
Supplementary Material for
Temporal Consistent 3D LiDAR Representation Learning

for Semantic Perception in Autonomous Driving

Abstract

This supplementary material provides more detailed information for the proposed pre-training method and fine-tuning,
with further ablations and results. Appendix A provides diagrams of the backbone used in our experiments and the fine-
tuning pipelines for the three downstream tasks. Appendix B shows examples of the sampled temporal views from the batches
during pre-training. Next, we show ablations regarding the individual modules of our method in Appendix C. Finally, we
provide further results on the fine-tuned downstream tasks in Appendix D and qualitative results for semantic and panoptic
segmentation in Appendix E. Furthermore, we provide our code within this supplementary material.

A. Diagrams
This section shows the diagrams of the backbone used in our experiments and the pipeline for the fine-tuned downstream

tasks. Appendix A.1 shows the diagram of the backbone model used in our evaluation. Appendix A.2 presents the network
diagrams during fine-tuning, where Appendix A.2.1 shows the diagram for the semantic segmentation task, Appendix A.2.2
for the panoptic segmentation, and Appendix A.2.3 for the object detection task.

A.1. Backbone network
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Figure 1. Diagram of the MinkUNet backbone used in the main paper. The backbone used a ResUNet architecture implemented with
sparse operations implemented by the Minkowski Engine [4] library. The Mink ResBlock layers are downsampling layers with C residual
blocks and D output features. The Mink UpResBlock are upsampling layers also with C residual blocks and D output features.

We use the ResUNet implemented with the Minkowski Engine [4] library (MinkUNet) as the backbone to evaluate our
method. This library implements the commonly used deep neural network layers as sparse operations. This network voxelizes
the point cloud to then apply sparse convolutions over the voxelized point clouds to extract features. Fig. 1 depicts the used
backbone with output feature sizes for each layer, where D is the output feature size, and C is the number of residual blocks
for each layer.



A.2. Downstream tasks

To evaluate the pre-training methods, we fine-tune the pre-trained models to three tasks: semantic segmentation, panoptic
segmentation, and object detection. Also, to measure the amount of information extracted during pre-training, we evaluate
each downstream task with the full training set and fewer labels and compare the performance with the model trained without
pre-training. In all the tasks, we use the MinkUNet as the 3D backbone (see Appendix A.1), which is pre-trained with the
different self-supervised methods and compare the performance on each of the downstream tasks.

Percentage of labels 0.1% 1% 10% 50% 100%

Number of epochs 300 120 40 20 15

Table 1. Number of training epochs during fine-tuning to the different percentage of scans for semantic segmentation.

Training subsets. For semantic and panoptic segmentation on SemanticKITTI [2, 6], we use the 0.1%, 1%, 10%, 50%,
and 100% subsets of scans used by Nunes et al. [7]. Those subsets are randomly sampled scans from the entire training
sequences such that all classes are present. Besides that, the number of iterations decreases when training with fewer scans
for the same amount of epochs. To overcome that, Nunes et al. [7] increase the number of training epochs as the amount of
labels decreases. Therefore, as in SegContrast [7], we train for more epochs when fine-tuning with fewer labels on semantic
segmentation. The amount of epochs for each percentage of the training subset is listed in Tab. 1. For panoptic segmentation,
we use the same number of training epochs for all the label subsets. For object detection, we use the KITTI [6] dataset. In this
case, we use the subset of scans samples used by Zhang et al. [11]. In their evaluation, they randomly sample three subsets
of scans from the full training sequences and report the mean performance over the three subsets. We use the same subsets to
evaluate when training with 10% and 20% of scans. Lastly, for nuScenes [3, 9], we use the full training set and the provided
mini training subset. On all the datasets, we evaluate the fine-tuned model performance on the full validation set.
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Figure 2. Diagrams for semantic and panoptic segmentation used to fine-tune the pre-trained models to evaluate the different self-supervised
pre-training methods.

A.2.1 Semantic segmentation

For semantic segmentation, the pipeline is composed of a 3D point-wise feature extractor in which we used the MinkUNet.
Then the second module is a semantics extractor. In the pipeline provided by Nunes et al. [7], the semantics extractor is a
single linear layer to predict a semantic class for each point with the features extracted by the backbone. Fig. 2a depicts this
semantic segmentation pipeline.

A.2.2 Panoptic segmentation

The panoptic segmentation uses a 3D point-wise feature extractor in which we also use the MinkUNet. Together with the
3D backbone, we use a semantics extractor, the same as the one used in the semantic segmentation pipeline, and an instance
extractor. The instance extractor comprises an instance head layer, followed by a clustering step. The clustering step uses
the semantic predictions to filter stuff points, leaving only points belonging to things instances such as cars, pedestrians, and
bicyclists. After filtering out stuff points, the remaining points are clustered to identify the instances from the instance head



features. For clustering, we use mean shift [5] with bandwidth set to 1.2 and the minimum number of points per cluster as
50. The pipeline diagram is shown in Fig. 2b.

A.2.3 Object detection
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Figure 3. Diagram for object detection pipeline used for fine-tuning the pre-trained models to evaluate the different self-supervised pre-
training methods.

The object detection uses the same MinkUNet as a 3D point-wise feature extractor. However, first the voxel features are
replaced by the mean feature of the points inside the voxel. Next, the region of interest (RoI) module uses point-wise features
to extract object proposals from the full point cloud and uses the PartA2 head [8] to predict the final objects and their classes.
The object detection pipeline diagram is depicted in Fig. 3.

B. Temporal object views examples
This section presents examples of the sampled batches Bb sampled during pre-training. As explained in the main paper,

we segment the ground over the individual scans, aggregate the scans and cluster the remaining points to extract the temporal
object views. We segment the ground over the individual scans instead of the aggregated scans to save the ground labels in
a pre-processing step and save computation time during training. Figs. 4 to 8 show the aggregated scans P together with the
first scan P1, and the last scan P12, from the batch with n = 12. In the examples, it is also possible to see how moving and
static objects are associated in the different scans. Each extracted segment is colored with different colors. We highlight in red
the moving objects and in green the static objects. In those examples, the structures in the environment could be segmented
using our approach. And by keeping the index of the points we could extract views of the same object with very different
appearances, ensuring that both are from the same object. These views are also extracted from moving objects, tracking those
views even in high-speed scenarios such as a highway (see Fig. 6).



Figure 4. Example of the aggregated scans P and the first and last scan from the interval, i.e., P1 and P12. Moving objects are highlighted
in red, static objects highlighted in green. (Best viewed in color)

Figure 5. Example of the aggregated scans P and the first and last scan from the interval, i.e., P1 and P12. Moving objects are highlighted
in red, static objects highlighted in green. (Best viewed in color)



Figure 6. Example of the aggregated scans P and the first and last scan from the interval, i.e., P1 and P12. Moving objects are highlighted
in red, static objects highlighted in green. (Best viewed in color)

Figure 7. Example of the aggregated scans P and the first and last scan from the interval, i.e., P1 and P12. Moving objects are highlighted
in red, static objects highlighted in green. (Best viewed in color)



Figure 8. Example of the aggregated scans P and the first and last scan from the interval, i.e., P1 and P12. Moving objects are highlighted
in red, static objects highlighted in green. (Best viewed in color)

C. Ablations
This section presents further ablations regarding the pre-training step and its modules. Appendix C.1 compares the results

when using temporal views of the objects as augmented pairs compared with using only data augmentation to generate the
pairs. Next, Appendix C.2 reports results comparing the pre-training using the commonly used non-linear projection head
with the Transformer projection head. Lastly, Appendix C.3 presents the results using a different number of scans n to extract
the temporal views of the objects.

In these ablations, we evaluate the network by fine-tuning the pre-trained network on semantic segmentation. We compare
the results in the lowest label regimes, i.e., 0.1%, 1%, and 10%, since those are regimes with more significant performance
differences between the methods. Besides, we compare the linear evaluation results to measure the amount of semantic
information embedded in the different ablations.

C.1. Temporal views

0.1% 1% 10% Linear eval

D.A. only 38.40 50.08 59.98 28.50
Temporal views + D.A. 38.59 51.42 60.34 35.90

Table 2. Ablation comparing the pre-training performance using only data augmentation (D.A.) and our proposed temporal views extraction
together with the data augmentation.

In this ablation, we want to compare the performance of our method pre-trained with temporal views of an object as natural
augmented pairs instead of using only data augmented to generate artificial augmented pairs from the same scan. Tab. 2 shows
the results when generating augmented pairs using only data augmentation and when extracting temporal views of one object
and then applying data augmentation to generate the augmented pairs. As can be seen, extracting natural augmentations of
one object using the temporal views can boost the network performance when fine-tuning with different amounts of labels.
Also, the linear evaluation results suggest that by learning from views of the same object at different points in time, the
representation can extract more semantic knowledge during pre-training.



C.2. Transformer projection head

0.1% 1% 10% Linear eval

Non-linear projection head 38.19 50.22 56.54 32.27
Transformer projection head 38.59 51.42 60.34 35.90

Table 3. Ablation comparing the pre-training performance using a non-linear projection head and a Transformer encoder as a projection
head.

In this ablation, we compare the pre-training performance using the common non-linear projection head with the Trans-
former projection head. In this experiment, we use a non-linear projection head composed of one linear layer, a batch
normalization and a ReLU layer, and another linear layer. Tab. 3 shows that the network could achieve better performance
with the Transformer projection head when fine-tuning with different label percentages. Also, similarly to the results re-
ported in Appendix C.1, the linear evaluation suggests that the network pre-trained using the Transformer projection head
could learn a representation that embeds more semantic information, achieving better mIoU.

C.3. Different number of aggregated scans

Number of scans 0.1% 1% 10% Linear eval

30 36.36 44.14 56.41 32.27
18 38.19 45.76 58.39 32.50
15 38.15 50.44 57.84 33.52
12 38.59 51.42 60.34 35.90
9 38.30 51.82 57.42 35.97
6 38.75 51.37 59.57 36.88

Table 4. Ablation comparing the pre-training performance using a different number of n scans interval to extract temporal views of the
objects.

In this ablation, we pre-train the network with different n values for the number of scans in the interval to extract the object
views. We report the results in Tab. 4 to compare our chosen n = 12 with different sizes of the scans intervals. From n = 6
to n = 12, the results have just marginal differences. However, when fine-tuning with 10% of labels, we can see that the
pre-training with n = 12 achieves the best performance, also performing considerably better than the network trained from
scratch with 100% of labels (as reported in the main paper). Furthermore, when using bigger n the network performance
decreases. Therefore, we decided to stick with the n = 12 as reported in the main paper.

C.4. Positional encoding

0.1% 1% 10% Linear eval

With positional encoding 38.81 49.79 59.68 35.89
Without positional encoding 38.59 51.42 60.34 35.90

Table 5. Ablation comparing the pre-training performance with and without positional encoding.

For Transformer encoders, positional encoding is usually used together with the input embeddings [1]. However, we do not
use the positional encoding in our method. In this section, we report the results with and without the positional encoding. As
shown in Tab. 5, the network trained without positional encoding achieves better performance than with positional encoding.
We hypothesize that the backbone needs to extract less information from the input point clouds when inserting positional
information in the Transformer projection head, performing worst when fine-tuning the pre-trained model. Therefore, we
decided to remove the positional encoding from our pre-training scheme.



D. Further results
This section reports further results on all three downstream tasks in which we fine-tuned the pre-trained models. First, we

discuss the baselines adaptations for pre-training on LiDAR data in Appendix D.1. Second, we present in Appendix D.2 the
IoU for each class in both SemanticKITTI [2, 6] and nuScenes [3, 9] datasets. Next, Appendix D.3 presents the recognition
quality (RQ) and segmentation quality (SQ) results. Lastly, in Appendix D.4, we present the results for object detection in
KITTI dataset [6] fine-tuned with the subsets of labels used by Zhang et al. [11]. In all the experiments, we compare our
method with the same baselines used in the main paper, i.e., PointContrast (PC), DepthContrast (DC), and SegContrast (SC).

D.1. Baseline adaptations

Given that the PointContrast baseline was thought for indoor data, some adaptations were necessary to pre-train the
model using LiDAR data. To pre-train the model using PointContrast, it was necessary to adapt the pre-processing step to
find correspondences between points in sequential scans. To do so, we have used the poses provided in SemanticKITTI to
aggregate the scans. Then, using the code available in the original PointContrast repo, we have associated points with their
nearest neighbor in the aggregated point cloud to define the point-wise positive pairs to be used during pre-training. For the
other baselines, SegContrast and DepthContrast, no adaptation was necessary.

D.2. Semantic classes IoU

In this section, we report the IoU for the individual classes after fine-tuning to SemanticKITTI [2, 6] and nuScenes [3, 9]
datasets. For SemanticKITTI, we report the results after fine-tuning the network with the linear evaluation setup and fine-
tuning with the 10% subset labels used by Nunes et al. [7]. For nuScenes, we report the results also after the linear evaluation
setup training and after fine-tuning with the mini training subset.
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Scratch 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 30.10 0.0 1.53 0.0 3.60 0.0 42.67 0.0 0.0 0.0 0.0 4.10
PC [10] 90.76 0.0 0.0 0.02 1.82 0.0 0.0 0.0 66.94 0.0 41.61 0.0 85.99 11.02 77.45 41.19 58.76 9.53 0.02 25.53
DC [11] 37.36 0.0 0.0 0.0 0.01 0.0 0.0 0.0 45.00 0.01 17.73 0.0 44.02 10.09 59.94 14.88 20.25 13.14 0.0 13.87
SC [7] 82.18 0.0 0.81 0.26 2.09 8.01 0.41 0.0 55.83 0.74 27.11 0.0 80.02 26.39 81.16 46.65 40.33 49.91 19.13 27.42

TARL 87.12 0.0 0.20 0.06 0.06 36.47 53.53 0.0 57.70 3.18 25.14 0.0 82.84 29.38 80.61 55.76 48.21 50.87 36.85 35.90

Table 6. Linear evaluation results after pre-training on SemanticKITTI and training a linear head on top of the frozen backbone also on
SemanticKITTI, reporting IoU for each class, where PC stands for PointContrast, DC for DepthContrast and SC for SegContrast.

Tab. 6 shows the IoU for each class in SemanticKITTI after training only a linear head on top of the frozen pre-trained
backbone. In the classes where our method does not have the best performance, we can notice that our results are close to the
best ones. However, in some classes, such as person, bicyclist, and traffic sign, all the methods achieve poor performance,
even close to 0.0% IoU. In those classes, our method outperforms the baselines by a large margin.
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Scratch 94.56 3.40 33.55 65.68 39.40 42.31 65.98 0.03 90.54 40.10 75.33 0.17 90.54 53.44 88.49 63.38 75.48 57.22 45.56 53.96
PC [10] 95.08 26.96 55.71 70.01 45.42 62.37 81.37 0.51 91.17 40.88 74.90 1.30 90.58 48.72 86.64 60.36 72.46 60.28 50.17 58.68
DC [11] 94.67 9.81 51.06 64.15 37.16 54.86 77.89 0.0 91.25 38.16 76.40 0.91 90.73 53.05 88.86 66.54 75.67 60.65 53.28 57.11
SC [7] 94.55 9.89 54.31 58.98 39.46 54.48 74.71 0.0 90.15 37.71 73.75 0.05 90.18 53.67 89.08 60.86 76.61 60.10 51.35 56.31

TARL 95.42 29.28 57.23 70.48 50.58 60.78 79.89 2.54 91.77 42.04 76.67 0.28 91.02 55.77 88.92 63.74 75.91 60.99 53.09 60.34

Table 7. Results after pre-training on SemanticKITTI and fine-tuning to it with 10% of the labels, reporting IoU for each class from
SemanticKITTI dataset, where PC stands for PointContrast, DC for DepthContrast and SC for SegContrast.

Tab. 7 shows the individual classes IoU after fine-tuning the pre-trained networks to the 10% labels subset. In these results,
we can see that after fine-tuning with 10% of the labeled scans, our method achieved the best performance in most of the
classes compared to the previous methods. When computing the mIoU, we can see that those improvements brought by our
network achieve an outstanding performance compared to the baselines.
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Scratch 0.08 0.0 0.20 4.01 0.0 0.14 0.0 0.0 0.0 0.0 47.60 0.0 0.0 0.31 34.41 3.25 5.62
PC [10] 4.97 0.0 0.0 59.23 0.01 0.03 1.40 0.52 0.01 9.30 73.08 0.0 12.55 36.47 56.91 60.75 19.70
DC [11] 0.14 0.0 0.08 15.94 0.0 0.0 0.59 0.0 0.04 2.16 61.60 0.0 0.06 3.34 43.36 27.13 9.65
SC [7] 10.05 0.0 0.37 63.18 0.06 15.43 16.18 0.70 0.74 20.33 72.42 0.31 9.34 35.12 67.05 68.77 23.75

TARL 12.03 0.10 5.16 63.44 0.02 23.31 31.73 7.36 0.43 20.95 72.18 0.12 5.92 39.80 65.70 68.98 26.08

Table 8. Linear evaluation results after pre-training on SemanticKITTI and training a linear head on top of the frozen backbone on nuScenes,
reporting IoU for each class from nuScenes dataset, where PC stands for PointContrast, DC for DepthContrast and SC for SegContrast.

In Tab. 8, we report the results after pre-training on SemanticKITTI and training a linear head on top of the frozen pre-
trained backbone on the nuScenes dataset. In this transfer learning setup, our method could better transfer the knowledge
extracted from one dataset to the other. In most classes, our method outperforms the baselines achieving the best overall
performance (mIoU).
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Scratch 20.49 0.0 6.75 53.66 2.28 0.0 10.35 0.36 7.02 17.78 86.29 13.46 33.22 40.65 66.24 72.41 26.94
Sup. pre-train 29.63 0.0 19.93 76.57 7.52 11.15 44.23 10.69 8.45 33.01 89.99 21.00 47.43 60.73 76.68 77.17 38.39

PC [10] 21.73 0.0 15.64 71.68 5.08 0.0 20.86 2.29 7.03 16.94 88.60 15.60 40.31 55.99 73.22 75.70 31.92
DC [11] 20.03 0.0 8.82 62.35 4.71 0.63 13.37 2.74 8.40 20.07 85.51 13.45 33.26 37.07 64.07 72.09 27.81
SC [7] 23.50 0.0 10.73 71.70 5.10 0.22 28.80 8.47 8.16 18.72 84.39 16.55 33.27 45.10 69.89 75.66 31.27

TARL 24.59 0.0 21.95 74.27 6.97 41.69 42.70 11.18 8.18 37.50 88.54 19.39 41.68 55.64 76.36 79.05 39.36

Table 9. Results after pre-training on SemanticKITTI and fine-tuning on nuScenes mini training subset, reporting IoU for each class from
nuScenes dataset, where PC stands for PointContrast, DC for DepthContrast and SC for SegContrast.

Lastly, we evaluate the network pre-trained on SemanticKITTI by fine-tuning it to nuScenes mini training subset, reporting
the results in Tab. 9. In this evaluation, we also compare the network fully supervised pre-trained on SemanticKITTI, and
fine-tuned to nuScenes. The table shows that the supervised pre-trained network achieves the best performance in most of the
classes, which is expected since it has been trained for semantic segmentation even though using a different dataset. However,
our method achieves a performance close to the supervised pre-trained network in those classes and surpasses it by a large
margin in some classes, e.g., motorcycle and truck. In the overall performance (mIoU), our method outperforms both the
baselines and the fully supervised pre-trained network.

D.3. Panoptic segmentation

In this section we report the recognition quality (RQ) and segmentation quality (SQ) in addition to the panoptic quality
and mIoU reported in the main paper.

0.1% 1% 10% 50% 100%

Method RQ SQ RQ SQ RQ SQ RQ SQ RQ SQ

Scratch 7.70 15.17 30.57 57.34 57.31 73.81 65.52 77.11 55.40 77.43
PC [10] 9.29 18.48 36.83 58.93 57.62 75.12 64.37 77.34 66.04 78.02
DC [11] 11.70 19.45 36.35 55.76 56.94 70.92 64.61 73.97 66.43 80.89
SC [7] 11.79 22.10 34.79 58.91 57.01 71.41 65.75 73.75 67.20 82.08

TARL 15.36 22.75 38.02 60.25 61.38 77.24 66.53 77.66 66.38 83.21

Table 10. Results (RQ and SQ) when fine-tuning the pre-trained models to panoptic segmentation with different percentage of labels on
SemanticKITTI, where PC stands for PointContrast, DC for DepthContrast and SC for SegContrast.

Similarly to the results reported in the main paper, the RQ and SQ reported in Tab. 10 show that our method outperforms
the baselines in those metrics. These results suggest that our method can extract semantic and instance-level information
during pre-training.



Mini Full

Method RQ SQ RQ SQ

Scratch 30.82 58.82 63.25 69.23
Sup. pre-train 31.82 60.90 63.49 69.31

PC [10] 34.20 60.46 61.06 68.98
DC [11] 36.64 62.16 61.73 68.91
SC [7] 36.48 62.52 62.57 69.09

TARL 40.47 63.84 63.36 69.57

Table 11. Results (RQ and SQ) when fine-tuning the pre-trained models to panoptic segmentation on the full and mini training sets from
nuScenes, where PC stands for PointContrast, DC for DepthContrast and SC for SegContrast.

Tab. 11 reports recognition and segmentation quality results for the model pre-trained on SemanticKITTI and then fine-
tuned to nuScenes. As in the results reported in the main paper, our method outperforms the baselines and performs better
than the fully supervised pre-training in almost all the evaluations. These results suggest that our approach could replace the
supervised pre-training on LiDAR data domain.

D.4. Object detection subsets

In this section, we report the object detection results using the training subsets used by Zhang et al. [11] in addition to
the results reported in the main paper. We pre-train the network with SemanticKITTI and report in this section the fine-
tuning using the KITTI training with 10% and 20% of labels. For both 10% and 20% subsets, three random subsets from the
100% scans are sampled. Then, the network is pre-trained in each random subset, and the reported results are the average
performance on the subsets. As in the main paper, we report the average precision (AP) with 40 recall positions for car,
pedestrian and cyclist, on all three difficulty levels.

Car Pedestrian Cyclist

Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

Scratch 86.86 73.17 69.73 70.34 62.87 55.98 87.94 69.12 64.96
PC [10] 85.92 73.62 69.48 71.04 64.67 58.09 87.28 67.51 63.29
DC [11] 86.72 72.80 69.58 69.52 63.36 56.51 87.77 68.95 64.85
SC [7] 86.61 74.29 70.56 69.98 64.19 57.24 88.95 70.22 65.81

TARL 85.66 72.08 67.53 70.12 62.63 55.51 87.06 67.20 62.94

Table 12. Results (AP) when fine-tuning the pre-trained models to object detection on 10% training subsets from KITTI for car, pedestrian
and cyclist classes on the easy, moderate and hard difficult levels, where PC stands for PointContrast, DC for DepthContrast and SC for
SegContrast.

Tab. 12 presents the average of the results after fine-tuning the network with the three 10% label subsets. Unlike the
other downstream tasks, neither pre-training boosts the network performance compared with the model trained from scratch.
Instead, the differences between the baselines and the network trained from scratch are minor. Therefore, we report the best
performance in bold and the second best in gray. As can be seen, the network trained from scratch achieves the best or the
second best most of the time, showing that none of the pre-trainings could improve the performance when training with fewer
labels. Unlike the results reported in the main paper, our method does not achieve the best performance training with few
labels, however, all the methods achieve a performance similar to the network trained from scratch.



Car Pedestrian Cyclist

Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

Scratch 89.06 77.07 72.91 67.86 61.24 55.58 88.70 70.26 65.58
PC [10] 88.93 77.14 73.84 69.01 63.42 57.07 90.92 71.73 67.60
DC [11] 89.07 77.22 74.68 68.22 62.70 56.57 89.80 71.49 67.33
SC [7] 89.62 78.05 75.16 69.68 64.00 58.17 89.50 71.93 68.11

TARL 89.12 77.34 74.26 69.31 63.46 57.33 90.41 71.74 67.55

Table 13. Results (AP) when fine-tuning the pre-trained models to object detection on 20% training subsets from KITTI for car, pedestrian
and cyclist classes on the easy, moderate and hard difficult levels, where PC stands for PointContrast, DC for DepthContrast and SC for
SegContrast.

In Tab. 13, our network achieves the second best in most columns. However, similarly to Tab. 12, all the methods achieve
similar performance, with minor differences compared to the network trained from scratch. For object detection, we could
notice the most significant difference when training the model with the full labels, reported in the main paper, where our
method achieves the best performance.

E. Qualitative results
In this section, we provide qualitative results comparing the pre-training methods when fine-tuning them to semantic and

panoptic segmentation on SemanticKITTI dataset.

E.1. Semantic segmentation

In this section, we compare the semantic segmentation results between the network trained from scratch and after fine-
tuning with the different self-supervised pre-training methods with only 0.1% of the labeled scans for semantic segmentation.
Figs. 9 to 12 show the results comparison between the different methods and our proposed pre-training approach.

E.2. Panoptic segmentation

In this section, we compare the instance predictions from panoptic segmentation results between the network trained from
scratch and after fine-tuning with the different self-supervised pre-training methods with only 10% of the labeled scans for
panoptic segmentation. Figs. 13 to 16 shows the comparison of the results between the different methods and our proposed
pre-training approach.

References
[1] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin.

Attention is all you need. In Proc. of the Conference on Neural Information Processing Systems (NeurIPS), 2017. 7
[2] Jens Behley, Martin Garbade, Andres Milioto, Jan Quenzel, Sven Behnke, Cyrill Stachniss, and Juergen Gall. SemanticKITTI: A

Dataset for Semantic Scene Understanding of LiDAR Sequences. In Proc. of the IEEE/CVF Intl. Conf. on Computer Vision (ICCV),
2019. 2, 8

[3] Holger Caesar, Varun Bankiti, Alex H. Lang, Sourabh Vora, Venice Erin Liong, Qiang Xu, Anush Krishnan, Yu Pan, Giancarlo
Baldan, and Oscar Beijbom. nuScenes: A Multimodal Dataset for Autonomous Driving. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), 2020. 2, 8

[4] Christopher Choy, JunYoung Gwak, and Silvio Savarese. 4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Net-
works. In Proc. of the IEEE/CVF Conf. on Computer Vision and Pattern Recognition (CVPR), 2019. 1

[5] Dorin Comaniciu and Peter Meer. Mean Shift: A Robust Approach Toward Feature Space Analysis. IEEE Trans. on Pattern
Analalysis and Machine Intelligence (TPAMI), 24:603–619, 2002. 3

[6] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for Autonomous Driving? The KITTI Vision Benchmark Suite. In
Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pages 3354–3361, 2012. 2, 8

[7] Lucas Nunes, Rodrigo Marcuzzi, Xieyuanli Chen, Jens Behley, and Cyrill Stachniss. SegContrast: 3D Point Cloud Feature Repre-
sentation Learning through Self-supervised Segment Discrimination. IEEE Robotics and Automation Letters (RA-L), 2022. 2, 8, 9,
10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20

[8] Shaoshuai Shi, Zhe Wang, Jianping Shi, Xiaogang Wang, and Hongsheng Li. From Points to Parts: 3D Object Detection from
Point Cloud with Part-aware and Part-aggregation Network. IEEE Trans. on Pattern Analalysis and Machine Intelligence (TPAMI),
43:2647–2664, 2021. 3



Scratch

Ground truth

PointContrast

DepthContrast

TARL (Ours)

SegContrast

Figure 9. Qualitative comparison between the network trained from scratch and after pre-training with the different pre-training methods
for semantic segmentation. We compare the baselines, PointContrast [10], DepthContrast [11], SegContrast [7] and our proposed method
TARL.
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Figure 10. Qualitative comparison between the network trained from scratch and after pre-training with the different pre-training methods
for semantic segmentation. We compare the baselines, PointContrast [10], DepthContrast [11], SegContrast [7] and our proposed method
TARL.
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Figure 11. Qualitative comparison between the network trained from scratch and after pre-training with the different pre-training methods
for semantic segmentation. We compare the baselines, PointContrast [10], DepthContrast [11], SegContrast [7] and our proposed method
TARL.
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Figure 12. Qualitative comparison between the network trained from scratch and after pre-training with the different pre-training methods
for semantic segmentation. We compare the baselines, PointContrast [10], DepthContrast [11], SegContrast [7] and our proposed method
TARL.
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Figure 13. Qualitative comparison between the network trained from scratch and after pre-training with the different pre-training methods.
The image shows the instance prediction from the panoptic segmentation. We compare the baselines, PointContrast [10], DepthCon-
trast [11], SegContrast [7] and our proposed method TARL.
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Figure 14. Qualitative comparison between the network trained from scratch and after pre-training with the different pre-training methods.
The image shows the instance prediction from the panoptic segmentation. We compare the baselines, PointContrast [10], DepthCon-
trast [11], SegContrast [7] and our proposed method TARL.
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Figure 15. Qualitative comparison between the network trained from scratch and after pre-training with the different pre-training methods.
The image shows the instance prediction from the panoptic segmentation. We compare the baselines, PointContrast [10], DepthCon-
trast [11], SegContrast [7] and our proposed method TARL.
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Figure 16. Qualitative comparison between the network trained from scratch and after pre-training with the different pre-training methods.
The image shows the instance prediction from the panoptic segmentation. We compare the baselines, PointContrast [10], DepthCon-
trast [11], SegContrast [7] and our proposed method TARL.
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