
Fast Image-Based Geometric Change Detection Given a 3D Model

Emanuele Palazzolo Cyrill Stachniss

Abstract— 3D models of the environment are used in numer-
ous robotic applications and should reflect the current state of
the world. In this paper, we address the problem of quickly
finding structural changes between the current state of the
world and a given 3D model using a small number of images.
Our approach finds inconsistencies between pairs of images by
re-projecting an image onto another one by passing through the
given 3D model. This process leads to ambiguities, which we
resolve by combining multiple images such that the 3D location
of the change can be estimated. A focus of our approach is
that it can be executed fast enough to allow the operation on
a mobile system. We implemented our approach in C++ and
released it as open source software. We tested it on existing
datasets as well as on self-recorded image sequences and 3D
models, which we publicly share. Our experiments show that
our method quickly finds changes in the geometry of a scene.

I. INTRODUCTION

Building 3D models of the environment is a frequently

addressed problem in robotics as they are needed for a wide

range of applications. For most applications that include

autonomous behavior, such models should correspond as

well as possible to the current state of the environment. In

case the environment changed substantially, existing models

must be updated. For this purpose, the possibility of directing

a mapping or exploring robot directly towards the possible

regions that have changed instead of repeating the whole

mapping process is advantageous. Therefore, it is important

to reliably identify locations in a 3D model that have

changed.

In this paper, we address the problem of finding changes

between a previously built 3D model and its current state

based on a small sequence of images (keyframes) recorded

in the environment, see Fig. 1 for an illustration. Two aspects

are important here: first, we want to reliably locate changes

in the model and second, the approach should have a limited

computational demand so that it can be executed on a mobile

platform, allowing an exploring or mapping robot to plan its

next action according to the location of change. Our approach

seeks to find changes between the current state of the world

and a previously recorded 3D model of the scene. For finding

inconsistencies, we do not build a new 3D model from the

newly obtained image data and compare the result to the

existing one. Instead, we back-project the currently obtained

image onto the 3D model and then project it to a view-

point at which another image of the current sequence has

been taken. Through a comparison between the re-projected

images and the one observed in reality, we can identify

All authors are with the University of Bonn, Institute of Geodesy and
Geoinformation, Bonn, Germany.

This work has partly been supported by the DFG under the grant number
FOR 1505: Mapping on Demand.

(a) 3D model (b) Current image

Change

(c) Result

Fig. 1: Our approach aims at quickly finding changes in the
environment based on an existing 3D model and a sequence of
(currently recorded) images.

possible regions of change. To eliminate ambiguities, this

process is executed for multiple image pairs. Typically, 4-

5 keyframe images are sufficient to find areas of change

and then estimate the 3D location where the geometry has

changed. Compared to existing approaches for visual change

detection such as the work by Taneja et al. [20] or Ulusoy et

al. [22], our method is substantially faster towards execution

on a mobile robot. Note that our approach only compares

images from the current sequence with each other, i.e., no

current image needs to be compared to an old one. This

makes our approach robust to seasonal changes, weather

conditions, or any changes that are usually present when

taking image sequences at two distinct points in time.

The main contribution of this paper is a new and fast

approach for identifying differences between an existing 3D

model and a small sequence of images recorded in the

environment. Our approach identifies the approximate area

of change fast enough to be executed on a navigating robot,

which sets it apart from several related other techniques.

We identify inconsistencies by comparing the acquired im-

ages to re-projected images that would have been obtained

assuming the 3D model is correct, in combination with a

forward intersection of the potentially inconsistent regions.

We implemented our approach in C++ and tested it on both

self-recorded and existing datasets. Our experiments show

that our method quickly finds the approximate location of

the change in the scene and is fast enough to potentially

guide an exploring ground robot or UAV seeking to map

the changes in the environment. We publicly share both our

open source implementation1 and our own dataset including

the 3D models2.

We make two key claims: our approach is able to (i)

identify the location of changes in the environment, in the

form of 3D volumes in the world coordinate frame, using a

3D model and a sequence of images, and (ii) it is fast enough

to be executed on a mobile robot, i.e. analyzing a sequence

of keyframe images does not take longer than recording it

(e.g., a few seconds for a sequence of five keyframe images).

II. RELATED WORK

Building 3D models can be an expensive process as

it requires a good coverage of the environment [10] and

potentially dedicated sensors or equipment. To reduce this

cost, it is important to identify, on an existing model, the

parts that have changed, and direct the exploration towards

those locations. For this reason, 3D change detection is an

increasingly popular topic, see [13].

In the past, many 2D change detection algorithms have

been proposed [14]. Several of such methods are affected

by lighting conditions, seasonal changes, weather conditions,

and other differences that may occur between the recording

of the old and the new images. However, under certain

conditions, the 2D approach can still be useful, e.g. for

monitoring a tunnel surface, as proposed by Stent et al. [18].

Another limitation of 2D approaches is that the images

often do not provide information on the actual 3D location

of the change. Sakurada et al. [16] try to overcome these

problems by estimating the probabilistic density of the depth

from the old set of images and by comparing it with the

depth computed from the new set of images. Eden et al. [4]

compare 3D lines in the images instead of using color or

intensity information. A more recent approach by Sakurada

and Okatani [15] instead uses a deep convolutional neural

network to detect changes in omnidirectional images. Alcan-

tarilla et al. [1] also use a deep convolutional neural network,

but they additionally combine it with a dense reconstruction

technique.

Another approach to 3D change detection is to build a

3D model from the new images through Multi-View Stereo

and then compare the new model with the old one. However,

this is often a rather time consuming activity. Golparvar-Fard

et al. [7] use this approach combined with a support vector

machine classifier to obtain an updated voxelized model of

the environment.

A popular and effective approach is to infer the changes

of the environment using a previously built 3D model and

a sequence of newly acquired images. One way to achieve

this is to maintain a voxelized model of the environment and

detect the probability of change in it by comparing the color

of a voxel and the color of the pixels in the images onto

1github.com/Photogrammetry-Robotics-Bonn/fast change detection
2www.ipb.uni-bonn.de/data/changedetection2017

(a) Image I1 (b) Image I2

(c) Re-projection of I1 onto I2 (d) Inconsistencies

Fig. 2: A pair of images, the first image re-projected onto the
second, and the inconsistencies between them.

which it projects. Examples of this approach are the one by

Ulusoy et al. [22] or the one by Pollard et al. [11].

Another relevant strategy that uses an existing 3D model

and newly acquired images is to identify changes by re-

projecting images onto each other by passing through the

existing model and compare the inconsistencies in the re-

projection. Taneja et al. [20] use this technique on pairs of

images, and apply a graph cut minimization to label the

changed area in 3D in a voxelized model. This technique

is also effective for large scale change detection [21]. In

addition, Qin et al. [12] combine the pairwise detected

inconsistencies by counting the rays that hit every pixel for

each image, in order to get rid of the ambiguities. They stop

at the image level and do not estimate the 3D location of the

change.

In this paper, we use a re-projection technique similar

to [20] and [12] to identify the changed regions in the

images. We resolve ambiguities by fusing multiple images

and introduce a fast way for estimating the rough location of

change in 3D. The whole process takes only a few seconds

for an image sequence. In contrast to that, state-of-the-art

approaches such as [20] or [22] have execution times in the

order of minutes. This paper extends our previous workshop

paper [9] presenting an optimized algorithm and an extended

experimental evaluation.

III. FAST IMAGE-BASED CHANGE DETECTION

Our approach aims at spotting areas in an environment that

have changes with respect to a previously built 3D model.

It does so by exploiting a sequence of around five images

through evaluating how the projections of image content

from one image to the model and back to another image

look like. In terms of computational demands, this process is

substantially more efficient than generating a new, dense 3D

model and comparing it directly with the given one. The first

step is to detect possible inconsistencies of an image with its

neighboring images assuming that the 3D model is correct.

https://github.com/Photogrammetry-Robotics-Bonn/fast_change_detection
http://www.ipb.uni-bonn.de/data/changedetection2017

II

r

r r

rX

XX

1 2

1→2

1→21

1 c

x1
x1→2

x1→2
x1

'

'

'

'

'

Fig. 3: Re-projection procedure. The gray rectangle represents the
known 3D model, while the yellow square is a change not present
in the original model. Using two images, a point Xc, not present
in the model, is re-projected onto two pixels x1→2 and x

′

1→2.

After computing pairwise inconsistency hypotheses, we fuse

them to eliminate the intrinsic ambiguities and estimate the

location of change by triangulation. Given that we look for

inconsistencies between the 3D model and new images, our

approach only finds changes from images where the rays

corresponding to pixels intersect with the 3D model.

Note that we assume a good pose estimate for the camera.

We obtain the (approximate) location of the 3D model and

the viewpoint of the images as described in Sec. III-A below.

A. Camera Pose Estimate

Our algorithm requires an estimate of the viewpoints of

the images w.r.t. the 3D model. We obtain this through

direct georeferencing fusing GPS, IMU, and visual odometry,

as described in [17]. The approach employs the iSAM2

algorithm, and provides uncertainty information about all

sensor poses in form of a covariance matrix. In case no GPS

information is available, approaches for camera to 3D model

localization such as [2] can be used, although we did not

directly try that here.

B. Inconsistencies Between Image Pairs

Given the calibration matrix and the pose at which the

camera took an image I , we can compute the projection of

an arbitrary 3D point Xworld onto the image plane resulting

in a 2D point at pixel x:

x = PXworld, (1)

where x is expressed in homogeneous coordinates and P =
K[R|−Rt] is the camera projection matrix computed from

the calibration matrix K of the camera and the rotation R

and translation t that transform the world coordinates into

camera coordinates.

By inverting Eq. (1), we compute the ray from the projec-

tion center of the camera through the pixel to the 3D world.

This allows us to back-project each pixel of I onto the 3D

model assuming the known intrinsic parameters K and the

rotation matrix R from the extrinsic parameters:

r = RTK−1x, (2)

where r is the direction of the ray in world coordinates.

To detect inconsistencies between a pair of images consist-

ing of the images I1 and I2, we create a new image I1→2 that

represents the content of I1 as seen from the view point of I2
given the 3D model. Given that we know, from Eq. (2), the

view direction r1, we compute the intersections X between

the rays and the 3D model and project X onto the image

plane of I2 to obtain I1→2 (see Fig. 2c for a real example):

x1→2 = P2 X, (3)

where P2 is the camera projection matrix corresponding to

image I2. In this way, we obtain a new image I1→2 that can

be compared to I2. Since the exact poses of the cameras are

unknown and the 3D model is not perfect, the point x1→2

has an uncertainty represented by the covariance matrix

Σ := Σx1→2x1→2
. To consider this uncertainty, we compute,

for every pixel of I2 the minimum Euclidean norm of the

intensity difference to each pixel of I1→2 in a neighborhood

Ni,j around the projected pixel. We compute the size of this

neighborhood by propagating the pose uncertainty, obtained

while recording the images, into the image points (see

Sec. III-A). In detail, we search within the 3σ area given

by Σ and select the pixel with the smallest difference:

D1→2(i, j) = min
k,l∈Ni,j

||I2(i, j)− I1→2(k, l)||2 , (4)

where i, j, k, l are pixel coordinates and the neighborhood

Ni,j is defined as:

Ni,j =

{
∀(k, l) ∈ I1→2

∣∣∣∣∣

[
i− k

j − l

]T
Σ−1

[
i− k

j − l

]
< d2

}
, (5)

where d2 = 11.82 is the critical value of the χ2
2 distribu-

tion corresponding to a probability of 99.73%, i.e. the 3σ
boundary on the normal distribution. Finally, we normalize

D1→2 to values between [0, 1]. Fig. 2d shows the result of

this procedure.

If there is no change in the 3D model between the

acquisition time and the time when the images have been

taken, all pixels in I1 should correctly re-project onto I2.

Therefore, I2 and I1→2 should be identical and D1→2 should

be small or equal to 0 for each pixel. If there is, however,

a change in the model, pixels corresponding to the change

re-project onto the wrong place in I2. Thus, D1→2 allows

us to identify the changes (as long as not all pixels in the

current images have the same RGB value, i.e. represent a

large homogeneous area)

The process, however, has ambiguities. As Fig. 3 illus-

trates, a single point Xc corresponding to a change in

the 3D model generates two pixel locations, x1→2 and

x′
1→2, in D1→2, one corresponding to the change in I1 re-

projected onto I2 and one corresponding to the change in

I2 re-projected onto I1. To eliminate this ambiguity, we use

multiple pair-wise image comparisons as described in the

following section.

C. Inconsistency Detection using Multiple Images

The ambiguity produced by the re-projection of an image

onto another one can be eliminated by considering multiple

image pairs. Fig. 4 shows how a pixel belonging to the same

change in a third image I3 re-projects onto I2 at two different

II

r

r

r

r

XX

1 2

1→2

1

1

1→2

I3

|||

r3→2
r3

X X

|||

' '' ' '' '''

'''

''' '''

r3

r3→2

Fig. 4: Ambiguity elimination using multiple images. When re-
projecting I1 and I3 onto I2, only one ray (therefore one pixel) is
coincident. The thicker red line represents that coincident ray.

locations. It is important to note that one of the two points

is mapped to the same location as a change detected by re-

projecting I1 onto I2. Thus, the pixels that re-project onto

the same region of I2 from the other images represent the

real change.

To localize the changes, we therefore compare an image

with its m neighboring keyframe images. For each image It,

we store an inconsistency image Dt resulting from the pixel-

wise minimum over all the inconsistency images obtained

from the neighboring images re-projected onto It:

Dt(i, j) = min{Ds→t(i, j), ∀s ∈ S(t)}, (6)

where S(t) is the set of m neighboring keyframe images of

It. In our implementation, we typically use the four closest

images in time to It. Fig. 5 depicts the output of Eq. (6), for

m = 1, 2, and 3. Even though it is not easy to see in Fig. 5,

the noise in the total inconsistency image is substantially

smaller when using more than m = 2 neighboring images.

Thus, we stick to m = 4, although using m = 2 is

theoretically sufficient.

D. Segmentation and Data Association

The procedure explained so far enables us to identify the

pixels in each image where changes occur. For reliably com-

puting the regions of change, we first filter out the noise with

an erosion-dilation procedure, then apply a standard border

following algorithm [19]. We discard all the regions with a

contour shorter than a threshold (in our implementation 50 px

for images with horizontal resolution of 500 px) to filter out

noise and changes that are too small. The next step is to

associate the regions from the images with each other. To

do that, we compute and compare hue-saturation histograms

region-wise and perform standard cross-correlation together

with a simple geometric consistency check using the epipolar

lines.

E. Estimating the Location of Change

Once we obtain the segmented 2D regions and the associa-

tion between them, we proceed to estimate the 3D location of

the change. To simplify the notation in the remainder of this

section, the following equations will refer to a single change

in images, i.e. dropping an index referring to individual

regions. The whole procedure is repeated for every region

(of detected change).

To estimate the 3D volumes in which the changes occur,

we first compute, for every region identified as a change, the

mean location xt and spread in form of the covariance Σt

in the image. We then compute, for each change, a 3D point

X in the 3D world coordinates by triangulating the mean

location in each image [6]. Specifically, we setup a system

of equations in the form

AX = 0, with A =



S(x1)P1

...

S(xn)Pn


 , (7)

where A is a 3n × 4 matrix composed by 3 × 4 blocks,

n is the number of images, Pt is the projection matrix

relative to image It, and S(xt) is the skew symmetric

matrix corresponding to the mean pixel xt, in homogeneous

coordinates, i.e.:

xt =



xt

yt
wt


 , S(xt) =




0 −wt yt
wt 0 −xt

−yt xt 0


 . (8)

We solve this system using singular value decomposition

and retrieve X by taking the right-singular vector of A

belonging to its smallest singular value (see Fig. 6a for an

example of triangulation). For each change in the image, we

additionally compute the K sigma points v
(k)
t (k = 1 . . .K)

corresponding to xt and Σt and project the sigma points

to the 3D space to estimate the region of change in 3D.

Using the sigma points allows for a better propagation of a

Gaussian through a non-linear function than first-order error

propagation, see [8] for details. To compute the 3D position

of the sigma points, we define for each image a plane Ât

passing through X with normal equal to the direction of the

ray rt obtained through Eq. (2) for xt.

We define the plane in homogeneous coordinates as a 4-

dimensional vector:

Ât =

[
rt
d

]
, (9)

where the last element d = rTt X is the distance between the

camera and X. The projection of v
(k)
t on Ât is the inter-

section V
(k)
t between the plane and the ray r

(k)
t generated

from v
(k)
t . We compute V

(k)
t by expressing r

(k)
t in Plücker

coordinates as a line L
(k)
t joining the camera projection

center Ct and a point p = Ct + r
(k)
t along the ray:

L
(k)
t =

[
Lh

L0

]
=

[
Ct − p

Ct × p

]
. (10)

From L
(k)
t , we compute the transposed Plücker matrix

ΓT(L
(k)
t) =

[
S(L0) Lh

−LT

h 0

]
, (11)

where S(L0) is the skew symmetric matrix corresponding to

L0. Finally, we obtain V
(k)
t as

V
(k)
t = ΓT(L

(k)
t)Ât. (12)

(a) (b) (c) (d) (e)

Fig. 5: (a) The statue (here manually marked in green) is not in the model. (b) Inconsistencies between 2 images (m = 1). (c) Inconsistencies
between 3 images (m = 2). (d) Inconsistencies between 4 images (m = 3). (e) Original image masked with the segmented area obtained
from the inconsistency image with m = 3. (best viewed on screen)

(a) (b) (c)

Fig. 6: (a) Example triangulation with five images. The white lines are the back-projected rays and the white point represent the triangulated
point. (b) Sigma points projected in 3D. (c) The result of our algorithm, i.e. the 3D region where the change is. (best viewed in color)

We repeat this procedure for the sigma points from each

mean and covariance matrix of the same region in every

image. In this way, we can quickly estimate the approxi-

mate 3D location of the change without computing a dense

reconstruction of the scene, see Fig. 6b. The mean and the

covariance of the position of these points represent the 3D

area where the change occurs, see Fig. 6c.

IV. EXPERIMENTAL EVALUATION

The focus of this work is a comparably fast approach to

identify changes in a given 3D model using a sequence of

new images. Thus, our experiments are designed to show the

performance of our approach and to support the two claims

that we made in the beginning of the paper, i.e., our method:

(i) can localize changes in the environment using a 3D model

obtained in the past and a sequence of new keyframe images,

and (ii) can be executed fast enough to run on an exploring

robot, i.e., the average execution time should be in the order

in which the sequence is recorded, here in the order of a few

seconds for around five keyframe images.

We perform the evaluations on own datasets, as well

as on a subset of the ScanNet dataset by Dai et al. [3].

Furthermore, we use the dataset by Taneja et al. [20] to

provide a comparison with their method. Throughout all

experiments, we use a sequence of n = 5 images and for

each image of the sequence, we compute the inconsistencies

with m = 4 neighboring images, i.e. for these sequences

all the neighboring images. Before the execution of the

algorithm, we resize every image to a fixed width of 500

pixels.

A. Qualitative Evaluation

The first experiment is designed to illustrate the capability

of our approach to localize a change in 3D given a model and

a small sequence of images. Fig. 7 depicts the results of the

algorithm on three different outdoor datasets, while Fig. 8

shows the results on three indoor scenes from the ScanNet

dataset [3]. In all our tests, the localized 3D regions reflect

the actual position of the changes. This information can allow

an exploring or mapping robot to inspect the changed regions

in more detail and collect more observations to update the

previously built model. Note that the exploration itself is not

part of this work but it is enabled by it.

B. Quantitative Evaluation

To provide a quantitative evaluation, we project the 3D

results of our approach onto the original 2D images in the

sequence and we compare the 2D projection to a manually

labeled ground truth. To get the final score for a dataset,

we compute the average score among all the images in the

sequence. We use two different evaluation criteria. The first

one is the intersection over union (IoU), which is one of the

most commonly used metrics for image segmentation [5].

The common approach is to compute the IoU using bound-

ing boxes. However, since we are evaluating the changes

projected in a sequence of images, occlusions may happen

between multiple changes and that makes it impossible to

evaluate the bounding box of a single change, see Fig. 9

for an example. Therefore, we compute the intersection

over union directly between the segmented ground truth and

the projected ellipsoid used to indicate the change in our

(a) (b) (c)

Fig. 7: Results of our experiments on three different outdoor datasets. For each dataset, the top image shows the changes (here manually
marked in green), while the bottom image shows the 3D region, identified by our algorithm, where the changes are. (best viewed in color)

(a) (b) (c)

Fig. 8: Results of our experiments on three different indoor scenes from the ScanNet dataset [3]. For each dataset, the top image shows the
changes (here manually marked in green), while the bottom image shows the 3D region, identified by our algorithm, where the changes
are. (best viewed in color)

approach. As Fig. 10 shows, the intersection over union is

not always representative of the quality of our detection. In

this case, the algorithm successfully identified the change,

but the IoU score is only 44%. This results from the fact

that we correctly identify the location of change, but have

a substantial discrepancy between the two shapes, as we

only compute an ellipsoid. Thus, we additionally provide

the measurement of coverage (or True Positive Rate) of our

results, i.e. the intersecting area between our detection and

the ground truth, over the full area of the ground truth.

This allows us to measure whether the change is properly

covered or not. In the case of Fig. 10 the coverage score is

97%, meaning that the algorithm is able to detect the change

appropriately.

We tested our algorithm on five self-recorded outdoor

datasets. To also consider other datasets, we additionally

used the ScanNet dataset by Dai et al. [3], which provides

indoor scenes recorded with an RGB-D camera. Here, we

selected 15 scenes, we removed some objects from the 3D

models and run our algorithm on a sequence of RGB images

(a) (b)

Fig. 9: (a) The house does not occlude the lamp. (b) The lamp is
occluded: it is impossible to guess its bounding box.

Fig. 10: Result of our algorithm projected on the original image.
The statue (manually segmented from the image) is not present in
the model. The green ellipse is the projection of the result of our
algorithm on the image. (best viewed in color)

containing the missing objects. Fig. 11 shows the number of

datasets (on the y axis) over a certain threshold (on the x

axis). The blue dotted line is the 50% threshold, which is the

one commonly used in the image segmentation literature [5].

On all our datasets and on 12 out of 15 ScanNet datasets,

the IoU score is over 40%. This shows that our algorithm is

generally able to detect the position of the changes, although

with a significant approximation in terms of shape (given

that we only compute the ellipsoid and not the exact 3D

structure). The coverage score, considerably higher, further

supports this claim.

C. Execution Time

The next experiment is designed to support the claim

that our approach runs fast enough for processing on an

exploring robot. We therefore measured the execution time

of our approach on a common, lightweight laptop with an

Intel Core i7 processor and an embedded Intel GPU. All the

operation were executed on a single core of the CPU except

for the re-projection operations, which are implemented in

OpenGL and therefore executed by the integrated GPU of

the Intel processor. Tab. I shows the average execution time

needed to process sequences of five images from different

datasets as well as the standard deviation. The numbers

support our second claim, namely that the computations can

be executed fast enough for operation on an exploring robot.

On all datasets, the whole process takes less than 2 s, which

is shorter than the time needed to record the five keyframe

images. Even though the process is clearly not real-time in a

strict sense, it is fast enough to be executed on a real robot at

a low frequency to trigger exploration or additonal mapping

actions.

0 10 20 30 40 50 60 70 80 90

Score (%)

0

1

2

3

4

5

N
u

m
b
e
r

o
f

d
a
ta

se
ts

IoU

Coverage/TPR

(a) Evaluation on our outdoor datasets

0 10 20 30 40 50 60 70 80 90

Score (%)

0

3

6

9

12

15

N
u

m
b
e
r

o
f

d
a
ta

se
ts

IoU

Coverage/TPR

(b) Evaluation on the indoor ScanNet datasets

Fig. 11: Quantitative evaluation of our algorithm. The plots rep-
resent the number of datasets on which our approach achieved a
score above a certain threshold.

TABLE I: Average execution time for different datasets.

Dataset Average execution time [s]

outdoor data 1.64±0.19
ScanNet (indoor) 1.95±1.08

all 1.88±0.94

D. Comparison to an Existing Approach

Finally, we want to briefly compare our results with those

obtained by Taneja et al. [20]. The comparison is done

based on two of the datasets that they provide and report

on. We chose the “Speedcam” dataset, as it is the only

one for which the authors provide the ground truth, and

the “Structure” dataset, as it is the one that appears more

often in their paper. We created the ground truth for the

second dataset by segmenting the pictures manually, as it is

not provided by the authors. Fig. 12 and Tab. II illustrate

the results of our algorithm on the datasets. Their approach

uses a computationally expensive graph cut labeling on a 3D

voxelization of the scene. Their method typically provides a

more accurate estimate of the region of change (in the order

of 25×25×25 cm3 voxels) than our estimate using the mean

and covariance.

The disadvantage of their method, however, is the com-

putational demands as they require computation times in the

order of 1 min per region (reported by the authors [20]),

whereas we can process the same datasets in about 1 sec-

ond. Thus, for most robotics applications, where an online

feedback is expected, our approach is better suited.

(a) Structure (b) Speedcam

Fig. 12: Results of our approach on the datasets by Taneja et al.
For each dataset, the top image shows the changes (here manually
marked in green), while the bottom image shows the 3D region,
identified by our algorithm, where the changes are. (best viewed in
color)

TABLE II: Results for the datasets by Taneja et al.

Structure Speedcam

IoU 51% 52%
Coverage 86% 88%
Time [s] 1.43 1.13

To summarize, our evaluation shows that our method can

estimate the 3D location of changes in the environment. At

the same time, the algorithm is fast enough to be used by an

exploring robot to focus on the areas that have changed.

V. CONCLUSION

In this paper, we presented a novel approach to identify

geometric changes between the current state of the environ-

ment and a previously built 3D model using a short sequence

of images. Our approach operates by identifying the changes

in the images by re-projecting them onto each other, passing

through the 3D model. We eliminate the ambiguities about

possible changes by combining the inconsistencies from

multiple pairs of images. We are then able to estimate the

locations of changes in 3D and identify the changed region

through a mean 3D point and a covariance matrix. The com-

putational time of the whole process using multiple images

is in the order of seconds. We implemented and evaluated

our approach on different datasets. The experiments show

that our method can correctly identify the changes in the

environment with only five images and a total computational

time of less than 2 s, which make the algorithm suitable for

running on mobile robots.

ACKNOWLEDGMENTS

We thank Johannes Schneider and Jens Behley for the

fruitful discussions and valuable help during the realization

of our approach. We furthermore thank Taneja et al. and Dai

et al. for sharing their datasets.

REFERENCES

[1] P.F. Alcantarilla, S. Stent, G. Ros, R. Arroyo, and R. Gherardi. Street-
View Change Detection with Deconvolutional Networks. In Proc. of

Robotics: Science and Systems (RSS), 2016.
[2] T. Caselitz, B. Steder, M. Ruhnke, and W. Burgard. Monocular

Camera Localization in 3D LiDAR Maps. In Proc. of the IEEE/RSJ

Intl. Conf. on Intelligent Robots and Systems (IROS), 2016.
[3] A. Dai, A.X. Chang, M. Savva, M. Halber, T. Funkhouser, and

M. Nießner. ScanNet: Richly-Annotated 3D Reconstructions of Indoor
Scenes. In Proc. of the IEEE Conf. on Computer Vision and Pattern

Recognition (CVPR), 2017.
[4] I. Eden and D.B. Cooper. Using 3D Line Segments for Robust and

Efficient Change Detection from Multiple Noisy Images. In Proc. of

the Europ. Conf. on Computer Vision (ECCV), pages 172–185, 2008.
[5] M. Everingham, L. Van Gool, C.K. Williams, J. Winn, and A. Zisser-

man. The Pascal Visual Object Classes (VOC) Challenge. Intl. Jour-

nal of Computer Vision (IJCV), 88(2):303–338, 2010.
[6] W. Förstner and B. Wrobel. Photogrammetric Computer Vision –

Statistics, Geometry, Orientation and Reconstruction. Springer Verlag,
2016.

[7] M. Golparvar-Fard, F. Pena-Mora, and S. Savarese. Monitoring
Changes of 3D Building Elements from Unordered Photo Collections.
In Proc. of the Int. Conf. on Computer Vision (ICCV) Workshops,
pages 249–256, 2011.

[8] S.J. Julier and J.K. Uhlmann. A New Extension of the Kalman Filter
to Nonlinear Systems. Proc. of the SPIE Conf. on Reconnaissance

and Electronic Warfare System, 3068:182–193, 1997.
[9] E. Palazzolo and C. Stachniss. Change Detection in 3D Models

Based on Camera Images. In 9th Workshop on Planning, Perception

and Navigation for Intelligent Vehicles at the IEEE/RSJ Int. Conf. on

Intelligent Robots and Systems (IROS), 2017.
[10] E. Palazzolo and C. Stachniss. Information-Driven Autonomous Ex-

ploration for a Vision-Based MAV. ISPRS Annals of Photogrammetry,

Remote Sensing and Spatial Information Sciences, IV-2/W3:59–66,
2017.

[11] T. Pollard and J.L. Mundy. Change Detection in a 3D World. In
Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition

(CVPR), pages 1–6, 2007.
[12] R. Qin and A. Gruen. 3D Change Detection at Street Level Using

Mobile Laser Scanning Point Clouds and Terrestrial Images. ISPRS

Journal of Photogrammetry and Remote Sensing (JPRS), 90:23–35,
2014.

[13] R. Qin, J. Tian, and P. Reinartz. 3D Change Detection – Approaches
and applications. ISPRS Journal of Photogrammetry and Remote

Sensing (JPRS), 122:41–56, 2016.
[14] R.J. Radke, S. Andra, O. Al-Kofahi, and B. Roysam. Image Change

Detection Algorithms: A Systematic Survey. IEEE Trans. on Image

Processing, 14(3):294–307, 2005.
[15] K. Sakurada and T. Okatani. Change Detection from a Street Image

Pair using CNN Features and Superpixel Segmentation. In Proc. of

British Machine Vision Conference (BMVC), pages 61–1, 2015.
[16] K. Sakurada, T. Okatani, and K. Deguchi. Detecting Changes in 3D

Structure of a Scene from Multi-View Images Captured by a Vehicle-
Mounted Camera. In Proc. of the IEEE Conf. on Computer Vision

and Pattern Recognition (CVPR), pages 137–144, 2013.
[17] J. Schneider, C. Eling, L. Klingbeil, H. Kuhlmann, W. Förstner, and

C. Stachniss. Fast and Effective Online Pose Estimation and Mapping
for UAVs. In Proc. of the IEEE Intl. Conf. on Robotics & Automation

(ICRA), 2016.
[18] S. Stent, R. Gherardi, B. Stenger, and R. Cipolla. Detecting Change

for Multi-View, Long-Term Surface Inspection. In Proc. of British

Machine Vision Conference (BMVC), pages 127–1, 2015.
[19] S. Suzuki and K. Abe. Topological Structural Analysis of Digitized

Binary Images by Border Following. Computer vision, graphics, and

image processing, 30(1):32–46, 1985.
[20] A. Taneja, L. Ballan, and M. Pollefeys. Image Based Detection of

Geometric Changes in Urban Environments. In Proc. of the IEEE

Intl. Conf. on Computer Vision (ICCV), pages 2336–2343, 2011.
[21] A. Taneja, L. Ballan, and M. Pollefeys. City-Scale Change Detection

in Cadastral 3D Models Using Images. In Proc. of the IEEE Conf. on

Computer Vision and Pattern Recognition (CVPR), pages 113–120,
2013.

[22] A.O. Ulusoy and J.L. Mundy. Image-Based 4D Reconstruction Using
3D Change Detection. In Proc. of the Europ. Conf. on Computer

Vision (ECCV), pages 31–45, 2014.

	Introduction
	Related Work
	Fast Image-Based Change Detection
	Camera Pose Estimate
	Inconsistencies Between Image Pairs
	Inconsistency Detection using Multiple Images
	Segmentation and Data Association
	Estimating the Location of Change

	Experimental Evaluation
	Qualitative Evaluation
	Quantitative Evaluation
	Execution Time
	Comparison to an Existing Approach

	Conclusion
	References

