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Abstract—Semantic scene interpretation is essential for au-
tonomous systems to operate in complex scenarios. While deep
learning-based methods excel at this task, they rely on vast
amounts of labeled data that is tedious to generate and might
not cover all relevant classes sufficiently. Self-supervised rep-
resentation learning has the prospect of reducing the amount
of required labeled data by learning descriptive representations
from unlabeled data. In this paper, we address the problem of
representation learning for 3D point cloud data in the context
of autonomous driving. We propose a new contrastive learning
approach that aims at learning the structural context of the
scene. Our approach extracts class-agnostic segments over the
point cloud and applies the contrastive loss over these segments
to discriminate between similar and dissimilar structures. We
apply our method on data recorded with a 3D LiDAR. We show
that our method achieves competitive performance and can learn
a more descriptive feature representation than other state-of-the-
art self-supervised contrastive point cloud methods.

Index Terms—Semantic Scene Understanding, Deep Learning
Methods, Representation Learning

I. INTRODUCTION

F INE-GRAINED scene interpretation is crucial to under-
stand the surroundings of a robot or autonomous vehicle.

Given the extensive research effort on convolutional neural
networks (CNNs) [23], [56], [5], 2D image tasks have been
defined and adapted to this scope, e.g., instance segmen-
tation [33], [53] or panoptic segmentation [32], [57]. For
3D scene understanding, we can employ semantic segmen-
tation [58], [43] to achieve a pixel-level classification of an
image. Such semantic information is important for autonomous
systems to interpret and safely interact with their surroundings.

Image data however does not provide straightforward 3D
information, which is also essential in this domain. LiDAR
sensors provide 3D information in the form of spatial positions
and intensity values as point-wise information. Such data is
often more challenging to interpret than images due to the
lack of color information and the sparser representation of the
objects. Therefore, many recent studies [34], [38], [40], [19],
[10], [44] focus on convolution operations applied to point
clouds to boost their performance.
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Fig. 1: Results trained with only 0.1% of the labels, trained from
scratch (middle), i.e., without any pre-training, and pre-training with
our approach SegContrast (bottom). With SegContrast pre-training,
the semantic segmentation can better delineate the structural infor-
mation in the scene and better classify the more fine-grained objects,
like trees, traffic signs and poles, highlighted by black arrows.

Supervised methods need a substantial amount of labeled
data to achieve high performance, which is particularly hard
to acquire for LiDAR data. Data annotation is expensive [3]
due to the density of measurements, which are sensor-specific
and also depend on the sensor mounting. For semantic seg-
mentation, point-wise labeling is required, making it even
harder to annotate. There are also fewer labeled LiDAR
datasets available compared to image datasets [11], [30].
Given the sensor-specific characteristics, learned features from
one dataset cannot be easily transferred to a dataset with a
different sensor setup. Therefore, recent work in this domain
address label efficiency [51], [27], [47] or transferability across
datasets [28], [29], [52], [1], [35].
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Self-supervised representation learning has the prospect of
using the data in an unsupervised way to learn a robust feature
presentation that can be transferred to different downstream
supervised tasks. One of the self-supervised learning methods
that received increasing attention recently is contrastive learn-
ing [22], [6], [7], [20], [8]. These methods take advantage
of data augmentation to generate augmented versions of one
anchor sample, then learn a representation to approximate
these augmented samples with similar features in the feature
space and put it apart from different samples. Based on the
pre-trained networks using this paradigm, the network is fine-
tuned for different downstream tasks.

The main contribution of this paper is a contrastive rep-
resentation learning method for 3D LiDAR point clouds that
is able to learn structural information. Our method extracts
segments from the LiDAR data and uses contrastive learning
to discriminate between similar and dissimilar structures. The
learned feature representation is then used as a starting point
for supervised fine-tuning, reducing the number of labeled
training data needed. Our results suggest that our method can
better learn the structural information (see Fig. 1) and a more
descriptive feature representation during the self-supervised
pre-training, surpassing previous point cloud-based contrastive
methods in different evaluations. We explicitly show that,
compared to the state of the art, our approach (i) is more
efficient when using fewer labels, (ii) can better describe
fine-grained structures, and (iii) is more transferable between
different datasets.

The implementation of our approach is publicly available at
https://github.com/PRBonn/segcontrast.

II. RELATED WORK

Contrastive learning methods are receiving increasing at-
tention in the vision community. Such methods improve the
performance of different image-based classification methods
using fewer or even no labels [45], [6], [7], [22], [20], [54], [8].
Contrastive learning takes advantage of data augmentation to
generate two distinct versions of one anchor sample, creating
a positive pair. Then, they train the network to learn a
feature representation that maximizes the similarity between
this positive pair and minimizes the similarity with other so-
called negative samples.

Recent contrastive learning works aimed at fine-grained
tasks, such as semantic segmentation [46], or object detec-
tion [24]. These methods apply the contrastive loss over
image segments extracted using a class-agnostic segmentation
approach. Such works improved the network performance
using the contrastive loss for pre-training [24], [46] or as an
auxiliary supervised loss [48], [37].

Point cloud data has been the source of extensive research
in the field of autonomous vehicles [21]. Much effort has
been dedicated to applying convolutional operations over point
cloud data either by projecting the point cloud to images [34],
[32], [49], [12] or by defining 3D convolution operations [38],
[40], [19], [10], [44]. Between both approaches, 3D con-
volutions gained recently more visibility on LiDAR data
due to their performance on different tasks, e.g., semantic
segmentation [58], [43] and panoptic segmentation [16], [57].

The compelling results of contrastive learning methods on
2D image data drew attention to the application of such
techniques on 3D data, especially in autonomous driving,
for example, for semantic segmentation [58], [43] and object
detection [9], [39] tasks. Xie et al. [50] address the point
cloud contrastive learning using a point-wise loss. However,
the point-wise contrastive loss depends on a involved pre-
processing to generate a map of correspondent points between
sequential scans. Hou et al. [26] add more context to the
contrastive pre-training by dividing the scene into different
spatial partitions, learning both the feature representation and
the spatial partitioning of the points. Zhang et al. [55] propose
a more global contrastive loss. For each scan a pair of
augmented views are generated, i.e., the positive pair. Then,
the other augmented scans are taken as the negative samples,
computing the contrastive loss over extracted features from
the scans. However, their method relies on a multi-branch
architecture using two backbones, one for points and one for
voxels. Despite promising results, none of the methods focus
on point clouds generated by an automotive LiDAR sensor.

Our contribution is a contrastive representation learning
method for outdoor LiDAR data used in autonomous driving.
We extract class-agnostic segments from the point cloud and
propose a contrastive loss to be applied over the extracted
segments. Distinct from prior work, our representation learning
method learns more contextualized information by discriminat-
ing the segmented structures on the point cloud and it learns
a more robust and descriptive embedding space.

III. OUR APPROACH

Fig. 2 provides an overview of our approach. We rely
on a class-agnostic point cloud segmentation to segment the
structures in the scene. Unlike most prior work, our method
uses a single backbone and does not require a point-wise
mapping. We use a momentum encoder network and a feature
bank [22] during training to increase the number of negatives
samples and contrast structures segmented over different scans.
Then, point-wise features are computed for the whole point
cloud and the mapping of the segment is used to extract
the segment-wise points and features. We apply dropout [42]
and global max pooling for each segment and compute a
feature vector using an MLP projection head [6]. After that, we
calculate the contrastive loss over the segments and update the
feature bank with these segments features. In the next sections,
we provide more details on the individual parts of our method.

A. Unsupervised Segment Extraction

Our method relies on segments of different structures in the
point cloud. In outdoor LiDAR data, the different objects in a
scene are mainly connected by the ground and usually better
separated compared to indoor scenes. Given this characteristic,
it is comparably easy to extract segments without labels in
two steps by removing first the ground and then clustering the
remaining points [4], [25], [18].

Given a point cloud P = {p1, . . . ,pN} with |P| = N
points pi ∈ R3, we can fit the ground plane and partition
the point cloud into ground G and non-ground points P ′,

https://github.com/PRBonn/segcontrast
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Fig. 2: (A) From a point cloud P , we generate the augmented views Pq and Pk by data augmentation and extract class-agnostic segments
S from P . We compute the point-wise features Fq and Fk and determine the augmented segments Sq and Sk with its point-wise features
using the point indexes of S extracted from P . Then, we apply dropout followed by global max pooling over each segment, and we project
the segment feature vectors using the projection head to get the final features sq

m and sk
m from the M segments and compute the contrastive

loss. (B) After the pre-training, we fine-tune the pre-trained backbone for the downstream task, i.e., semantic segmentation.

such that P = P ′ ∪ G and P ′ ∩ G = ∅, similarly to prior
approaches [4], [25]. Then, using a clustering algorithm, we
can divide P ′ into M segments Sm, such that P ′ =

⋃M
m=1 Sm

and
⋂M

m=1 Sm = ∅, i.e., the segments are mutually exclusive.
Each segment Sm in this partition represents a different
structure from the original point cloud.

More specifically, we use RANSAC [15] to fit the ground
plane and define the ground G and non-ground points P ′.
Given the fitted plane and a distance threshold α, the inliers
(ground) and outliers (non-ground) points are partitioned. We
use DBSCAN [14] to cluster the non-ground points P ′ and
determine the segments Sm.

A common problem of such class-agnostic segmentation is
the aspect of over- and under-segmentation [4]. To overcome
this and extract representative segments, we define a minimum
number of points ε in a cluster to be considered a segment.
Moreover, since we will have a different number of segments
for every point cloud segmentation, we select the δ segments
with the highest number of points to avoid memory overflow
during training. The remaining segments are also added to the
set of ground points G.

Despite its simplicity, this segmentation method can divide
the scene into distinct structures, as illustrated in the Fig. 3.
To save computations while training, we cache the segments
after the first pass over the point clouds.

B. Segment Augmentation

With each point assigned to a segment, we apply data
augmentations to generate the segments augmented pairs Sq
and Sk. We extract random views, Pq and Pk, by cropping
a random cuboid region from the anchor point cloud P [55].
Then, we apply random augmentations individually over the

Fig. 3: From P , we extract the segments S and generate the
augmented views Pq and Pk. With the augmented views and the
segments given as point indexes, we can extract the set of augmented
segments Sq and Sk. We highlight some of the structures for a better
visualization of the segments (solid colored squares).

point clouds Pq and Pk. We use random rotation around the z
axis, random scale, random flip, random cuboid dropout [55],
point jittering, and rotation perturbations around x, y and z
axes to augment the views. All augmentations are combined
and applied once to each augmented view Pq and Pk.

By extracting a pair of views and applying those augmen-
tations on the point clouds, we indirectly apply augmentations
over the extracted segments, see Fig. 3 for an illustration.
Since we maintain the point segment assignments via the point
indexes during the augmentation, we can easily extract the
augmented segments Sq and Sk from the augmented views
and compute the contrastive loss.
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C. Segment Contrastive Loss

The contrastive loss function is designed to discriminate
between the positive and negative pairs. We use in this paper
the InfoNCE loss [45], together with the momentum encoder
and the feature bank proposed by He et al. [22]. For each
augmented sample feature vector q and its positive pair k in
the batch, the loss is calculated as:

Lq = − log
exp (q>k/τ)

exp (q>k/τ) +
∑K

i=1 exp (q
>f i/τ)

, (1)

where τ is a normalization temperature parameter and Q =
{f1, . . . ,fK} is the feature bank with |Q| = K implemented
as FIFO queue, which are used as negative samples.

In our case, we have two augmented views, Pq and Pk,
from the anchor point cloud P . We compute the point-wise
features Fq and Fk from both augmented views and extract
the augmented segments Sq and Sk from them. Then, we
pass the segments through the projection head to compute the
segment-wise feature vectors sqm and skm. Therefore, we define
our contrastive loss as a segment discrimination:

Lq=−
∑
m

log
exp (sq>m skm/τ)

exp (sq>m skm/τ) +
∑K

i=1 exp (s
q>
m f i/τ)

, (2)

where, as in Eq. (1), τ is a normalization temperature param-
eter and fk are the features from the feature bank as before.
Note that the number of segments M may vary for different
point clouds but is the same for the positive pairs Sq and Sk.

At the end of each iteration, the feature bank is updated
with the segment features from the current batch, maintaining
only the last K segments seen by the network.

D. Pre-training Pipeline

Given one input point cloud P and its augmented pair
Pq and Pk, we use the backbone to compute the point-wise
features Fq and Fk. We use the entire point cloud during
the backbone forward pass to learn the relationship between
the segments and the scene. Then, we extract the augmented
segments Sq and Sk from the point cloud with its point-wise
features. Next, we apply dropout and global max-pooling over
each segment to compute a feature vector. This feature vectors
are then passed through the projection head to get sqm and skm
and calculate the contrastive loss.

IV. IMPLEMENTATION AND EXPERIMENTAL SETUP

Our experimental setup follows the usual evaluations on
contrastive learning methods. First, we pre-train the back-
bone using our contrastive method. Then, we fine-tune it
on different setups for a more in-depth ablation. We used
the SemanticKITTI [3], [2], [17] and SemanticPOSS [36]
datasets for the self-supervised pre-training, both collected in
an outdoor urban environment. We compare our approach to
PointContrast [50] and DepthContrast [55], using their official
implementations for pre-training and data pre-processing. We
use MinkUNet [10] as the backbone, which employs sparse
convolutions for 3D processing.

For the class-agnostic segmentation, see Sec. III-A, we set
α = 0.25 cm, ε = 20 and δ = 50, which are the RANSAC

distance threshold, the minimum number of points per segment
and the maximum number of segments extracted per point
cloud, respectively.

For our pre-training, we use the stochastic gradient de-
scent (SGD) optimizer with a momentum of 0.9 and set the
learning rate to 0.12 and the weight decay to 0.0004. We use a
cosine annealing learning rate schedule [31] with a minimum
learning rate of 0.00012, following the pre-training scheme
used by Zhang et al. [55]. For all the methods, we randomly
sample 20, 000 points from the entire point cloud after data
augmentation to limit the number of points per sample, and
we pre-train the backbone for 200 epochs. Given the size of
SemanticKITTI, we use K = 8, 152 for the feature bank
of the DepthContrast method. For our approach, we set it
to K = 65, 536, with the temperature parameter τ = 0.1.
It is important to highlight that we have a bigger feature
bank since we save the M segments features extracted from
the point cloud instead of the complete point cloud. We use
the two linear layers proposed by Chen et al. [6] for our
projection head, which is also used in DepthContrast, and
we set p = 0.4 for the dropout layer. For our method and
DepthContrast, we use batch size 8, and for PointContrast, we
use batch size 16 to maintain the batch size 4 per GPU as in the
original paper. Given the PointContrast method characteristics,
it is known that batch size change may affect the approach
performance. However, we used the same cluster with four
NVIDIA GTX1080TI 12 GB GPUs for all evaluated methods
to make the comparisons as fair as possible.

For fine-tuning, we use the same datasets used for pre-
training, i.e., SemanticKITTI and SemanticPOSS. For the
semantic segmentation experiments, we use SGD with mo-
mentum of 0.9, learning rate of 0.24, and weight decay of
0.0004. We also use a cosine annealing scheduler with a min-
imum learning rate equal to 0.00024, following the semantic
segmentation setup used by Tang et al. [43]. We set the batch
size to 2 and randomly sample 80, 000 points per point cloud
during training. For the object detection experiment, we use
PointRCNN [41] as the base detector, and the same 5% label
set used by Zhang et al. [55] for a fair comparison. For
all the experiments, we use one NVIDIA RTX2080 Super
8 GB GPU. The experimental results are collected in the
validation sequences from both datasets, i.e., sequence 8 for
SemanticKITTI and sequences 4 and 5 for SemanticPOSS.
In both datasets, the validation sequences were not used for
pre-training or fine-tuning.

V. EXPERIMENTAL EVALUATION

We present our experiments to show the capabilities of our
method. We compare our method to the state of the art and
show that our approach (i) is more efficient when using fewer
labels, (ii) can better describe fine-grained structures and (iii)
is more transferable between different datasets.

A. Label Efficiency

The first experiment evaluates the robustness of the features
learned from the different representation learning methods
by fine-tuning it to the semantic segmentation task using
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Fig. 4: Qualitative results on three different validation scans (rows). We show results of the networks fine-tuned with only 0.1% of the
labels that are pre-trained with different contrastive methods or trained from scratch (without pre-training). We compare the results from
PointContrast [50], DepthContrast [55] and our method, SegContrast. With our pre-training, SegContrast, the fine-tunned network can better
distinguish the division between different structures, i.e., sidewalk and road, as shown by the highlighted areas (solid red circles).

TABLE I: Number of training epochs used for different label regimes
on SemanticKITTI

Label regime 0.1% 1% 10% 50% 100%

Number of epochs 300 120 40 20 15

TABLE II: Fine-tuning at different label regimes on SemanticKITTI
for semantic segmentation (mIoU)

0.1% 1% 10% 50% 100%

Without pre-training 25.59 41.70 53.87 58.34 59.63
PointContrast [50] 28.52 43.40 53.79 57.30 59.77
DepthContrast [55] 33.51 46.41 56.29 58.54 59.88

SegContrast (Ours) 34.78 47.41 55.21 58.33 60.53

the SemanticKITTI dataset. Since it is a larger dataset, we
can divide it into different label percentage regimes and
increasingly compare it to support our first claim. We define
five different label percentage regimes, i.e., using 0.1%, 1%,
10%, 50%, and 100% of the labeled training data, where we
select a fixed subset of scans from the dataset given the regime
percentage. Every subset is chosen from the entire dataset,
such that all the classes are present. When training with fewer
labels, the total number of training iterations will decrease
accordingly. Therefore, we increase the number of epochs as
we reduce the number of training scans to achieve convergence
at every label regime (see Tab. I).

Fig. 4 gives a qualitative comparison between the different
contrastive methods and the network without pre-training
when training with 0.1% of the labels. From the top views,
we observe that the network trained from scratch could not
learn much structural information, leading to a noisy division
between different structures. This same noisy division can be
seen in the other contrastive methods. Our approach better
learns the structural information of the point clouds, which

leads to better boundaries between different structures in the
scene. This improvement can also be seen in more fine-grained
classes, e.g., pole and traffic signs, shown in Fig. 1.

Tab. II shows the results on the different label regimes. All
methods perform better than training from scratch, i.e., without
pre-training, and the gap between the results diminishes as
the number of scans used for training increases. Our method
is better at lower label regimes. As the amount of labels
increases, DepthContrast achieves a comparable performance.
At the full label training, all the methods converge to a
similar result as training from scratch. This is expected since
the data used for pre-training, and fine-tuning are the same.
Moreover, Tab. III presents the per-class IoU at the lowest
label regime. It is possible to see that our method performs
better in the per-class IoU, outperforming previous approaches
in the majority of the classes. This evaluation shows that our
approach performs better when using fewer labels compared
to the other contrastive learning methods, being able to better
describe the different structures in the point cloud.

For a more complete evaluation, we also compare the meth-
ods fine-tuning to object detection. Tab. IV presents our results
on the object detection task on the KITTI dataset [17]. In this
experiment, we use the same 5% labels set used by Zhang
et al. [55]. With 100% of labels, the comparison between the
network without pre-training and the pre-trained models shows
no significant difference. Since we use KITTI for pre-training
and fine-tuning, this is expected since no new data is seen
during pre-training. With 5% of labels, it is possible to show
the gain of the pre-trained network. Except for the pedestrian
class, all the methods outperform the network without pre-
training by a large margin. In the car and cyclist classes,
our method surpasses previous methods in almost all the
difficulties. These results indicate that our approach can learn a
robust feature representation, outperforming previous methods
on different tasks when using fewer labels.
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TABLE III: Per-class IoU fine-tuning with 0.1% labels

Method mIoU road sidewalk parking building car vegetation trunk terrain fence pole traffic-sign

Without pre-training 25.59 72.46 46.53 7.51 78.43 78.79 82.15 26.01 63.48 17.68 9.02 1.29
PointContrast [50] 28.52 72.71 50.24 9.06 80.20 85.78 83.29 39.29 68.18 19.56 19.68 7.61
DepthContrast [55] 33.51 79.13 58.85 12.91 82.41 89.18 84.82 45.07 71.52 21.34 50.80 17.30

SegContrast (Ours) 34.78 80.32 61.53 14.70 81.99 89.05 84.18 49.34 70.25 21.53 50.89 29.93

TABLE IV: Fine-tuning with 5% and 100% of labels on KITTI for object detection (mAP with 40 recall positions)

Without pre-training PointContrast [50] DepthContrast [55] SegContrast (ours)

100% labels

Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

Car 91.46 81.77 79.92 91.44 81.83 79.85 91.79 81.48 79.90 91.97 80.17 79.79
Pedestrian 68.29 63.76 58.07 69.81 63.56 58.13 66.39 60.44 55.41 67.46 62.71 56.42

Cyclist 90.65 73.35 70.05 90.48 73.87 69.81 92.45 74.69 71.18 90.71 75.38 70.79

5% labels

Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

Car 79.33 63.83 58.92 80.83 66.52 61.70 82.32 67.61 62.59 82.62 68.27 64.41
Pedestrian 69.34 61.72 54.49 69.75 62.77 55.71 69.81 62.37 55.13 69.10 61.59 54.49

Cyclist 84.48 61.82 57.80 88.82 67.53 63.17 87.52 66.91 62.50 88.70 68.48 64.35

TABLE V: Linear evaluation mIoU and per-class IoU (%) pre-trained and evaluated on SemanticKITTI

Method mIoU road sidewalk parking building car vegetation trunk terrain fence pole traffic-sign

Without pre-training 4.29 30.61 2.72 0.0 5.56 0.02 42.39 0.0 0.05 0.24 0.0 0.0
PointContrast [50] 24.02 70.61 37.00 0.0 83.37 88.93 75.10 33.26 53.93 8.66 5.55 0.0
DepthContrast [55] 15.91 40.68 5.35 0.0 54.81 59.43 65.30 24.55 17.56 13.50 20.47 0.0

SegContrast (Ours) 23.36 59.02 30.83 0.5 71.68 80.23 73.13 34.56 37.51 15.68 40.59 0.19

TABLE VI: Pre-training with SemanticKITTI and fine-tuning on
SemanticPOSS with different label regimes (mIoU)

0.1% 1% 10% 50% 100%

Without pre-training 33.09 43.14 57.27 63.34 64.22
Supervised pre-training 42.88 54.40 60.22 64.26 64.54

PointContrast [50] 31.78 49.06 56.49 62.93 64.30
DepthContrast [55] 41.94 52.66 59.27 64.09 64.65

SegContrast (Ours) 43.69 55.21 60.33 64.58 64.86

B. Linear Evaluation

A typical experiment used for image-based contrastive
methods is the so-called linear evaluation. This evaluation
freezes the pre-trained backbone and trains only a linear layer
on top of it to compare how well the feature representation
can describe the different classes even without fine-tuning the
whole network. Our experiment follows the same setup, the
pre-trained backbone weights are frozen, and we train only
a linear segmentation head. The result of this experiment
supports our claim that our method can learn a feature repre-
sentation that better describe fine-grained structures.

Tab. V displays the results of the linear evaluation over
the different self-supervised contrastive methods and over the
randomly initialized network without pre-training for a lower
bound on the performance. DepthContrast shows the worst per-
formance in this evaluation, which indicates that the method
cannot learn a feature representation as descriptive as the other
methods. PointContrast shows a better performance, since
the method uses a point-wise contrastive loss. Furthermore,
when looking at the underrepresented classes, e.g., parking,
trunk, fence, pole or traffic sign, our method outperforms the

other methods. Thus, PointContrast achieves a higher mIoU
by learning the more represented classes, e.g., road, building.
In contrast, our method seems better suited to represent the
fine-grained classes.

C. Feature Representation Transferability

In this third experiment, we evaluate the transferability of
our learned feature representation. The results support our
claim that our method is more transferable between different
datasets. We use SemanticKITTI for unsupervised pre-training
of the backbone with different contrastive methods or use
the commonly used supervised pre-training. Then, we fine-
tune the differently pre-trained networks on the SemanticPOSS
dataset and compare their performance. SemanticPOSS is
smaller than SemanticKITTI, which gives a setup aligned
to standard image-based setting, where a larger dataset, e.g.,
ImageNet [13], is used for pre-training and then fine-tuning is
performed on smaller datasets.

Fig. 5 displays the network performance in different train-
ing epochs during fine-tuning. Here, we see a comparable
performance of the unsupervised and supervised pre-training.
As shown, after only one training epoch, our method shows
a considerably better performance than the other contrastive
methods and achieves the same performance as the supervised
pre-training. Even though our approach does not use any
labels, our method learns a feature representation comparable
with the supervised pre-training on SemanticKITTI. This result
suggests that our method can learn a more general feature
representation than previous methods and it seems to be more
suitable for fine-tuning on a different dataset.
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TABLE VII: Linear evaluation on SemanticPOSS with pre-training
on SemanticKITTI (mIoU)

Method mIoU (%) accuracy (%)

Without pre-training 6.32 42.46
PointContrast [50] 24.79 72.55
DepthContrast [55] 16.41 63.09

SegContrast (Ours) 31.51 73.51

TABLE VIII: Fine-tuning to SemanticPOSS with pre-training on
SemanticKITTI and SemanticPOSS using our method (mIoU)

Dataset Linear evaluation Fine-tune

Without pre-training 6.32 64.22
SemanticPOSS 29.68 64.31
SemanticKITTI 31.51 64.86

Tab. VI displays the results of the different contrastive
pre-training methods and the supervised pre-training on Se-
manticKITTI. The pre-training methods improve the network
performance at the lower label regimes, but the previous
contrastive methods cannot surpass the supervised pre-training.
However, our method outperforms both self-supervised and
supervised pre-training at all different label regimes. This
experiment indicates the robustness of the learned feature
representation when fine-tuning to a different LiDAR data,
exceeding even the supervised pre-training.

In Tab. VII, we show the linear evaluation over the Se-
manticPOSS with the network pre-trained on SemanticKITTI.
DepthContrast shows the lowest performance in this evalua-
tion, showing that the feature representation is less descriptive
when transferring to a different dataset compared to the other
methods. Our method surpasses the other approaches, outper-
forming them by a large margin. These results suggest that our
approach can learn a point cloud representation transferable
across different datasets and LiDAR sensors.

Finally, we evaluate the self-supervised pre-training on
SemanticKITTI and SemanticPOSS, fine-tuning it on Seman-
ticPOSS. In Tab. VIII, we show both the linear evaluation
and the fine-tuning. As we can see, the performance of the
pre-training on SemanticKITTI is better on both experiments.
We can see that we obtain a performance gain using a large
dataset for self-supervised pre-training. This also highlights
the generalization of the feature representation achieved by
our method. The pre-training on SemanticKITTI performed
better than on SemanticPOSS, even though both datasets were
collected with a different LiDAR sensors and different sensor
mounting positions.

VI. CONCLUSION

In this paper, we present a novel representation learning ap-
proach for LiDAR point clouds in outdoor environments. Our
approach exploits the characteristics of outdoor LiDAR data
to extract class-agnostic segments and applies the contrastive
loss over these segments. We evaluate our strategy on different
datasets and provide comparisons with other state-of-the-art
feature representation learning approaches. The experiments
suggest that our approach can learn a more robust feature
representation than previous works outperforming them on
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Without pre-training

Fig. 5: Comparison between contrastive pre-trained networks fine-
tuned to the SemanticPOSS dataset with the network trained from
scratch. At the beginning of training, our method shows a com-
parable performance to supervised pre-training on SemanticKITTI,
evidencing that our learned feature representation is as robust as the
supervised pre-training.

different downstream tasks. Furthermore, our self-supervised
feature representation seems to be more transferable when
fine-tuning on a different target dataset outperforming even
the supervised pre-training.
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[24] O.J. Hénaff, S. Koppula, J.B. Alayrac, A. van den Oord, O. Vinyals,
and J. Carreira. Efficient Visual Pretraining with Contrastive Detection.
arXiv preprint, 2021.

[25] M. Himmelsbach, F.v. Hundelshausen, and H.J. Wuensche. Fast Seg-
mentation of 3D Point Clouds for Ground Vehicles. In Proc. of the
IEEE Vehicles Symposium (IV), 2010.

[26] J. Hou, B. Graham, M. Niessner, and S. Xie. Exploring Data-Efficient
3D Scene Understanding With Contrastive Scene Contexts. In Proc. of
the IEEE/CVF Conf. on Computer Vision and Pattern Recognition
(CVPR), 2021.

[27] Q. Hu, B. Yang, G. Fang, Y. Guo, A. Leonardis, N. Trigoni, and
A. Markham. SQN: Weakly-Supervised Semantic Segmentation of
Large-Scale 3D Point Clouds with 1000x Fewer Labels. arXiv preprint,
abs/2104.04891, 2021.

[28] P. Jiang and S. Saripalli. LiDARNet: A Boundary-Aware Domain
Adaptation Model for Point Cloud Semantic Segmentation. In Proc. of
the IEEE Intl. Conf. on Robotics & Automation (ICRA), 2021.

[29] F. Langer, A. Milioto, A. Haag, J. Behley, and C. Stachniss. Domain
Transfer for Semantic Segmentation of LiDAR Data using Deep Neural
Networks. In Proc. of the IEEE/RSJ Intl. Conf. on Intelligent Robots
and Systems (IROS), 2020.

[30] T. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár,
and C.L. Zitnick. Microsoft COCO: Common Objects in Context. In
Proc. of the Europ. Conf. on Computer Vision (ECCV), pages 740–755,
2014.

[31] I. Loshchilov and F. Hutter. SGDR: Stochastic Gradient Descent with
Restarts. arXiv preprint, abs/1608.03983, 2016.

[32] A. Milioto, J. Behley, C. McCool, and C. Stachniss. LiDAR Panoptic
Segmentation for Autonomous Driving. In Proc. of the IEEE/RSJ
Intl. Conf. on Intelligent Robots and Systems (IROS), 2020.

[33] A. Milioto, L. Mandtler, and C. Stachniss. Fast Instance and Semantic
Segmentation Exploiting Local Connectivity, Metric Learning, and One-
Shot Detection for Robotics. In Proc. of the IEEE Intl. Conf. on Robotics
& Automation (ICRA), 2019.

[34] A. Milioto, I. Vizzo, J. Behley, and C. Stachniss. RangeNet++: Fast
and Accurate LiDAR Semantic Segmentation. In Proceedings of the
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), 2019.

[35] A. Nekrasov, J. Schult, O. Litany, B. Leibe, and F. Engelmann. Mix3D:
Out-of-Context Data Augmentation for 3D Scenes. In Proc. of the
Intl. Conf. on 3D Vision (3DV), 2021.

[36] Y. Pan, B. Gao, J. Mei, S. Geng, C. Li, and H. Zhao. SemanticPOSS: A
Point Cloud Dataset with Large Quantity of Dynamic Instances. arXiv
preprint:2002.09147, 2020.

[37] T. Park, A.A. Efros, R. Zhang, and J.Y. Zhu. Contrastive Learning for
Unpaired Image-to-Image Translation. In Proc. of the Europ. Conf. on
Computer Vision (ECCV), 2020.

[38] C.R. Qi, H. Su, K. Mo, and L.J. Guibas. PointNet: Deep Learning on
Point Sets for 3D Classification and Segmentation. In Proc. of the IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR), 2017.

[39] C.R. Qi, O. Litany, K. He, and L.J. Guibas. Deep Hough Voting
for 3D Object Detection in Point Clouds. In Proc. of the IEEE/CVF
Intl. Conf. on Computer Vision (ICCV), 2019.

[40] C. Qi, K. Yi, H. Su, and L.J. Guibas. PointNet++: Deep Hierarchical
Feature Learning on Point Sets in a Metric Space. In Proc. of the
Conference on Neural Information Processing Systems (NeurIPS), 2017.

[41] S. Shi, X. Wang, and H. Li. PointRCNN: 3D Object Proposal Generation
and Detection From Point Cloud. In Proc. of the IEEE/CVF Conf. on
Computer Vision and Pattern Recognition (CVPR), 2019.

[42] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov. Dropout: A Simple Way to Prevent Neural Networks from
Overfitting. Journal on Machine Learning Research (JMLR), 15:1929–
1958, 2014.

[43] H. Tang, Z. Liu, S. Zhao, Y. Lin, J. Lin, H. Wang, and S. Han. Searching
Efficient 3D Architectures with Sparse Point-Voxel Convolution. In
Proc. of the Europ. Conf. on Computer Vision (ECCV), 2020.

[44] H. Thomas, C. Qi, J. Deschaud, B. Marcotegui, F. Goulette, and
L. Guibas. KPConv: Flexible and Deformable Convolution for Point
Clouds. In Proc. of the IEEE/CVF Intl. Conf. on Computer Vision
(ICCV), 2019.

[45] A. van den Oord, Y. Li, and O. Vinyals. Representation Learning with
Contrastive Predictive Coding. arXiv preprint, 2018.

[46] W. Van Gansbeke, S. Vandenhende, S. Georgoulis, and L. Van Gool.
Unsupervised Semantic Segmentation by Contrasting Object Mask Pro-
posals. In Proc. of the IEEE/CVF Intl. Conf. on Computer Vision (ICCV),
2021.

[47] H. Wang, Y. Cong, O. Litany, Y. Gao, and L.J. Guibas. 3DIoUMatch:
Leveraging IoU Prediction for Semi-Supervised 3D Object Detection.
In Proc. of the IEEE/CVF Conf. on Computer Vision and Pattern
Recognition (CVPR), 2021.

[48] W. Wang, T. Zhou, F. Yu, J. Dai, E. Konukoglu, and L. Gool. Exploring
Cross-Image Pixel Contrast for Semantic Segmentation. arXiv preprint,
2021.

[49] B. Wu, A. Wan, X. Yue, and K. Keutzer. SqueezeSeg: Convolutional
Neural Nets with Recurrent CRF for Real-Time Road-Object Segmen-
tation from 3D LiDAR Point Cloud. In Proc. of the IEEE Intl. Conf. on
Robotics & Automation (ICRA), 2018.

[50] S. Xie, J. Gu, D. Guo, C.R. Qi, L. Guibas, and O. Litany. PointContrast:
Unsupervised Pre-training for 3D Point Cloud Understanding. In
Proc. of the Europ. Conf. on Computer Vision (ECCV), 2020.

[51] X. Xu and G.H. Lee. Weakly Supervised Semantic Point Cloud
Segmentation: Towards 10x Fewer Labels. In Proc. of the IEEE/CVF
Conf. on Computer Vision and Pattern Recognition (CVPR), 2020.

[52] L. Yi, B. Gong, and T. Funkhouser. Complete & Label: A Domain
Adaptation Approach to Semantic Segmentation of LiDAR Point Clouds.
In Proc. of the IEEE/CVF Conf. on Computer Vision and Pattern
Recognition (CVPR), 2021.

[53] X. Yuan, A. Kortylewski, Y. Sun, and A. Yuille. Robust Instance
Segmentation Through Reasoning About Multi-Object Occlusion. In
Proc. of the IEEE/CVF Conf. on Computer Vision and Pattern Recog-
nition (CVPR), 2021.

[54] J. Zbontar, L. Jing, I. Misra, Y. LeCun, and S. Deny. Barlow Twins:
Self-Supervised Learning via Redundancy Reduction. arXiv preprint,
abs/2103.03230, 2021.

[55] Z. Zhang, R. Girdhar, A. Joulin, and I. Misra. Self-Supervised Pretrain-
ing of 3D Features on any Point-Cloud. arXiv preprint, 2021.

[56] L. Zheng, M. Tang, Y. Chen, G. Zhu, J. Wang, and H. Lu. Improving
Multiple Object Tracking With Single Object Tracking. In Proc. of the
IEEE/CVF Conf. on Computer Vision and Pattern Recognition (CVPR),
2021.

[57] Z. Zhou, Y. Zhang, and H. Foroosh. Panoptic-PolarNet: Proposal-Free
LiDAR Point Cloud Panoptic Segmentation. In Proc. of the IEEE/CVF
Conf. on Computer Vision and Pattern Recognition (CVPR), 2021.

[58] X. Zhu, H. Zhou, T. Wang, F. Hong, Y. Ma, W. Li, H. Li, and D. Lin.
Cylindrical and Asymmetrical 3D Convolution Networks for LiDAR
Segmentation. In Proc. of the IEEE/CVF Conf. on Computer Vision and
Pattern Recognition (CVPR), 2021.


	Introduction
	Related Work
	Our Approach
	Unsupervised Segment Extraction
	Segment Augmentation
	Segment Contrastive Loss
	Pre-training Pipeline

	Implementation and Experimental Setup
	Experimental Evaluation
	Label Efficiency
	Linear Evaluation
	Feature Representation Transferability

	Conclusion
	References

