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Abstract— Robot navigation in outdoor environments is ex-
posed to detrimental factors such as vibrations or power
consumption due to the different terrains on which the robot
navigates. In this paper, we address the problem of actively
improving navigation by planning paths that aim at reducing
over time phenomena such as vibrations during traversal. Our
approach uses a Gaussian Process (GP) mixture model and
an aerial image of the environment to learn and improve
continuously a place-dependent model of such phenomena from
the experiences of the robot. We use this model to plan paths
that trade-off the exploration of unknown promising regions
and the exploitation of known areas where the impact of
the detrimental factors on navigation is low, leading to an
improved navigation over time. We implemented our approach
and thoroughly tested it using real-world data. Our experiments
suggest that our approach with no initial information leads the
robot, after few runs, to follow paths along which it experiences
similar vibrations or energy consumption as if it was following
the optimal path computed given the ground truth information.

I. INTRODUCTION

In outdoor environments, the choice of the specific path
that a robot should follow may have a significant impact on
its navigation. One of the aspects that affects navigation the
most is the terrain on which the robot drives. Consider for
example the scenario depicted in Fig. 1. The red path leads
the robot to the goal along the shortest path. However, this
might not be the best path as it follows on gravel, which
causes the robot to suffer strong vibrations (see Fig. 1 right)
during traversal. Strong vibrations can be problematic for
the robot’s perception capabilities, causing blurred camera
images [26] and noisy IMU data [5] that affect localization.
Furthermore, excessive vibrations might damage or affect
the durability of the robot hardware. Another critical aspect
for navigation is the energy consumption, particularly when
deploying the robot over long time or distance [16]. Despite
the longer traveled distance, the green path that in Fig. 1
follows on a paved road offers significantly lower vibrations
than following the red one while requiring a similar energy
expenditure. In comparison, the blue path, that follows on a
paved and on a dirt road, requires less energy while offering
a balanced experience in terms of traveled distance and
vibrations. Therefore, it is important to take these factors
into account to achieve the desired navigation behaviors.

In this work, we investigate the problem of improving
robot navigation by reducing detrimental factors such as
high vibrations or energy consumption during traversal. One
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Fig. 1: Robot navigation along three paths (left) on different terrains,
and the distance, the vibrations and the energy consumption that the
robot experiences to navigate along them (right).

approach to achieve this is to associate a cost to these
factors and to plan paths that minimize the costs. In reality,
however, vibrations and energy consumption of navigating in
an environment are unknown a priori, but can be observed
by the robot during navigation (e.g. by an IMU or an
energy monitor). There exist approaches that classify the
terrain types from online perception and arbitrarily assign
high costs to uneven grounds [28]. However, this might not
always reflect adequately the physical quantities that the
robot actually experiences while navigating. On the contrary,
we aim at learning a place-dependent model from robot’s
observations, and at exploiting this model for path planning.

The main contribution of this paper is a novel approach to
improve robot navigation over time from the experiences of
the robot. We propose to use a GP mixture model [24] for
learning a probabilistic model of the intensity of phenom-
ena such as vibrations or energy consumption that affect
navigation in an environment. We furthermore leverage an
aerial image of the environment for modeling predictions
on different terrains, without requiring training data or an
explicit terrain classifier. We exploit this GP model to plan
paths that aim at reducing the detrimental factors that affect
navigation while taking into account the model’s uncertainty
in order to achieve an exploration-exploitation trade-off.

In sum, our approach is able to (i) plan paths that
actively improve robot navigation in outdoor environments
by reducing over time the impact of a specific phenomenon
affecting navigation, (ii) learn an accurate place-dependent
probabilistic model of this phenomenon on different terrains
from the experiences of the robot, (iii) exploit an image
prior for improving the model accuracy while considering
a smaller number of observations.



II. RELATED WORK

In outdoor navigation, the terrain may cause undesired
effects on the robot such as high vibrations or power con-
sumption. Many robot navigation system such as Obelix [9]
navigate outdoors by planning paths using A∗ and by trying
to locally avoid rough terrains. For example, Wolf et al. [27]
use a laser range finders to classify traversable regions based
on the roughness of the terrain. Similarly, Wurm et al. [28]
train a self-supervised classifier using the vibration of the
terrain to avoid vegetated areas, while Suger et al. [22]
classify the terrain type using a 3D-Lidar and detect obstacles
accordingly. Instead, Berczi et al. [1] use a stereo camera
to learn the terrain assessment from human demonstration.
In these approaches, the cost of navigating on a specific
terrain is artificially defined by the user, e.g. grass is more
costly than asphalt. In contrast, we aim at learning a place-
dependent model directly from the robot’s observations.

Gaussian Processes [17] are commonly used to learn
spatial processes from observations. For example, Lang et
al. [10] model the 3D structure of the terrain using GPs,
while DGPOM [15] maps the motion information of the
dynamics in the environment. Tresp [24] introduces an
approach for mixing GPs that allows for modeling different
characteristics. Stachniss et al. [21] use this approach to
model gas distribution presenting multiple modes. Similarly,
we use a mixture of GPs to model the phenomena affecting
robot navigation that present different characteristics on
diverse terrains.

Many approaches combine GP models considering ad-
ditional information. For example, Cunningham et al. [3]
model the slippage for planetary rovers by combining GPs
with a visual terrain classifier; Silver et al. [18] exploit
satellite images to learn the traversal costs from human
demonstration; while Murphy et al. [13] use overhead images
to classify terrains and accordingly estimate the traversal
costs using GP models. We incorporate information from
an aerial image of the environment to learn our GP mixture
model, without requiring any explicit terrain classifier.

GP models offer an attractive representation for many
robotic applications. For example, Fentanes et al. [6] uses
a GP model for exploring the soil compaction in fields.
Another common application for GPs is environmental moni-
toring. Krause et al. [8] optimize the placement of the sensors
by maximizing the mutual information on a GP model. Ma
et al. [11] use a similar approach to select regions where
to collect data for persistent ocean monitoring. We exploit
a GP model to plan paths that aim reducing the impact
of undesired effects on robot navigation while exploring
unknown, promising areas.

Viseras et al. [25] address the problem of planning trading-
off exploration-exploitation by using a sampling-based al-
gorithm based on the mean entropy that maximizes infor-
mation gathering while minimizing the path cost. Marchant
and Ramos [12] instead use Bayesian optimization to plan
continuous informative paths that deal with the exploration-
exploitation trade off by maximizing the upper confidence

bound (UCB). A similar planning approach is used by
Souza et al. [19] for planning paths that collect data about
the roughness of the terrain while minimizing the robot’s
vibrations. The GP-UCB [20] algorithm formalizes a utility
function based on the UCB for GP optimization. Tan et
al. [23] adopt such utility function to plan paths that adapt the
exploration-exploitation trade-off for bathymetry monitoring.
We use a similar concept of confidence bounds to plan paths
that trade-off exploration and exploitation, but that guide the
robot early towards the goal through low-cost paths, without
requiring it to explore the whole environment.

III. GAUSSIAN PROCESS FOR LEARNING A MODEL FOR
ROBOT NAVIGATION

Given the robot’s observations of a specific physical quan-
tity during navigation in an environment, we aim at learning
a probabilistic model of its intensity over the environment.

A. GP Regression

An effective method for modeling spatial processes from
observations, such as a place-dependent cost function, is GP
regression [17]. A GP for a function f(x) is defined by a
mean function m(x) and a covariance function k(xi, xj). A
common choice is to set the mean function m(x) = 0 and
to use the squared exponential covariance function:

k(xi, xj) = ς2f · exp
(
−1

2

|xi − xj |2

`2

)
+ δijς

2
n, (1)

where θ = {`, ς2f , ς2n} are the so-called hyperparameters, and
represent respectively the length scale `, the variance of the
output ς2f and of the noise ς2n. Typically, the hyperparameters
are learned from the training data by maximizing the log
marginal likelihood.

Given a set of observations y of f for the inputs X, GP
regression allows for learning a predictive model of f at the
query inputs X∗ by assuming a joint Gaussian distribution
over the samples. The predictions at X∗ are represented by
the predictive mean µ∗ and variance σ2

∗ defined as:

µ∗ = K(X∗,X)KXX
−1 y,

σ2
∗ = K(X∗,X∗) −K(X∗,X)KXX

−1 K(X,X∗),
(2)

where KXX = K(X,X) + ς2n I, and K(·, ·) are matrices
constructed using the covariance function k(·, ·) evaluated at
the training and test inputs, X and X∗.

B. GP Model for Navigation on Different Terrains

Consider for simplicity a robot that navigates in a 1D
environment. It goes at first on pavement and then on gravel
observing the vibrations illustrated as circles in Fig. 2.
Given the observations and the corresponding locations, GP
regression can learn a model of the vibrations amplitude
over the environment by using Eq. (2). The resulting GP
is illustrated in Fig. 2 (left) where the black dotted line
is the predicted mean and the gray area represents the
2σ confidence bound of the prediction. The robot experiences
vibration intensities characterized by different modes while
navigating on pavement and on gravel. However, the GP tries
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Fig. 2: Models of the vibrations during robot navigation using single GP regression (left), and using a GP mixture model (right) composed
by two GPs (middle). The circles are the observed vibrations, the dotted lines are the mean prediction, the shaded areas correspond to
the 2σ confidence bound of the prediction. The blue-red gradient shows the terrain on which the robot navigates.

to learn a single characteristic that fits all of the data. This
results in a little informative model that smooths out the
peaks and the signal trends, and that, thus, might not capture
the reality well. If, for example, a peak corresponds to a stone
or an hole in the ground, a smooth GP model may cause the
robot to navigate through that location again.

IV. LEARNING A MODEL FOR NAVIGATION ON
DIFFERENT TERRAINS

Learning a GP with a single characteristic hardly fits situ-
ations in which the robot navigates on terrains with different
properties. Therefore, we propose to model the intensity of
a particular phenomenon that the robot experiences during
traversal using a mixture of Gaussian Processes [24]. We fur-
thermore propose to use an aerial image of the environment
to learn a model that accounts for both spatial proximity and
appearance similarity.

A. GP Mixture Model

A GP mixture model, first introduced by Tresp [24],
is a sum of m Gaussian Processes {GP1, . . . , GPm}
weighted according to a gating function that defines the
probability that a data point is associated to a compo-
nent of the mixture. Given the query input x∗, the gating
function φi(x∗) represents the probability that x∗ belongs
to the model specified by GPi. Therefore, the predictive
distribution N (µmix∗, σ

2
mix∗) at x∗ is given by

µmix∗ =
∑m

i=1
φi(x∗)µi∗,

σ2
mix∗ =

∑m

i=1
φi(x∗)

(
σ2
i ∗ + (µi∗ − µmix∗)

2
)
,

(3)

where N (µi∗, σ
2
i ∗) is the predictive distribution of GPi

at x∗. We compute the predictive mean µi∗ and variance σ2
i ∗

for each components by using Eq. (2) and considering the
probability that each data point belongs to the i-th component
of the mixture. We incorporate this probability by defining
the KXX term in Eq. (2) for the i-th component such that

KXX = K(X,X) + ς2n Ψi, (4)

where Ψi is a diagonal matrix such that ∀xj ,Ψ
i
jj =

1
φi(xj)

.
For the example introduced in Sec. III-B, we can learn a

more accurate model of the vibrations amplitude by using a
mixture of two GPs and a gating function defined according
to the ground on which the robot navigates (see Fig. 2
upper side). Given the observations, we learn the two GPs
using Eq. (2) and Eq. (4), and mix them using Eq. (3). The
resulting predictive model is illustrated in Fig. 2, middle and

right. As the mixture model can learn multiple characteris-
tics, it captures the trends of the different terrains without
smoothing out the peaks. It also provides better predictions
in the regions where there are no observations: the mean
prediction on pavement is lower than on gravel, improving
the informativeness of the model.

B. Learning the Gating Function from Observations

In this work, we assume that the robot does not know on
which terrain it navigates and, thus, no gating function for
the mixture model is available a priori. Instead of learning
an explicit terrain classifier that requires training data and a
pre-defined set of classes as in [13], we compute the gating
function directly from the robot’s observations during navi-
gation. To this end, first, we cluster the observations yvisited
obtained at the visited locations Xvisited using the mean-
shift algorithm [7]. This is a well-know clustering algorithm
which neither requires prior knowledge of the number of
clusters nor constrains their shape. It computes m cluster
centroids {C1, . . . Cm} by iteratively shifting the mean in
the direction that maximizes the density. We compute the
probability that a data point (x, y), with x ∈ Xvisited and
y ∈ yvisited, belongs to the cluster Ci as

φi(x) =
exp(‖y − Ci‖)∑m
j=1 exp(‖y − Cj‖)

. (5)

Given the probability of each observed data point to belong
to each of the clusters, we can compute a gating function
over the whole environment by training a classifier to predict
the probability φ for the non-visited locations. To this end,
we use m GP binary classifiers in which the inputs are
the visited locations Xvisited and the targets for the i-th
component are the probabilities φi(Xvisited). We consider
a simple binary discriminative GP classification obtained
by ‘squashing’ the output of GP regression into a class
probability using the linear logistic function. This procedure
exploits spatial proximity of the locations for learning the
gating function over the whole environment.

C. Aerial Image Prior for Learning the Gating Function

Using only spatial information for learning an accurate
gating function may require the robot to visit the whole
environment. Even little additional information can help to
speed up the learning process. One possible prior information
is that terrains with similar visual appearances may similarly
affect the robot navigation. We propose to use an aerial
image of the environment, for example from Google Earth



data, to incorporate this prior in the gating function. We
consider as input to the m GP classifiers that determine
the gating function both the visited locations Xvisited and the
corresponding colors in the aerial image I:

I(Xvisited) = {r(Xvisited), g(Xvisited), b(Xvisited)}, (6)

where r, g, b are the color channels of the image. In general,
we can consider any feature that can be computed for each
location in the image. As we consider different types of input
to the GP classifiers, we employ an automatic-relevance-
determination squared-exponential covariance function [14]
that implicitly determines the ‘relevance’ of each dimension.
Incorporating the aerial image for learning the gating func-
tion allows us for making predictions based not only on the
spatial proximity but that also on the location appearances.
This improves the informativeness of the model, especially
in regions that have not been visited yet, reducing need to
explore the whole environment.

V. ACTIVELY IMPROVING ROBOT NAVIGATION

For actively improving robot navigation, we aim at exploit-
ing the model introduced in Sec. IV for planning paths that
reduce over time the impact of a specific detrimental phe-
nomenon. To this end, we consider a function that maps the
intensity of this phenomenon to costs, and plan to minimize
these costs. In this work, we define this correspondence using
an identity function but, in general, any other function could
be considered, also as a combination of multiple factors.

When the robot starts to navigate in a new environment,
no information about the factors affecting the navigation
is available and, thus, our predictive model present large
uncertainty everywhere. Therefore, in the initial runs, the
robot should explore the high uncertainty regions to collect
informative observations for improving the model. The more
accurate is the model, the more the robot should navigate
through areas where the cost is likely to be low.

A. Planning to Improve Robot Navigation

We achieve this behavior by designing a tailored cost
function and by computing paths that minimize it. We
employ for path planning a generic graph search algorithm,
such as A∗ or Dijkstra, that allows us to formulate planning
as an explicit cost minimization problem. Therefore, we
consider a grid-map representation of the environment and a
corresponding discretization of our model, and we compute
a path to the goal by selecting at each iteration the node that
minimizes the cost of the path from the start to the node
itself, often referred as g-cost.

We exploit the probabilistic nature of our predictive model
to design a g-cost function that trades-off the exploration of
promising non-visited regions and the exploitation of known
low-cost areas. We define this g-cost at location x, g(x),
based on the lower confidence bound (LCB) of the predictive
distribution at x, N (µ, σ2):

g(x) = g(x′) + ‖x− x′‖ · softplus (µ− λσ) , (7)

where x′ is the previous location from which we expand the
search, λ > 0 defines the range of the confidence bound, and
the softplus function [4] is a rectifier.

Planning a path according to Eq. (7) minimizes at the
same time the lower confidence bound of the predic-
tions, (µ− λσ), and the distance to the goal with the
term ‖x− x′‖. The LCB provides a natural trade-off be-
tween exploration and exploitation [2]. The term µ is small at
locations with low-mean prediction, favoring low-cost paths.
Whereas, the term σ represents the possible improvement of
the prediction and favors paths through locations with high
uncertainty that could lead to the goal through a lower-cost
path. The LCB may, in general, assume negative values. In
this case, minimizing Eq. (7) may result in paths that explore
the whole environment rather than reaching the goal. A
simple idea to overcome this issue is to use a ReLU rectifier
that ensures that the values are always positive. However,
using ReLU causes that the well-known low-cost locations
have the same g-cost as locations with very large uncertainty.
Instead, we prefer that the robot navigates through regions
that are known to be low-cost over the ones that are very
uncertain. Therefore, we employ as rectifier the softplus
function that is a smooth approximation of ReLU defined as

softplus(x) = log(1 + exp(x)). (8)

Using such rectifier determines that the robot prefers low-
mean and low-uncertainty areas over medium-mean high-
uncertainty ones, and, in turn, prefers these areas over
medium-mean low-uncertainty ones.

This planning approach leads to a navigation behavior
that initially, when the predictive uncertainty σ is high,
explores the environment, while minimizing the distance to
the goal. This allows the robot for collecting observations
at informative locations without going for long exploratory
detours to reach the goal. As the robot collects observations,
the uncertainty σ decreases and the mean predicted cost µ be-
comes more prominent in Eq. (7). This leads the robot, over
time, to prefer low-cost short-distance paths over collecting
new observations at unknown less-promising locations.

B. Routine to Improve Robot Navigation Over Time

Algorithm 1 Our Approach (M, I)
1: Initialize µ,σ2, and Xvisited,yvisited are empty
2: for each navigation task from xstart to xgoal do
3: Xpath ← Plan path from xstart to xgoal (M,µ,σ2)
4: ypath ← Navigate following Xpath
5: Update Xvisited, yvisited including Xpath, ypath
6: C1:m ← Cluster data points (Xvisited,yvisited)
7: for each i ∈ m do
8: φi(Xvisited)← Compute gating data points (yvisited, Ci)
9: φi(X)←Learn gating function (Xvisited, φi(Xvisited), I)

10: µi,σ
2
i ← Learn GPi (Xvisited, yvisited, φi(X))

11: µ,σ2 ← Mix GP models (µ1:m,σ
2
1:m, φ1:m(X))

The routine of our approach for actively improving robot
navigation is illustrated in Alg. 1. It requires as input only
the grid-map M and an aerial image I of the environment.
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Fig. 3: Col.1: our Clearpath Husky robot. Col. 2: the least-cost paths (dotted lines) and the paths computed by our approach after
25 runs (solid lines) minimizing vibrations (red) and energy consumption (blue). Col. 3-4: the vibrations and the energy consumption
experienced during robot navigation following the approaches considered in Sec. VI-B.

We initialize our probabilistic model with a mean value and
high uncertainty over the whole environment (line 1). For
each navigation task that the robot is required to perform,
we consider the current model of the environment, denoted
as µ, σ2, and plan a path using the approach described
in Sec. V-A (line 3). The robot follows the path to the goal
(line 4) collecting the observations ypath during navigation.
Given the robot’s observations, yvisited, we cluster the data
points using mean-shift (line 6). For each cluster centroid Ci,
we compute the probability that an observation is associated
to it using Eq. (5) (line 8). Using these probabilities, we
compute the gating for the i-th component over the whole
environment X (line 9), as described in Sec. IV-C. Given
the gating function φi(X), we learn the corresponding model
using GP regression and Eq. (4) (line 10). We combine the
predictive models for each component using Eq. (3) (line 11),
and so we obtain an updated model that includes the robot’s
observations during the last navigation task.

VI. EXPERIMENTAL EVALUATION

The main focus of this work is an approach for actively
improving robot navigation by learning a model of the
phenomena affecting robot navigation and planning paths
that minimize their impact over time. Our experiments are
designed to show the capabilities of our method and to
support our key claims, which are: (i) planning paths that
reduce over time the impact of detrimental factors during
navigation, (ii) learning an accurate place-dependent model
for navigation on different terrains, (iii) improving the pre-
dictions while visiting a smaller number of locations by using
an aerial image of the environment.

A. Experimental Setup

The experiments we present in this paper use real-world
data recorded by the Clearpath Husky mobile robot illus-
trated in Fig. 3. In our evaluation, we consider vibrations or
energy consumption as the factors which we aim at reducing
to improve the navigation. We measure the intensity of the
vibrations of the robot from the acceleration of an IMU
along the z-axis, and the amount of energy consumption from
the data provided by the motor drivers. We use an average
filter to assign an intensity value to each cell of a grid-map
representation of the environment. For evaluation, we drove
the robot through three different environments consisting of
different terrains and collected data to construct the ground
truth models for vibrations and energy consumption. In our

experiments, the true models are unknown to the robot, it
can, however, obtain noisy observations in the locations that
it visits during navigation.

B. Planning to Improve Robot Navigation Over Time

We designed the first experiment to illustrate that our
approach is able to improve robot navigation by reducing
over time the detrimental factors that the robot experience
during traversal. To this end, we consider the environment
illustrated in Fig. 1, and two scenarios. In the first one, we
aim at minimizing the intensity of robot’s vibrations whereas,
in the second one, the amount of energy it consumes.

For each scenario, we required the robot to navigate from
start to goal 25 times. Fig. 3 illustrates the vibrations (col. 3)
and the energy consumption (col. 4) experienced by the robot
during traversal over time. We compare our approach with
the shortest path computed ignoring the vibrations/energy,
and with the true least-cost paths. As no information about
vibrations and energy consumption is initially available, our
approach plans at first a path analogous to the shortest path.
After 3-4 runs, our approach is able already to dramati-
cally reduce vibrations and energy. After 25 iterations, the
robot navigates by experiencing similar vibrations or energy
consumption as it would follow the true least-cost path. As
shown in Fig. 3 (col. 2), the robot follows on the paved road
for reducing the vibrations (solid red), and on a paved road
and dirt for reducing the energy consumption (solid blue).

We also compare our planning approach that employs
a softplus rectifier in the g-cost function with our approach
but employing a ReLU rectifier, as discussed in Sec. V-A.
We show in Fig. 3 (col. 3 and 4) that, using a ReLU rectifier,
the robot keeps exploring new regions rather than exploiting
the known low-cost areas. Therefore, it takes longer to
converge to a path along which the robot experiences low
vibrations/energy consumption.

C. Learning an Accurate Model for Navigation

The second experiment aims at showing that our approach
is able to learn a model that provides accurate predictions
about the intensity of the phenomena affecting robot nav-
igation on different terrains. To illustrate this, we consider
the two environments depicted in Fig. 4 (col. 1), and the
associated true vibrations models (col. 2). We require the
robot to navigate through the locations A,B,C,D as shown
in the figure, and to reduce over time the intensity of the
vibrations that it experiences during traversal. We compare
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Fig. 4: Col. 1: the two environments and the navigation tasks considered for the experiments described in Sec. VI-C. Col. 2-4: the true
vibrations models, the mean and the variance predictions provided by our approach after 25 runs. Col. 5: The difference of vibrations
experienced by the robot following the different approaches to the least-cost path.

TABLE I: Comparison of the models considered in Sec. VI-C.

Rms err. Mahal. dist. Rms err. Mahal. dist.

Single GP 16.15 265.84 15.364 316.28
GP mixture 9.29 132.52 9.43 150.24

Our approach 4.96 79.17 6.91 151.42

Site 1 Site 2

our approach that incorporates an aerial image in a GP mix-
ture model with two approaches that use the same planning
algorithm but model vibrations using a single GP (Single
GP), similar to the one described in Sec. III-B, and a mixture
of GPs not considering the aerial image (GP mixture).

The mean and the variance of the model learned by our
approach after 25 runs are illustrated in Fig. 4 (col. 3 and 4).
The mean prediction shows that our approach is able to
reconstruct most of the ground truth models. In particular,
we obtain very accurate models for low-intensity vibrations
regions as the robot prefers them for navigation. The pre-
dicted variance is mainly low, meaning that our approach is
able to make reliable predictions over the whole environment.
Whereas, the variance is higher at borders between different
terrains where the robot observes very different vibrations in
adjacent locations.

In Tab. I, we provide a comparison of the accuracy of the
three models after 25 runs. We compare the root-mean-square
error of the mean prediction, and the Mahalanobis distance
between the predictive distributions and the true values. In
Site 1, our approach presents the lowest root-mean-square
error and Mahalanobis distance which is more than 3 times
lower than for the single GP model. In Site 2, our approach
presents a similar Mahalanobis distance as the GP mixture
model, but a significantly lower error.

The accuracy of our model leads the robot to experi-
ence significantly lower vibrations already after few runs
as illustrated in Fig. 4 (col. 5). After 25 runs, following
our approach, the robot experiences similar vibrations as
navigating along the least-cost path computed using the
ground truth models (which are in practice not known to the
robot). Using a single GP model, the robot stops exploring

earlier and exploits a path that causes less vibrations than the
shortest, but still significantly more than by following our
approach. The GP mixture model shows better performance
but it takes longer than our approach to find a low-cost path.

D. Advantages of Using an Aerial Image as Prior
Our approach leads quickly to an accurate model thanks

to the use of an unlabeled, easy to obtain, aerial image of
the environment. Using such information as prior helps to
make predictions in non-visited regions. For example, few
observations of low-intensity vibrations on pavement help to
predict low-vibrations in areas with similar appearances and
to identify promising areas for navigation. Over time, this
results in a more accurate model learned by visiting a smaller
number of locations. Tab. I illustrates that using an aerial
image as a prior presents better or similar performance than
not using it, while visiting around 20% less of the locations.
Another advantage of using an aerial image is that borders
between terrains are typically well defined in images. Thus,
it makes easier to learn a gating function that is sharp at
borders, resulting in more accurate models.

VII. CONCLUSION

In this paper, we presented novel approach to actively
improve robot navigation on different terrains. We achieve
this by using a Gaussian mixture model and an aerial image
of the environment to learn a place-dependent probabilistic
model of the detrimental factors that affect robot naviga-
tion, such as vibrations or energy consumption. We learn
this model directly from the robot’s observations without
requiring any training data or explicit terrain classifier. We
use this model to plan paths that deal with the exploration-
exploitation trade-off, and that lead quickly the robot to
navigate through low-cost paths. We implemented and eval-
uated our approach on different real-world environments.
The experiments suggest that it is able to learn a model
that provides accurate predictions about the intensity of a
phenomenon in the environment, and to exploit this model
to plan paths that lead the robot to navigate experiencing less
vibrations or energy consumption over time.
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