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Abstract
Semantic perception is a core building block in au-

tonomous driving, since it provides information about the
drivable space and location of other traffic participants.
For learning-based perception, often a large amount of di-
verse training data is necessary to achieve high perfor-
mance. Data labeling is usually a bottleneck for developing
such methods, especially for dense prediction tasks, e.g., se-
mantic segmentation or panoptic segmentation. For 3D Li-
DAR data, the annotation process demands even more effort
than for images. Especially in autonomous driving, point
clouds are sparse, and objects appearance depends on its
distance from the sensor, making it harder to acquire large
amounts of labeled training data. This paper aims at taking
an alternative path proposing a self-supervised representa-
tion learning method for 3D LiDAR data. Our approach
exploits the vehicle motion to match objects across time
viewed in different scans. We then train a model to max-
imize the point-wise feature similarities from points of the
associated object in different scans, which enables to learn
a consistent representation across time. The experimental
results show that our approach performs better than previ-
ous state-of-the-art self-supervised representation learning
methods when fine-tuning to different downstream tasks. We
furthermore show that with only 10% of labeled data, a net-
work pre-trained with our approach can achieve better per-
formance than the same network trained from scratch with
all labels for semantic segmentation on SemanticKITTI. 1

1. Introduction

Semantic perception is essential for safe interaction be-
tween autonomous vehicles and their surrounding. For
learning-based perception, a massive amount of training
data is usually required for training high-performance mod-
els. However, the data annotation is the bottleneck of col-
lecting such large training sets, especially for dense predic-
tion tasks, such as semantic segmentation [60, 80], instance

1Code: https://github.com/PRBonn/TARL
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Figure 1. Our pre-training (TARL) can reduce the amount of nec-
essary labels during fine-tuning on SemanticKITTI [4, 22]. Our
method requires only 10% of labels to surpass the network trained
from scratch with the full dataset for semantic segmentation. For
panoptic segmentation, our method requires only half of the labels.

segmentation [46, 73], and panoptic segmentation [45, 79],
which require fine-grained labels. In the context of au-
tonomous driving, recent approaches exploit 3D LiDAR
data [20, 54, 55, 61], where the data annotation process is
more complex than on 2D RGB images due to the sparsity
of the point cloud and object appearance varying with its
distance to the sensor.

Recent self-supervised representation learning meth-
ods [10, 11, 13–15, 25, 27, 76] tackle the lack of annotated
data with a pre-training step requiring no labels. Those
methods use data augmentation to generate different views
from one data sample and train the network to learn an
embedding space able to have similar representations for
the generated augmented views. Other approaches [52, 63,
65, 69, 78] propose optimizing the pixel embedding space
to learn a dense representation suited to be fine-tuned to
more fine-grained tasks. For 3D point cloud data, recent
approaches [21, 42, 49, 56] focus on synthetic point clouds
of single objects to learn a robust representation for object
classification. Other approaches [31,36,50,67,74,75] target
real-world data representation, such as LiDAR or RGB-D
data, but fewer target autonomous driving scenarios.

https://github.com/PRBonn/TARL


In this paper, we propose a novel temporal association
representation learning (TARL) method for 3D LiDAR data
designed for autonomous driving data. We exploit the ve-
hicle motion to extract different views of the same objects
across time. Then, we compute point-wise features from
the objects in the point cloud and use a Transformer en-
coder [2] as a projection head to learn a temporal asso-
ciation from the object representation, embedding the ob-
jects dynamics. We conduct extensive experiments to com-
pare our approach with state-of-the-art methods and show
that our approach surpasses previous self-supervised pre-
training methods [50, 67, 75] when fine-tuning to different
downstream tasks and datasets [4, 8, 22, 64]. In summary,
our key contributions are:

• We propose a novel self-supervised pre-training for
3D LiDAR data able to learn a robust and temporally-
consistent representation by clustering together points
from the same object viewed at different points in time.

• We achieve better performance than previous state-of-
the-art methods on different downstream tasks, i.e., se-
mantic segmentation, panoptic segmentation, and ob-
ject detection.

• With our pre-training, we require only 10% of labels
to surpass the network trained from scratch for seman-
tic segmentation using the whole training set on Se-
manticKITTI (see Fig. 1).

• Our self-supervised pre-training produces representa-
tions more suited for transfer learning than supervised
pre-training, achieving better performance when fine-
tuning to a different dataset.

2. Related Work

Self-supervised representation learning aims at ini-
tializing weights of a deep neural network for a down-
stream task by learning suitable representations without la-
beled data. Early approaches [18, 26, 28, 33, 48, 70] use
so-called pretext tasks to learn useful representations, such
as solving jigsaw puzzles [28, 33, 48] or reconstructing
masked data [18, 26, 70]. More recently, contrastive learn-
ing [13, 14, 27] has drawn significant attention in the vi-
sion and robotics research community. Those contrastive
methods employ random data augmentation over one im-
age sample to generate different views of it. Then, the net-
work is trained to learn an embedding space able to dis-
criminate between the augmented samples from the same
image and the augmented views from other images. Re-
cent approaches exploit this discriminative pretext task and
propose different ways to learn a self-supervised data rep-
resentation, e.g., via non-contrastive methods [15, 25], re-
dundancy reduction [76], or online clustering [10]. Other
works [52,63,65,69,78] approach this in a pixel-wise man-

ner, learning dense representations applied to more fine-
grained downstream tasks.

Transformer encoders [2] were initially proposed in
the natural language processing community achieving state-
of-the-art performance in the field. Such architectures
were then quickly adopted by the computer vision com-
munity [1, 30, 66, 72, 77]. With the attention mechanism,
the Transformer can learn the global context from the im-
age instead of just local neighboring context as in convolu-
tional models [1]. With the growing interest in Transform-
ers, some self-supervised representation learning methods
were applied to Transformers [11,59,68] to evaluate the ca-
pacity of such models to learn meaningful representations.

LiDAR point cloud perception brings further chal-
lenges compared to the image domain. Previous works [46,
47] deal with 3D scans by projecting the data to a 2D
range image and then processing it with 2D convolutional
methods. More recently, different convolution architec-
tures were proposed to deal with 3D data, such as point
kernels [54, 55, 61], sparse convolutions [20, 23, 24], or
graph representations [37, 40, 62]. With those different ar-
chitectures, it becomes possible to train a model to learn
from 3D data and deal with different tasks in this domain,
such as semantic segmentation [60,80], panoptic segmenta-
tion [3, 29, 44], object detection [38, 57, 58], or moving ob-
ject segmentation [6,16]. With increasing interest in Trans-
formers, some works [12,19,34,70] proposed ways of deal-
ing with point cloud data in such architectures. In this do-
main, a key challenge lies in the number of points collected
by LiDAR sensors together with the high memory require-
ments from the Transformer attention mechanism.

3D self-supervised representation learning aims at
learning robust representations from point cloud data. Most
of those methods focus on point clouds of single objects [21,
42,49,56]. Other methods [31,36,50,67,74,75] target dense
point-wise representations for real-world point cloud scans.
Xie et al. [67] propose learning a representation via point-
to-point contrastive learning through matching correspond-
ing points in two augmented point clouds. Similarly, Hou
et al. [31] learn both point-wise correspondence and the re-
gion where the point is located in the point cloud. Zhang
et al. [75] propose global representation learning through
scan-to-scan discrimination. Chen et al. [74] synthetically
add dynamic objects in the scene to embed temporal and
dynamic understanding in the learned representation. Other
methods propose discriminating regions of interest to ex-
tract more semantic information. Nunes et al. [50] extract
coarse segments from point clouds and use contrastive loss
to distinguish between objects segments. Similarly, Yin et
al. [36] extract proposal regions to be discriminated, biasing
the pre-training to object detection.

Despite the performance improvement brought by those
3D self-supervised representation learning methods, there is
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Figure 2. We aggregate n point clouds and extract segments S from it by removing the ground and clustering the remaining points. Then
we sample two point clouds Pt1 and Pt2 , and apply random augmentations T t1 and T t2 to them. Next, we compute point-wise features
for each scan and list its segments St1 and St2 with their corresponding point features. For St2 we compute the mean feature vector for
each segment and compute the segments target embeddings st2 with a projection head. For St1 we use a point-wise projector followed by
a predictor to identify for each segment point features st1

m,p the corresponding target embedding st2
m by minimizing the loss Lt1→t2 .

still a performance gap compared to the image domain due
to the lack of data augmentations for point clouds. Similar
to previous works [36,50], our approach focuses on learning
representations over regions of interest. However, unlike
previous methods, we extract natural augmented views of
the objects in the scans collected at different points in time
while the vehicle drives in the environment. Then, the net-
work is trained to learn a common representation for those
temporal views of one object. This enables our method
to learn a more robust semantic representation by learning
temporal consistent features and real-world dynamics.

3. Method
In this paper, we propose a new self-supervised repre-

sentation learning method for LiDAR data obtained in the
context of autonomous driving. Our approach requires only
unlabeled point clouds and the corresponding scan pose.
Pose information is usually readily available by means of
GPS/IMU, odometry approaches [32, 53], or SLAM sys-
tems [5,17], thus, this is not a limitation in practice. We use
a siamese network scheme with an online updated network
and a momentum updated network (see Fig. 2). The whole
pipeline consists of extracting objects as coarse segments
viewed at different times over an interval of scans. Then,
point-wise features are computed with the backbone and a
Transformer encoder as a projector. Finally, we perform an
implicit clustering to put points from different views of the
same object together. In the following subsections, we ex-
plain the individual steps of our method thoroughly.

3.1. Temporal objects views

Instead of only using data augmentation to generate ar-
tificial views of one object, we exploit the vehicle motion
to extract real-world object segments viewed from differ-
ent perspectives. Given the vehicle motion and the proper-
ties of LiDAR sensors, one object can have different ap-
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Figure 3. We aggregate n point clouds from different times and
extract coarse segments from the aggregated point cloud in an un-
supervised manner. We keep the point indices mapping to extract
views at different times from one object as augmented pairs.

pearances depending on its position relative to the sen-
sor. Such changing appearance is usually a problem when
fine-tuning the model to data collected with different sen-
sors [7, 35, 39, 71]. However, we exploit these properties
in our favor to extract natural augmented views of one ob-
ject. Previous works [31, 36, 50, 67, 74, 75] relied only on
data augmentation to generate pairs of one scan, such as ro-
tation, translation and scaling. Instead, we extract object
views collected from different perspectives by the LiDAR
sensor while the vehicle navigates through the environment.
We then apply augmentations over the associated scans cap-
tured at a different time and train the network to learn a
common representation for the object views.

We define a point cloud at time t as Pt = {pt
1, ...,p

t
R}

as a set of 3D points pr ∈ R3. To extract coarse ob-
ject segments in an individual scan, we first separate Pt

into ground Gt and non-ground points P̂t in an unsu-
pervised manner using the method proposed by Lim et
al. [41], where Pt = P̂t ∪ Gt and P̂t ∩ Gt = ∅. Af-



Figure 4. Batch example, for an interval of n = 6 point clouds P .
We divide a sequence of N scans into batches Bb where we sam-
ple t1 from the beginning and t2 from the end of the interval. Then,
the next batch starts in the middle of the previous interval.

terwards, we cluster the non-ground points P̂t into M
segments St = {St

1, ...,St
M} using HDBSCAN [9],

where P̂t =
⋃M

m=1 St
m.

To map different segment views at different times,
we define an interval of n scans from which the views
of the object will be extracted. Those scans are trans-
formed to a common global coordinate frame to be then
aggregated. The global scan poses can be easily ac-
quired with GPS/IMU, SLAM systems [5, 17], or Li-
DAR odometry [32, 53]. The aggregated point cloud P
is given by P = {Pt+1,Pt+2, ...,Pt+n}. Similarly,
we can aggregate the individual ground segmentation la-
bels G = {Gt+1,Gt+2, ...,Gt+n} and get the aggregated
non-ground points P̂ = {P̂t+1, P̂t+2, ..., P̂t+n}. As in the
individual scan case, we can cluster P̂ to get the M seg-
ments S = {S1, ...,SM}. By keeping the point index map-
ping from the aggregated point cloud to the individual n
scans, we can identify the n segments of the same object
viewed at different times as Sm = {St+1

m , ...,St+n
m }. We

then list the temporal views from each of the M segments
as S1:M = {St+1

1 , ...,St+n
1 , ...,St+1

M , ...,St+n
M }.

To properly segment views of both static and moving ob-
jects, we assume a LiDAR at the commonly used frequency
of 10Hz, where the scan overlap is enough to cluster to-
gether also moving objects, as depicted in Fig. 3. We show
further examples in the supplementary material. With this
procedure, our augmented pairs are views of the same ob-
ject at different times from static and moving objects. By
maximizing the similarity between the object views at dif-
ferent times, the network needs to learn a more general rep-
resentation consistent across time and embed the object dy-
namics. In the supplementary material, we provide an ex-
perimental comparison between the pre-training using the
temporal object views as augmented pairs and with aug-
mented pairs generated only with data augmentation to val-
idate the use of temporal views.

3.2. Temporal batch

During pre-training, we need to sample a subset of n
consecutive scans from the training sequence to be aggre-
gated and extract the temporal object views as explained
in Sec. 3.1. This sample will be used during pre-training

to learn a temporal consistent representation for the seg-
mented objects. For a sequence of N point clouds, we di-
vide it into batches B with intervals of n scans. During the
pre-training forward pass, we sample two scans at different
times, t1 and t2. Since the goal of this temporal sampling
is to have different views of the same object, we enforce
this by sampling t1 from the beginning and t2 from the end
of this n scans interval such that t1 < n

3 and t2 ≥ 2n
3 .

In this case, the scans between n
3 ≤ t < 2n

3 would never
be sampled. To also process those scans, the next batch
starts at this unseen interval. Therefore, for a batch sam-
ple Bb the n scans from the sequence of N point clouds
are Bb = {Pk|bn3 ≤ k < bn3 + n}.

In Figure 4, we show how the batches would look like in
an example with n = 6 scans interval. Even though we do
not sample t from n

3 ≤ t < 2n
3 , we still need to aggregate

and cluster these scans to correctly segment dynamic ob-
jects and match their correspondences between the scans.

With this sampling scheme, we guarantee that the objects
views will be distant in time and still all the data will be seen
during pre-training.

3.3. Implicit clustering

With our coarse object segments S, we have the prior
that points from the same segment should be semantically
similar. Given that we rely on a set of object segments, one
straightforward way to distinguish the learned embeddings
is to cluster together point features from the same object.
Recent methods propose an online clustering scheme to sep-
arate samples around a fixed number of prototype learnable
cluster centers [10]. We aim at clustering point features
from the same object close together but in a more straight-
forward way with an implicit clustering.

Given the temporal sampled pair Pt1 and Pt2 from
a batch sample Bb, we compute point-wise features F t1

and F t2 with the backbone. As the target embedding, we
list from F t2 the set of M segments St2 . We compute
for each segment a mean representation from its point-wise
features, and project this embedding with a self-attention
Transformer encoder as a projection head to get the M tar-
get mean feature vectors st2 ∈ RM×D where D corre-
sponds to the feature dimension.

The segments St1 are listed from the point-wise fea-
tures F t1 . For St1 , we do not compute mean embeddings
but keep the features at point level, using the Transformer
encoder to compute point-wise intra-class correspondences.
To deal with the attention mechanism large memory re-
quirement, we set a maximum number of P points per
segment, which are randomly sampled. After sampling P
points for each segment, we input the segments St1 point-
wise features to the Transformer projection head, followed
by another self-attention Transformer encoder as a predic-
tor. We then get for each segment the P point-wise feature
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Figure 5. Diagram of the implicit clustering scheme. We pool
the segments St1 and St2 from the backbone features. For t2,
we compute a mean representation for each segment and project it
with the Transformer projection head. For t1, we project the point-
wise features and then use the Transformer predictor to predict the
corresponding mean representation from t2, clustering the point-
wise features close to its mean target representation.

vectors st1 ∈ RM×P×D.
With the segment target mean representations st2 and

the predicted point-wise feature vectors st1 for each seg-
ment, we compute the loss to minimize the differences be-
tween the point features and the corresponding segment
mean representation. For each point p from a segment m,
we compute the temperature-scaled cosine similarity δt1→t2

m,p,k

between the normalized point-wise embedding st1m,p ∈ RD

and the mean representation st2k ∈ RD from a segment k as:

δt1→t2
m,p,k =

(st1m,p)
⊤st2k

τ
. (1)

Next, we use the cross-entropy loss to maximize the sim-
ilarity between each point p from a segment m and the cor-
responding target segment mean representation as follows:

lt1→t2
m = −

P∑
p=1

log

(
exp(δt1→t2

m,p,m)∑M
k exp(δt1→t2

m,p,k )

)
. (2)

We compute this loss for all the M segments and sum
it to get the loss for predicting segments from t2 with the
points of the segments from t1:

Lt1→t2 =

M∑
m=1

lt1→t2
m . (3)

With this formulation, our task is to predict for each point
in the segment at time t1 the corresponding segment at t2.
Since the target for all the P point embeddings st1m,p from
a segment m is the same mean segment representation st2m,
the loss will push all the points from a segment to converge
to a mean representation while separating from other seg-
ments, implicitly clustering together points from the same
object as shown in Fig. 5.

Lastly, we repeat the forward pass swapping t1 and t2
to have a symmetric representation, learning both the cor-
respondences from t1 → t2 and from t2 → t1 leading to:

LTARL = Lt1→t2 + Lt2→t1 . (4)

In the next section we give an intuition behind our choice
of projection head, and how it can help the model to learn a
more fine-grained representation during pre-training.

3.4. Transformer projection

Self-supervised representation learning methods [13, 14,
27] typically add a non-linear projection head to the back-
bone to project the embeddings to the target feature space.
The idea is that the backbone should learn general features,
and this projection head will overfit to the pre-training pre-
text task and later be discarded during fine-tuning. Our pro-
jection scheme follows more recent methods [15,25], which
shows that an asymmetric network can improve the learned
representation. Besides, with the prior that points from one
segment should be similar, we want to focus on the point-
wise relationship. Therefore, we replace the non-linear pro-
jection head with a self-attention Transformer encoder.

In our siamese network scheme, the online updated
network computes point-wise features. In this case, the
queries, keys, and values for our Transformer projector will
be point-wise features. We aim to learn intra-class features
with the attention mechanism and identify correspondences
between the points from one segment. In contrast, the mo-
mentum updated network computes a mean feature vector
for each segment. In this case, the attention mechanism
should look for similarities and differences within the dif-
ferent objects segments in the scene. By using the self-
attention over points and segments, we aim at learning at
the same time point-wise correspondences while also learn-
ing the differences between the different segments.

With the Transformer projector, the pre-training can lead
the learned features towards a more fine-grained representa-
tion, where intra-class point-wise features are matched with
the individual segment features. The supplementary mate-
rial provides ablations comparing the Transformer with the
commonly used non-linear projection head.

3.5. Pre-training overview

Secs. 3.1 to 3.4 explain the individual steps of our ap-
proach. This section summarizes the entire pre-training
pipeline, putting together the modules explained in the pre-
vious subsections.

Our pipeline shown in Fig. 2 fetches a batch sample Bb

of n sequential scans and applies a transformation to the
scans Pt with the corresponding poses to have all points
in a common coordinate frame. We use an unsupervised
ground segmentation approach to remove the ground G.
Next, we cluster the remaining points P̂ , defining coarse



Method Scribbles 0.1% 1% 10% 50% 100%

Scratch 54.96 29.35 42.77 53.96 58.27 59.03
PointContrast [67] 54.52 32.63 44.62 58.68 59.98 61.45
DepthContrast [75] 55.90 31.66 48.05 57.11 60.99 61.14
SegContrast [50] 56.70 32.75 44.83 56.31 60.45 61.02

TARL (Ours) 57.25 38.59 51.42 60.34 61.42 61.47

Table 1. Results (mIoU) of the models pre-trained on
SemanticKITTI fine-tuned to semantic segmentation on Se-
manticKITTI with different percentage of labels and scribbles.

segments S of the objects in the scene. We sample two
random scans at different times Pt1 and Pt2 from Bb, in
which we apply random augmentations T t1 and T t2 . We
compute point-wise features F t1 and F t2 from the sampled
point clouds with the backbone, and list the segments St1

and St2 with its corresponding point-wise features. We cal-
culate a mean embedding St2 for each segment m in Pt2

and compute the target representation st2 for each segment
with a Transformer projection head. For the segments St1 ,
we project the point-wise features with another Transformer
projector followed by a Transformer encoder as a predictor
to get the point-wise features st1 . Lastly, we compute the
loss to predict the corresponding segment representation at
t2 for each point in t1. We repeat the process changing t1
and t2 to symmetrically match points from scan t2 to the
corresponding segment at t1.

4. Experiments
Datasets. We use the SemanticKITTI dataset [4, 22] for

our pre-training, an autonomous driving LiDAR data bench-
mark with point-wise annotations. During pre-training, we
use only the raw point clouds from the training sequences
and the given poses to extract the temporal objects views.
For fine-tuning, we use SemanticKITTI with the full scans
annotations and the scribbles annotations [51]. Besides Se-
manticKITTI, we also use nuScenes [8, 64] for fine-tuning,
to evaluate our approach in different autonomous driving
datasets collected with different LiDARs and sensor setups,
reporting the results on the validation sets.

Model architecture. For our evaluation, we use a
MinkUNet [20] as the backbone, which voxelizes the point
clouds and uses sparse convolutions to extract features from
the point cloud. The backbone receives the point cloud co-
ordinates and intensity as input, and the output dimension
feature has dimension D = 96. We use a multi-head self-
attention encoder for the projection head with one layer and
eight attention heads. For the predictor, we use the same
multi-head self-attention encoder architecture. Further de-
tails on the backbone used in our experiments are provided
in the supplementary material.

Pre-training. For pre-training, we use the AdamW opti-
mizer [43] with a learning rate of 2·10−4 and decay of 10−4,

Method Mini Full

Scratch 26.94 66.03
Supervised pre-training 38.39 67.35

PointContrast [67] 31.92 67.31
DepthContrast [75] 27.81 64.70
SegContrast [50] 31.27 67.70

TARL (Ours) 39.36 68.26

Table 2. Results (mIoU) of the self-supervised and supervised pre-
trained models on SemanticKITTI fine-tuned to semantic segmen-
tation on nuScenes mini and full training sets.

Method KITTI nuScenes

Frozen backbone 4.10 5.62
PointContrast [67] 25.53 19.70
DepthContrast [75] 13.87 9.65
SegContrast [50] 27.42 23.75

TARL (Ours) 35.90 26.08

Table 3. Linear evaluation results (mIoU) on SemanticKITTI and
nuScenes datasets for semantic segmentation.

training for 200 epochs with batch size 8 using a single
NVIDIA RTX A6000. We use n = 12 for the scans to
be aggregated. We provide experiments with different num-
bers of scans in the supplementary material to support this
choice. The voxel resolution is set to 0.05m for the input
point clouds, from which we sample a maximum of 40, 000
points per point cloud. During the segment pooling, we
limit it to a total of M = 50 segments with a maximum
of P = 300 points per segment to avoid memory overflow.
We use τ = 0.1 to compute δ in Eq. (1) and momentum
of 0.999 to update the momentum network according to the
online network weights. For the baselines, we use their offi-
cial repositories with their default parameters, also training
them for 200 epochs and sampling 40, 000 points per scan.

Fine-tuning. To evaluate our method and compare it
with the baselines, we fine-tune the models to three down-
stream tasks: semantic segmentation, panoptic segmen-
tation, and object detection. For semantic segmentation,
we use the pipeline provided in SegContrast [50] with the
AdamW optimizer [43] and a learning rate of 0.001. For
panoptic segmentation, we use the baseline evaluated by
Hong et al. [29], where a 3D backbone network is used to-
gether with a semantic and an instance heads, followed by
a clustering post-processing to identify the instances. We
use the pre-trained MinkUNet model as the 3D backbone.
We use a learning rate of 0.2 with batch size 8, training
for 50 epochs. For object detection, we use the same tool-
box and hyperparameters used in DepthContrast [75] with
the PartA2 detector [57]. For all the tasks, we evaluate the
method with the same model trained from scratch (with-
out pre-training) and with the model after pre-training with



0.1% 1% 10% 50% 100%

Method PQ IoU PQ IoU PQ IoU PQ IoU PQ IoU

Scratch 4.76 11.13 22.72 30.84 47.20 53.53 55.32 61.94 55.40 59.75
PointContrast [67] 5.86 11.51 27.37 32.49 47.57 54.63 54.21 59.48 55.85 61.49
DepthContrast [75] 7.65 13.56 27.31 32.30 46.85 51.27 54.55 59.60 56.15 60.81
SegContrast [50] 7.58 14.46 26.14 32.85 47.02 53.47 55.38 60.04 56.73 61.96

TARL (Ours) 10.26 17.01 29.24 34.71 51.27 57.59 56.10 62.36 56.57 62.05

Table 4. Results (PQ and IoU) when fine-tuning the pre-trained models to panoptic segmentation with different percentage of labels on
SemanticKITTI.

Mini Full

PQ IoU PQ IoU

Scratch 23.78 23.96 52.98 58.17
Supervised pre-training 24.77 23.60 53.19 58.05

PointContrast [67] 26.58 25.46 51.06 56.39
DepthContrast [75] 28.66 27.30 51.51 57.06
SegContrast [50] 28.84 26.79 52.31 57.24

TARL (Ours) 32.22 30.73 53.26 59.14

Table 5. Results (PQ and IoU) of the self-supervised and super-
vised pre-trained models on SemanticKITTI fine-tuned to panop-
tic segmentation on nuScenes mini and full training sets.

the different self-supervised methods. The supplementary
material provides detailed information for each downstream
task training procedure.

4.1. Semantic segmentation

In this evaluation, we want to measure the informa-
tion about semantics learned by the network during pre-
training. We fine-tune it to semantic segmentation on
SemanticKITTI and nuScenes after pre-training on Se-
manticKITTI. For SemanticKITTI, we use the percentage
scans subsets used in SegContrast [50], with 0.1%, 1%,
10%, 50%, and 100% of the labeled scans. We also eval-
uate on the scribbles annotations [51], which labels just a
subset of points for each scan in the SemanticKITTI train-
ing sequences. We report the mean intersection-over-union
(mIoU) of the models on the validation set, while fine-tuned
on the aforementioned subset of labels from the training set.

Tab. 1 shows the results from our approach compared to
the baselines. As can be seen, overall the pre-training meth-
ods boost the performance compared to the network without
pre-training on both scribbles annotations and the subsets of
labeled scans. However, our approach surpasses previous
state-of-the-art methods in all the different subsets, with a
bigger gap when fewer labeled scans are used to fine-tune
the model. We can also notice that, after pre-training with
our method, only 10% of labeled scans were necessary for
the model to surpass the performance of the network trained
from scratch with 100% of the labeled scans. This result
suggests that our method can effectively reduce the amount

of labeled data necessary for the semantic segmentation task
by around ten times. In the supplementary material, we also
provide the IoU for each individual semantic class.

Generalization. In this experiment, we evaluate the gen-
eralization of the learned features. We use the network pre-
trained on SemanticKITTI and fine-tune it on nuScenes. We
use nuScenes full training set and the mini training subset
to fine-tune the network, and evaluate on the full valida-
tion set. In this evaluation, we also compare the results
of the fully supervised semantic segmentation pre-training
on SemanticKITTI fine-tuned on nuScenes. As shown in
Tab. 2, even though all methods can improve the perfor-
mance of the model trained on nuScenes, our approach can
surpass previous self-supervised methods by around 8%
when training with fewer labels. Besides, compared with
supervised pre-training of the network on SemanticKITTI,
our approach achieves better performance on both full and
mini training sets. These results suggest that our method
can replace supervised pre-training for LiDAR data, since it
achieved better performance when fine-tuning to a different
dataset, collected with a different sensor setup.

Linear evaluation. In this experiment, the pre-trained
backbone is frozen, training only a linear head on top of it
to evaluate how descriptive the self-supervised learned rep-
resentation is without fine-tuning it to the target task. We
perform this evaluation on SemanticKITTI and nuScenes
datasets. In Tab. 3, the randomly initialized network (frozen
backbone) achieves low performance, suggesting that the
features extracted by the backbone play the main role
in achieving semantic segmentation. All the pre-training
methods improve the performance compared to the net-
work without pre-training. However, our approach has a
clear performance gap compared to the baselines, especially
when training to the same dataset used for pre-training.
These results suggest that the representation learned by our
method can embed more semantic information, even though
not using labels, achieving higher performance than previ-
ous state-of-the-art methods on both datasets.

4.2. Panoptic segmentation

In this experiment, we fine-tune the pre-trained models
for panoptic segmentation to also evaluate the instance-level
features of our learned representation. Same as for semantic



Car Pedestrian Cyclist

Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

Scratch 91.75 82.13 80.16 67.65 63.13 57.73 91.74 74.94 70.34
PointContrast [67] 91.55 81.70 79.88 67.33 62.32 56.55 92.33 75.20 70.66
DepthContrast [75] 91.98 82.04 80.03 69.13 63.97 57.71 92.68 73.67 70.10
SegContrast [50] 92.08 82.10 80.18 68.72 63.77 57.36 91.26 74.70 70.28

TARL (Ours) 92.09 82.15 80.10 68.50 64.00 58.74 92.61 75.44 70.97

Table 6. Results (AP50) when fine-tuning the pre-trained models to object detection on KITTI full training set for car, pedestrian and cyclist
classes on the easy, moderate and hard difficult levels.

segmentation, we fine-tuned the model to SemanticKITTI
using the same percentage subsets and nuScenes using the
full and the mini training sets, reporting both the mIoU and
the panoptic quality (PQ) on the validation sets.

Tab. 4 shows that our method is consistently better than
previous self-supervised pre-training approaches. As the
amount of training samples increases, the differences di-
minish. However, our method has a clear performance gap
compared to the baselines when trained with fewer labels.

Generalization. To evaluate the generalization of our
learned features on panoptic segmentation, we use the
network pre-trained on SemantiKITTI to fine-tune it on
nuScenes full and mini training sets, evaluating it on the full
validation set. Tab. 5 shows that the representation learned
by our method was more suited to be transferred to a dif-
ferent dataset. As in semantic segmentation, our method
achieved better performance than previous self-supervised
approaches and supervised pre-training on SemanticKITTI.
These results agree with the semantic segmentation evalua-
tion, suggesting that our method is better suited for transfer
learning than the supervised pre-training.

With these experiments, we can validate that our learned
representations can extract not only semantic knowledge
from the data but also instance-level information, surpass-
ing previous methods in IoU and PQ metrics. In the supple-
mentary material, we provide further results, reporting also
the segmentation and recognition quality.

4.3. Object detection

As a third downstream task, we compare the methods
fine-tuned for object detection to evaluate how general is the
representation learned by our method compared with previ-
ous state-of-the-art methods. In this evaluation, we fine-
tune the model with the whole training set of the KITTI
dataset [22] and report the average precision (AP50) with
40 recall positions for car, pedestrian, and cyclist classes on
the three difficulty levels.

In Tab. 6, we can compare the baselines performance
with our approach. For the car class, the pre-training meth-
ods achieve a marginal improvement compared to the net-
work trained from scratch. For pedestrian and cyclist, the
improvements brought by the pre-training are more substan-

tial. On those classes, our method achieves the best perfor-
mance on moderate and hard difficulties, showing that our
approach can also boost the performance when fine-tuning
the model on object detection. In our supplementary mate-
rial, we provide further experiments with the different train-
ing subsets used by Zhang et al. [75].

Together with the evaluations of the other downstream
tasks, these results suggest that our method can learn a
general representation. Our method achieved better perfor-
mance than previous approaches on all three downstream
tasks, showing that our approach learns a robust representa-
tion, not biased to a specific task but showing generalizable
representations suitable for different tasks and datasets.

5. Conclusion
In this paper, we propose a self-supervised representa-

tion learning method for 3D LiDAR data evaluated in the
context of autonomous driving. We exploit the vehicle mo-
tion to extract different views of objects across time to learn
a temporally-consistent representation. We use a Trans-
former encoder as a projection head and implicitly clustered
points from the same object together while discriminating
between different objects. Our experiments show that our
method achieves better performance than previous state-of-
the-art approaches on different downstream tasks. Besides,
our approach could reduce the amount of necessary labeled
data to only 10% when fine-tuning for semantic segmenta-
tion on SemanticKITTI. These results show that our pro-
posed approach could learn a general LiDAR point cloud
representation, embedding semantic information by match-
ing objects representation viewed at different times. In ad-
dition, our method achieved better performance than super-
vised pre-training when transferring the learned represen-
tation to a dataset collected with different LiDAR sensors,
suggesting that our approach could replace supervised pre-
training in the LiDAR data domain.

Limitations. Despite encouraging results, there is space for
further improvement. For the unsupervised segment extrac-
tion, the clustering parameters have to be tuned depending
on the LiDAR used to collect the data. Also, we rely on
high-frequency data to properly segment dynamic objects.
Otherwise, temporal segments could be wrongly matched.
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[7] Borna Bešić, Nikhil Gosala, Daniele Cattaneo, and Abhi-
nav Valada. Unsupervised Domain Adaptation for LiDAR
Panoptic Segmentation. In Proc. of the IEEE Intl. Conf. on
Robotics & Automation (ICRA), 2022. 3

[8] Holger Caesar, Varun Bankiti, Alex H. Lang, Sourabh Vora,
Venice Erin Liong, Qiang Xu, Anush Krishnan, Yu Pan, Gi-
ancarlo Baldan, and Oscar Beijbom. nuScenes: A Multi-
modal Dataset for Autonomous Driving. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2020. 2, 6

[9] Ricardo J. G. B. Campello, Davoud Moulavi, and Jörg
Sander. Density-based clustering based on hierarchical den-
sity estimates. In Advances in Knowledge Discovery and
Data Mining, 2013. 3

[10] Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Pi-
otr Bojanowski, and Armand Joulin. Unsupervised Learn-
ing of Visual Features by Contrasting Cluster Assignments.
Proc. of the Conference on Neural Information Processing
Systems (NeurIPS), 2020. 1, 2, 4

[11] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou,
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