36] are either more suitable for tasks other than pixel-
wise semantic segmentation of images with CNNs and/or
are memory and computationally expensive. Differently,
we experiment with approaches that directly measure how
annotated samples can affect the gradients. We use labels
obtained with very weak supervision as pseudo ground truth
and compute the gradients w.r.t the weights. We then refine a
pre-trained network with the newly annotated samples in an
iterative manner. Our intuition for using gradients is driven
by the observation that the greater the mismatch is between
the predicted segmentation and the ground truth, the larger
the change is to the weights. This is in contrast to most of
the approaches mentioned earlier that rely on the confidence
of the network which may not be the best indication of the
best samples to choose for annotation, as the network output
might actually be correct although the network is uncertain
about it.

Previous work, such as the Expected Gradient Length
(EGL) [13], [31], has explored how changes in model
parameters can be exploited for sample selection. However,
it computes the expectation of the gradient norm over all
possible annotations, which would be prohibitively expensive
for pixel-wise semantic segmentation of images. We instead
compute gradients from rough foreground/background seg-
mentation. Du et al. [6] use gradient similarity to determine
when an auxiliary task is helpful for transfer learning to the
main task and when it can be hurtful. Although in our work,
the weakly supervised setting can be seen as an auxiliary task,
we only use the gradients computed there as a guidance to
choose samples for annotations. These gradients are not used
to measure similarity with those of the main task nor are the
parameters of the main task updated with those gradients.

III. OUR APPROACH TO EFFECTIVE SAMPLE SELECTION

Figure 2 shows an overview of our framework. The key
idea of our approach is to perform a very weakly supervised



Fig. 3. Very weakly supervised segmentation used as pseudo ground
truth by our approach. Left: Input image. Middle: Ground truth semantic
segmentation; Right: Foreground segmentation of vegetation provided by
k-means clustering. Note that only such a rough segmentation as pseudo
ground truth is enough for our approach.

segmentation to obtain pseudo ground truth. Given the labels
and different measures produced by the network, we rank the
unlabeled samples and pick them accordingly for annotation.
These are then used to refine the entire network.

Our CNN for semantic segmentation relies on Bonnet [25].
The used network is based on SegNet [2] and ENet [26]. It
has an encoder-decoder structure with a total of 25 [5x5]
convolutional layers. It uses batch normalization, residual
connections, ReLU as the non-linearity layer, and the focal
loss function [17]. As input to our network, we only use the
standard RGB channels of a camera.

In order to perform the semantic segmentation in sugar
beet field for agricultural robotics tasks, we train our model
on the Bonn sugar beet dataset [5]. We then refine the trained
model on other datasets by incrementally selecting batches
of samples. The datasets differ in their crop/weed statistics
and the images acquired with the cameras also differ in their
illumination. Therefore, simply running the trained model to
segment the vegetation in other fields does not work.

We compare three different approaches to sample selection
for active learning. Our main technical contribution is the
generation of a pseudo ground truth (Sec. III-B) and its use
for loss-based (Sec. III-C), as well as two gradient-based
approaches for sample selection (Sec. III-D and Sec. III-E).

A. Setup

We evaluate our different approaches by first training a
network on the Bonn sugar beet dataset then refining it on the
Stuttgart and Zurich datasets separately. To refine the network
we pick unlabeled samples in batches of 10 using one of
the methods described in this section. Once the samples are
annotated, they are given to the network. We repeat this
process iteratively, each time refining the network on all of
the newly annotated samples.

B. Generation and Use of Pseudo Ground Truth

Our three main methods make use of “pseudo ground
truth” foreground-background segmentation masks, which we
obtain by clustering the values of the RGB channels. An
example is shown in Figure 3. We run k-means to determine
20 cluster representatives from 10 randomly selected images.
After viewing a single image that contains all 20 clusters, a
human annotator chooses which clusters represent vegetation.
In our experiments, it was enough to select two clusters.
Therefore, the human annotation effort that is required to
obtain the pseudo ground truth amounts to a few seconds for

a complete new dataset. In accordance with previously used
terminology [37], we refer to this as very weak supervision.
Figure 3 shows an image, its ground truth and the foreground
segmentation (pseudo ground truth) provided by clustering. It
is an important finding from our experiments that a rough and
easy to compute segmentation is sufficient for the purpose
of selecting images for annotation. This makes our proposed
gradient-based approach feasible in practice.

In order to compute a loss from the network output, which
includes three classes, and the pseudo ground truth, which
merely includes two, one might combine crop and weed into
a single foreground class, or treat the foreground class as a
specific type of vegetation (i.e., crop or weed). We tried all
three options and found that treating the foreground from the
pseudo ground truth as crop empirically produced the best
result. We emphasize that the pseudo ground truth is only
used to select training samples that should be annotated; the
network weights are updated based on manual annotations
of the selected samples, which include all three classes.

In our agricultural application, the number of true classes
(3) is not much higher than the number of classes (2) in
our pseudo-ground truth. Naturally, in a different semantic
segmentation task, the number of classes could be higher and
might require generating a pseudo-ground truth with a larger
number of classes. Our method here uses a simple clustering
mechanism but other unsupervised or weakly supervised
methods can also be used to generate pseudo-labels with
a higher number of classes that can be later used to compute
the gradients for sample selection.

C. Sample Selection Using Loss

The loss of the network is an indication of the segmentation
error. Given that training neural networks with backpropaga-
tion is driven by the loss, it also provides a useful cue as
to which samples the network will most benefit from. We
compute the focal loss [17] based on the pseudo ground truth.

We found that training only on the images with the highest
loss values did not generalize well. This could indicate that
they are not representative enough of the overall dataset.
Therefore, we instead employ a scheme that samples images
with a diverse range of loss values, but prefers those with
higher losses. To this end, we sort the images by their loss
in a descending order, and then select them uniformly on a
logarithmic scale. Specifically, we compute index i of the
n-th sample as:

i = b|P |n/(|S|−1)c − 1, n ∈ {0, 1, . . . , |S| − 1} (1)

where |S| is the number of samples to be selected and |P |
is the size of the images pool. Since the samples are sorted,
this approach would more heavily select those that have
higher loss values while not completely discarding images
that the network is performing well on.

D. Sample Selection Using Norm of Gradients

For this approach and the following one, we pick those
samples for annotation that might have the largest impact on
the network weights. The norm of the network gradients is a



measure that is indicative of which samples will affect the
weights more than others. Although the loss and norm of
gradients are correlated, there are instances where the loss
could be high for certain samples, yet the gradient is locally
small. This depends on the loss function and the state of the
current network parameters.

As in the previous approach, we use labels from very
weakly supervised segmentation as pseudo ground truth. We
run the network on the training images for one epoch (to
maintain computational efficiency) and compute the gradients.
Again we note that this step is only used to compute the
gradients but the network weights remain unchanged. Once
we have the gradients, we compute the L2 norm of those in
the last two layers of the network (the classifier layer and
the one immediately before it):

ng(x) =
∥∥∇wf

L(x)
∥∥ , (2)

where x is the image and w are the weights of the final two
layers. The images are sorted based on this measure in a
descending order and again we pick samples on a log-space
scale afterwards as explained earlier.

E. Sample Selection Using Gradient Projection

The log-space in the previous approaches was used to
ensure there is enough diversity among the samples so that
the network does not overfit on them and can generalize to
unseen data. Here we use a different method that relies on
the space spanned by the gradients where we project onto
the orthogonal complement of the gradients of the selected
samples. For every picked sample, we project the gradients of
all remaining samples onto the selected sample gradient. We
then subtract the projected gradient from the original gradients.
The residual we are left with indicates which samples have
the strongest remaining effect on the weights after accounting
for the already selected samples. This can be formulated as:

np(x) =

∥∥∥∥∥gx −
S∑

i=1

〈gi,gx〉
〈gi,gi〉

gi

∥∥∥∥∥ , (3)

where x is the image, gi is the gradient of the ith sample
out of S previously selected samples, and gx is the gradient
of the current sample. We select samples one by one, each
time sorting them according to this measure and choosing
the one with the highest norm of the residual. To pick the
first sample, we choose that with the highest norm of the
gradient.

IV. EXPERIMENTAL EVALUATION

In this section, we demonstrate the effectiveness of the
approaches we designed for active learning and evaluate the
performance of the different sample selection methods on
different datasets, and compare them to random and entropy
based approaches.

TABLE I

DATASETS STATISTICS OF CROP AND WEED PLANTS

Bonn Stuttgart Zurich

Images 8230 2584 2577

Crop pixels 2.0% 1.5% 0.4%

Weed pixels 0.3% 0.7% 0.1%

TABLE II

IOU WITHOUT ANY REFINEMENT (LOWER BOUND) AND IOU WHEN
TRAINING ON THE WHOLE DATASET (UPPER BOUND).

No Refinement Fully supervised

Stuttgart 0.3429 0.7989

Zurich 0.3595 0.7024

A. Datasets

The datasets we used were acquired with a Bosch Deepfield
Robotics UGV. The robot was developed to assist in several
agricultural applications, including mechanical weed control
and selective herbicide spraying [5]. It is equipped with
multiple sensors such as cameras, GPS trackers, and 3D laser
sensors. For our experiments we use the RGB data provided
by the JAI AD-130GE camera.

The data was captured in three different fields: Bonn and
Stuttgart in Germany, and Zurich in Switzerland. The datasets
have weed and crop plants at different stages of growth.
Figure 1 shows sample images from the different datasets. The
images vary in their illumination, soil type, and class statistics,
hence the need for transfer learning. The images have been
annotated into three classes: weed, crop, and soil/misc. Table I
shows the number of images in each dataset and the ratio of
foreground pixels. It can be clearly seen that there is a high
imbalance of classes in the data. We follow the approach of
[24] and split the new dataset into three sets: 40% for training,
10% for validation, and 50% for testing. The samples are
picked from the training set. All experiments were conducted
on four Nvidia Titan X GPUs.

B. Re-Training Performance

The experiments in this section are designed to show
how the proposed sample selection strategies impact the
performance of the network in the new environment. For
quantifying the performance, we use the mean Intersection
over Union (mIoU) as the performance measure. To provide
the lower and upper bounds for the methods, we list in Table II
the mIoU for each dataset when running the model without
any refinement as well as when training on all of the samples.

Figures 4 and 5 show the performance on the Stuttgart and
Zurich datasets when selecting samples for annotation with
different methods. As baselines we include random sampling,
and selecting samples that have the highest entropy ([4], [38]):

H(x) = − 1

N

N∑
i=1

∑
c

p(c | xi) log p(c | xi), (4)

where xi is pixel i in image x, c is the class and N is the
number of pixels in the image.
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Fig. 4. Pixel-wise mean IoU on the Stuttgart dataset. Running the model
without any new annotations yields an IoU of 0.34. Running the model on
the whole dataset yields an IoU of 0.79. Gradient-based approaches can
reach 90% of the fully supervised performance with 10 samples.
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Fig. 5. Pixel-wise mean IoU on the Zurich dataset. Running the model
without any new annotations yields an IoU of 0.36. Running the model on
the whole dataset yields an IoU of 0.70. Gradient-based approaches can
reach 77% of the fully supervised performance with 10 samples.

A few observations can be made from the figures: the
effect of the sampling method is stronger when only a few
images are selected. As the model is trained on more and
more samples, the accuracy plateaus as expected and the
variation between the different methods decreases. It can be
noted however that random sampling has a lower performance
even with a greater number of images.

The overall performance on the Stuttgart dataset is better
than that on the Zurich dataset. This can be attributed to the
different class statistics of the two datasets. As can be seen in
Table I, the Stuttgart dataset has a larger percentage of crop
and weed pixels compared to the Zurich dataset. This allows
the model to better distinguish between the different classes.
This observation is also supported by the fully supervised
performance shown in Table II where a higher IoU can be
obtained on the Stuttgart dataset.

When training the model with only a handful of images, 10
or 20 images, the methods that take into account the impact
of the samples on the weights lead to better generalization
to the rest of the unseen data. In particular, ranking samples
by projecting out gradients results in higher mIoU on both
datasets. With 10 samples, which would amount to roughly
1% of the training dataset size, we can achieve 90% of
the fully supervised performance (Table II) on the Stuttgart
dataset, compared to 76% with random selection. On the
Zurich dataset, we can achieve 77% of the fully supervised
performance compared to 63% with random selection.

TABLE III

OBJECT-WISE PERFORMANCE ON THE STUTTGART AND ZURICH
DATASETS RESPECTIVELY. EACH ROW SHOWS THE PERFORMANCE AFTER
SELECTING 10 SAMPLES WITH THE DIFFERENT METHODS AND REFINING
THE NETWORK. RUNNING THE MODEL WITHOUT ANY NEW ANNOTATIONS

YIELDS AN ACCURACY OF 0.15 ON STUTTGART AND 0.33 ON ZURICH.

Samples
No. Random Entropy Loss Gradient

Norm
Gradient

Proj.

10 0.6920 0.6890 0.7882 0.8040 0.8196

20 0.7402 0.8050 0.7769 0.8350 0.8404

30 0.8138 0.8300 0.7950 0.8461 0.8470

40 0.8254 0.8463 0.8555 0.8682 0.8252

50 0.8225 0.8405 0.8523 0.8599 0.8278

Samples
No. Random Entropy Loss Gradient

Norm
Gradient

Proj.

10 0.7552 0.7879 0.7697 0.8354 0.8025

20 0.7971 0.8212 0.8189 0.8768 0.8170

30 0.8591 0.7884 0.8321 0.8553 0.8299

40 0.8575 0.8711 0.8610 0.8711 0.8479

50 0.8593 0.8688 0.8636 0.8852 0.8784

To further quantify the performance of our approach, we use
the object-wise metric defined by Milioto et al. [24], where
the accuracy is measured for objects larger than 50 pixels.
Since the target application is weeding with agricultural
robotics, this metric is more directly useful than pixel-wise
performance. Table III shows how our approach performs on
the Stuttgart and Zurich datasets. Each row shows the mean
accuracy when selecting n samples with different methods.
For comparison, random and entropy based sampling are
shown in the first and second columns respectively.

C. Comparison to Other Baselines

To gain more insight into what our baselines are, we ran
additional experiments with the results shown in Table IV.

In the first row, we ran an experiment where we trained the
model with the pseudo ground truth first and picked samples
randomly afterwards. We found that it performs slightly better
than when picking random samples directly (0.64 vs. 0.61)
but still worse than our log and gradient based methods (e.g.
0.64 vs. 0.71 for the gradient-norm approach). Although pre-
training with the pseudo ground truth allows the network
to distinguish foreground vegetation from background, the
task at hand is to learn three classes and more importantly
distinguish crop from weed. Therefore for all experiments,
we refine the model without pre-training on the foreground
masks.

In the second row, we run an ”oracle” experiment. We
compute the difference between the parameters of the model
without any refinement and the parameters of the fully
supervised model. We then find samples with gradients that
align with the parameters difference. This experiment is not
intended for sample selection, rather to know if the framework
had complete knowledge of how the gradients should look



TABLE IV

ADDITIONAL BASELINES FOR TRAINING WITH 10 SAMPLES ON THE
STUTTGART DATASET. COMPARE WITH FIG. 4.

Method mIoU

Random-pseudo ground truth 0.6448

Align with parameters difference (oracle) 0.7010
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Fig. 6. t-SNE of the images gradients on the Stuttgart dataset. Each point
represents the 2-D embedding of the gradient vector. The first 10 samples
selected by each method are shown in different colors.

like, would it be able to pick better samples. We found
that the oracle performance is similar to our gradient-based
approaches after seeing 10 new samples. This implies that the
gradient-based approaches are bounded by this performance.
Substantially improving upon their performance might require
exploiting additional knowledge from the model, possibly
with the aid of unsupervised segmentation.

D. Inspecting t-SNE of Samples Gradients

To further analyze the ranking methods and inspect
potential patterns in the different sampling approaches, we
plot the t-distributed Stochastic Neighbor Embedding (t-SNE)
of the gradients in Figure 6. Each circle denotes the 2-D
embedding of the gradient of a single image before picking the
first 10 samples. Samples selected by each method are shown
in different colors. As explained in Section III-D and III-E,
we combined the idea of gradient-based selection with two
alternative approaches to achieving diversity in the selected
images: picking on a log scale, or projecting out gradients
that have been selected previously. In our experiments, both
strategies performed well (see Fig. 4 and Fig. 5). When
inspecting the gradients of the samples selected, we found
that the strongest gradients cluster together, near the top left.
Additionally, the gradient projection method selects many
points at the boundary of the distribution, suggesting that it
might be improved further by adding a mechanism to ensure
that selected images are representative of a larger subset in
the overall dataset.

E. Performance on Weed and Crop Classes

A more detailed breakdown of the methods performance
is shown in Table V. The first table shows the pixel-wise
precision and recall on the Stuttgart dataset after selecting the
first 10 samples. Both methods, Gradient Norm and Gradient

TABLE V

PRECISION AND RECALL ON THE STUTTGART DATASET AFTER
SELECTING THE FIRST 10 SAMPLES. THE FIRST TABLE SHOWS THE
PIXEL-WISE PERFORMANCE AND THE SECOND TABLE SHOWS THE

OBJECT-WISE PERFORMANCE. THE HIGHEST VALUES ALONG A COLUMN
ARE IN BOLD AND THE LOWEST IN ITALICS.

Precision Recall

Weed Crop Weed Crop

Random 0.4095 0.7278 0.4851 0.6946

Entropy 0.4158 0.7334 0.4786 0.5894

Loss Log 0.5331 0.8025 0.6179 0.8112

Gradient Norm 0.5970 0.8259 0.6136 0.8402

Gradient Projection 0.5745 0.8365 0.6564 0.8212

Precision Recall

Weed Crop Weed Crop

Random 0.8723 0.5740 0.6587 0.6474

Entropy 0.8851 0.5238 0.6122 0.7399

Loss Log 0.9005 0.6898 0.7811 0.7351

Gradient Norm 0.9090 0.7390 0.7970 0.7536

Gradient Projection 0.9030 0.7308 0.8289 0.7375

Projection have a high recall and precision of the crop
class without degrading those of the weed class. The object-
wise performance in the second table further illustrates the
effectiveness of these methods. Gradient Norm and Gradient
Projection produce high precision and recall for both classes.
We observed the same behavior on the Zurich dataset (not
included here).

V. CONCLUSION

In this paper, we introduced and compared several active
learning approaches that support the adaptation of semantic
segmentation networks to new environments. Our approaches
effectively select samples from the new environment for user
annotation with the goal of maximizing the benefit from a
small number of annotated examples. We applied sample
selection strategies to the task of crop/weed classification for
agricultural robots, as the appearance between agricultural
fields often changes substantially such that re-training is
needed. We compute pseudo ground truth labels using very
weakly supervised segmentation and use those labels to
estimate how new, unlabeled samples will affect the weights
of the CNN if selected for training. We select the training
samples for user annotation based on the estimated effect on
the weights and use them to refine the network.

We evaluated the performance gain of our gradient-based
and log-based approaches on two agricultural datasets for
weed detection. The datasets reveal different characteristics
from the dataset on which the network was pretrained.
Our results show the effectiveness of our method as it
produces higher semantic segmentation accuracies with a
small number of training samples, compared to random
sampling as well as entropy based sampling. As a result
of that, the effort in human annotation is reduced without
compromising performance.
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