
Scaling Diffusion Models to Real-World 3D LiDAR Scene Completion

Supplementary Material

This supplementary material provides further detailed
information on our proposed approach. We provide de-
tailed information on the used network architectures, and
ablations over the different hyperparameters of the gener-
ation process, i.e., conditioning weight s and regulariza-
tion weight r. Appendix A provides detailed information
about the noise predictor and refinement network architec-
tures and more detailed information about the refinement
network training. Appendix B gives further ablations over
the noise predictor regularization weight r. Appendix C
presents qualitative and quantitative comparisons between
the scene completion with different conditioning weights s
and the unconditional generation, i.e., s = 0.0. Appendix D
compares qualitatively the scene completion with different
number of denoising steps. Finally, Appendix E shows
further qualitative results comparing our scene completion
with the evaluated baselines. Furthermore, we provide our
code within this supplementary material, which we will
make publicly available upon acceptance of the paper.

A. Architectures
This section shows the model architectures for the noise
predictor and the refinement network with further details
on the training procedure. Appendix A.1 shows the dia-
gram of the noise predictor model together with the condi-
tion encoder and how the noise prediction is conditioned to
it. Appendix A.2 presents the refinement upsample network
architecture and provides further details on the refinement
network training.

A.1. Noise predictor

As the noise predictor, we used a MinkUNet [1] to pre-
dict the noise over each point. For the condition encoder,
we used only the encoder part of the MinkUNet with the
same architecture as the noise predictor. As described in
Sec. 3.6 of the main paper, before each layer l, we compute
the positional embeddings τ from the denoising step t with
an embedding dimension dt = 96, conditioning the layer
input Fl to C and t with the conditioning block. Fig. 1 de-
picts the noise predictor and condition encoder architecture,
with each layer l features dimension dl and the conditioning
scheme.

A.2. Refinement upsample network

As the refinement network, we have used the same architec-
ture as the noise predictor with a tanh activation as the final
layer, as depicted in Fig. 2. Given that the refinement net-
work has to predict just an offset around the diffusion gen-

eration, we use a tanh layer to limit the offset size, avoiding
the model predicting too large offsets.

As mentioned in Sec. 3.5 of the main paper, we used
the refinement and upsample scheme proposed by Lyu et
al. [5]. We train the refinement model using Adam [2] opti-
mizer, with a learning rate of 10−4 and decay of 10−4, with
a batch size equal to 8, training for 5 epochs. To generate
the refinement ground truth, we aggregate 20 scans before
and 20 scans after each scan in the training set, using the
relative poses between the scans. We use these aggregated
scans as the ground truthOgt, and as the input, we copyOgt
and add random point jittering to each point, defining the
input O. Then, the model is trained to predict 3 × κ val-
ues for each point, corresponding to κ offsets. We add the
κ offsets to each point in O, getting the upsampled refined
prediction O′, and supervise it with the symmetric chamfer
distance loss Lrefine as:

LCD (A,B) = 1

| A |
∑
a∈A

min
b∈B
‖a− b‖22, (1)

Lrefine = LCD(Ogt,O′) + LCD(O′,Ogt). (2)

With Eq. (2), we train the refinement model to predict κ
offsets to the input O such that the upsampled refined pre-
dictionO′ gets as close as possible to the ground truth. With
this refinement model, we can generate the scene comple-
tion with our diffusion model with fewer denoising steps
using the DPMSolver [4] and refine it. As mentioned in
Sec. 3.5 of the main paper, with fewer denoising steps, the
generation quality may decrease. Therefore, with this re-
finement network, we can compensate for this lower gen-
eration quality while also upsampling our generated scene
completion.

B. Regularization ablation
This section compares the results of the noise predictor
trained with different regularization weights r. Fig. 3 com-
pares the scene completion with the noise predictor trained
with different regularization weights. With r = 0.0, the
model can generate structural information with a noisy as-
pect, and, in this example, the points from the two parked
cars are mixed together without a clear boundary. With
r = 1.0, a less noisy scene completion is generated, but
still, the surfaces in the structure present a noisy aspect.
When comparing r = 3.0 and r = 5.0, both generated
scene depicts a more detailed and less noisy scene, com-
pared with lower regularization weights r. However, using
r = 5.0 achieves more fine-grained structural details. The
surfaces in the scene appear to have a flatter aspect, and the
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Figure 1. Noise predictor and condition encoder models architecture. The condition encoder receives the scan P and computes the
conditioning point cloud C. From t, we compute the positional embedding τ with a dimension dt = 96. At each layer l, we give C and τ
to the conditioning block together with the layer input features Fl to get F ′

l , which is then feed as input to the layer l.
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Figure 2. Refinement network architecture.

sidewalk curbs seem better defined. Also, the two parked
cars retain more details, e.g., the windows space. Given this

analysis and the quantitative results present in Tab. 5 of the
main paper, we use r = 5.0 in the main experiments.



Figure 3. Comparison between results with different regularization weights r.

s 0.0 2.0 4.0 6.0 10.0 12.0 16.0

CD [m] 0.737 0.543 0.454 0.433 0.432 0.435 0.450

Table 1. Mean chamfer distance over a short sequence from
the validation set of SemanticKITTI with different conditioning
weights s.

C. Condition weights ablation

This section compares the scene completion quality us-
ing different condition weights s qualitatively and quanti-
tatively. Fig. 4 shows the qualitative comparison between
the scene completion with different conditioning weights.
With s = 0.0, we have the unconditional generation. In
this case, the generated scene has a flat surface distributed
over the input scan borders without retaining structural in-
formation. As we increase s, the structure details are better
defined. With s = 2.0 and s = 4.0 more details are gener-
ated but with a smooth aspect. With s = 6.0 the generation
follows structural information from the input scan and de-
fines sharper boundaries over the structures. With s = 10.0
and s = 12.0, the generated scene gets too noisy, generating
artifacts over the scene.

We also evaluate the influence of the conditioning
weight s in Tab. 1. As in Tab. 5 of the main paper, we com-
pute the chamfer distance over the scene completion and the
ground truth over a short sequence from the SemanticKITTI
validation set, where we generate every one hundred scans.
In this evaluation, having s = 6.0 and s = 10.0 achieves
basically the same performance. However, from the quali-
tative evaluation presented in Fig. 4, we used s = 6.0 in the
main paper since it achieved the best performance visually
and numerically.

D. Denoising steps

In this section, we compare the quality of the scene com-
pletion with different number of denoising steps T . Fig. 5
shows the diffusion generation using DPMSolver [4] with
the different number of denoising steps and the amount of
time in seconds to generate the complete scene. Since the
model was trained with T = 1, 000, we can achieve the
best quality result when using T = 1, 000 during infer-
ence. However, inferring the 1, 000 steps demands many
computational time. As we decrease T , we increase the in-
ference speed. However, we can also notice that with lower
T , the scene generation loses details. This can be seen when
comparing the structures in the scene, especially the ground,
where more noise can be noticed as we decrease T . There-
fore, in the main paper we set T = 50 and take advantage of
the refinement network to compensate for the lower quality
generation when using smaller T .

E. Further qualitative results

In this section, we show more qualitative results, comparing
our scene completion with the baselines evaluated in the pa-
per, i.e., LMSCNet [6], PVD [8], Make It Dense (MID) [7],
and LODE [3]. Figs. 6 to 10 compare the results between
the baselines and our method. As shown, the diffusion base-
line PVD [8] fails to generate scene-scale data. The SDF
baselines reconstruct the scene inheriting artifacts from the
surface approximation and the voxelization. Our method
achieves a more detailed representation, with a smoother
generation compared to the baselines.
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Figure 4. Comparison between results with different conditioning weights s.
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Figure 5. Comparison between results with different number of denoising steps T .
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Figure 6. Qualitative results comparing the scene completion between our method and the baselines evaluated in the main paper.
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Figure 7. Qualitative results comparing the scene completion between our method and the baselines evaluated in the main paper.
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Figure 8. Qualitative results comparing the scene completion between our method and the baselines evaluated in the main paper.
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Figure 9. Qualitative results comparing the scene completion between our method and the baselines evaluated in the main paper.
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Figure 10. Qualitative results comparing the scene completion between our method and the baselines evaluated in the main paper.
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