
Experience-Based Path Planning for Mobile Robots
Exploiting User Preferences

Lorenzo Nardi Cyrill Stachniss

Abstract— The demand for flexible industrial robotic solu-
tions that are able to accomplish tasks at different locations
in a factory is growing more and more. When deploying
mobile robots in a factory environment, the predictability and
reproducibility of their behaviors become important and are
often requested. In this paper, we propose an easy-to-use motion
planning scheme that can take into account user preferences
for robot navigation. The preferences are extracted implicitly
from the previous experiences or from demonstrations and are
automatically considered in the subsequent planning steps. This
leads to reproducible and thus better to predict navigation
behaviors of the robot, without requiring experts to hard-coding
control strategies or cost functions within a planner. Our system
has been implemented and evaluated on a simulated KUKA
mobile robot in different environments.

I. INTRODUCTION

Nowadays, the use of robotic systems in manufacturing
industries is widespread. In this context, robots are often
fixed and employed for a specific task. Over the last decade,
different industries started asking for more flexible robotic
solutions able to accomplish different tasks such as navi-
gation or mobile manipulation. Mobile robots operating on
factory floors are usually not completely free to move in
the whole environment. Often, users demand these robots
to follow or prefer certain schemes for navigation. In such
environments, robots are also frequently required to share
the workspace with human workers. Especially in a shared
workspace, the predictability and reproducibility of the robot
behaviors are important.

In this paper, we investigate the problem of how to
incorporate user preferences in robot navigation and reuse
this knowledge when planning new trajectories. We aim
at realizing a planning scheme that implicitly collects in-
formation through previous experiences. This is generally
more convenient than hard-coding preferences. Formalizing
preferences can be difficult and hard-coded rules are often
complex to maintain and update. Furthermore, hard-coded
rules may interfere and increase the complexity of switching
between preferences or between different users. In contrast,
even a non-expert user can take advantage from teaching
robots through demonstrations, for example joysticking them
along desired routes in the environment.

The contribution of this paper is a path planning system
for robot navigation that aims at providing predictable and
reproducible behaviors according to user preferences. We

Lorenzo Nardi and Cyrill Stachniss are with Institute for Geodesy and
Geoinformation, University of Bonn, Germany. This work has partly been
supported by the European Commission under the Horizon 2020 framework
programme under grant agreement no. 645403 (RobDREAM).

realize this by enabling the user to either demonstrate the
robot a certain behavior or to provide feedbacks about
experienced tasks. For each task the robot has accomplished,
the user may rate the corresponding solution. If a solution is
regarded as good, it is stored and reused to guide the planning
process in a new but similar navigation task. We consider a
situation descriptor for comparing tasks and an appropriate
method for transferring experienced paths to new situations,
similar to Jetchev and Toussaint [1]. We incorporate these
two concepts into our planning system that is based on the
idea of guided planning introduced by Jiang and Kallman [2].
Our system has been implemented within the Open Motion
Planning Library (OMPL) framework [3] and using ROS.

II. RELATED WORK

Motion planning for robot navigation has been intensively
studied over the last decades. Typical motion planners start
each search from scratch and seek to find a path to a given
goal location. Due to their rapidity to discover the connec-
tivity of a configuration space, sampling-based planners such
as RRT-Connect [4] are frequently used for computing paths.
When relying on a sampling-based planner, it is difficult for
the user to make a prediction on how the resulting path will
look like. In this work, we aim at finding a path in a similar
similar manner as RRT but that is predictable according to
the previous experiences of the robot.

Recently, several works on reusing experienced paths
for motion planning have been proposed. Lien and Yu [5]
construct roadmaps for obstacles and reuse them for similar
obstacles during planning. Fraichard and Delsart [6] propose
a scheme to deform previously computed trajectories in
the configuration-time space. Phillips et al. [7] build an
experience graph for representing the connectivity of the
space required for the execution of repetitive tasks. The
Lightning framework [8] retrieves paths from a database of
previous generated trajectories and attempts to adapt them
to the current planning problem. This idea is extended by
Coleman et al. [9] that store generated paths in a sparse
roadmap. Bruce and Veloso [10] introduced an approach for
motion planning that extends the traditional RRT to reuse
cached plans and biasing the search towards their waypoints.
Zucker et al. [11] proposed a framework for adapting the
sampling distribution to a problem class considering the
features present in the underlying workspace. Jiang and
Kallmann [2] presented the Attractor Guided Planner (AGP)
to enable humanoid robots planning and executing tasks
in dynamic environments. It improves the performance of
sampling-based planners by storing every successful path



and by biasing a new search to reproduce the structure of
an experienced path according to a similarity function. If
no similar task has been experienced or a path is not valid
anymore due to changes in the environment, AGP changes
back to a non-biased random search. The metric to identify
similar task is rather straightforward and allows only for path
queries in a single environment. Such approaches focus on
taking advantage from previous experiences to speed up the
computation time to find a path even in high-dimensional
configuration spaces. Our work instead aims at exploiting
previous trajectories in robot navigation to provide solutions
that meet user expectations.

The problem of how to exploit data from previous expe-
riences to generate appropriate trajectories in new situations
has been addressed by Jetchev and Toussaint [1]. They opti-
mize a cost function to learn the mapping between situations
and trajectories. To do so, two main aspects are considered:
the definition of an appropriate situation descriptor and an
efficient task space transfer. The descriptor of the current
situation is used to predict a trajectory that is transferred
and optimized in this situation. This approach has been
extended in [12], in which a voxel representation of the
environment is used to generalize trajectories to a wider
range of situations. We also use the concept of situation
descriptor to predict paths for new situations, but we aim at
generalizing over different environments and obstacles and
learning the mapping between situations and experienced
behaviors according to the preferences of the user of the
system.

To achieve predictable trajectories, many researchers con-
sider teach-and-repeat approaches for reliable robot au-
tonomous navigation in which a robot seeks to repeat the
same motion than during teaching. Sprunk et al. [13] con-
sider trajectories that rely on scan matching to localize
the robot relative to a taught trajectory and to achieve a
highly accurate reproduction. Furgale et al. [14] propose an
approach using a 3D spinning lidar that extends the standard
teach-and-repeat by adding a local motion planner to account
for dynamic environments. This is related to homing tasks
addressed by Perea Ström et al. [15] for guiding a robot
home in case the mapping system fails during an explo-
ration mission. Mazuran et al. [16] propose to apply an
optimization method to the demonstrated trajectories where
the constraints are defined according to user preferences. In
contrast to teach-and-repeat approaches, our objective is to
maintain the flexibility of a real planner while considering
user preferences.

Case-based reasoning is another approach related to our
work. It considers robot experiences to build experimental
models that are stored as cases and used in the future
tasks. Meriçli et al. [17] adopted this approach to mobile
push-manipulation, while Ros et al. [18] used it for action
selection in the robot soccer domain.

In our system, we focus on mobile robot navigation and
propose a path planning system based on a tailored version
of AGP that allows for providing predictable behaviors even
under changes in the environment or if the robot encounters

an obstacle along its path. To do so, we define a situation
descriptor and a path representation that allows for reusing
experienced paths across different environments and obsta-
cles. We exploit only the paths that have been deemed good
by the user, meeting his preferences.

III. APPROACH

A. Use Case

We consider a setup in which a mobile robot is requested
by an operator to perform navigation tasks in a given environ-
ment. This use case stems from the EU-funded H2020 project
RobDREAM that focuses on an user-centered approach that
allows non-experts to adapt the robot navigation behaviors
and allows robots to improve over them.

In this scenario, the operator has the possibility to evaluate
the robot behavior through a simple GUI rating a path as a
good or a bad one. In addition to that, the operator can
provide demonstrations to the robot as good examples by
joysticking the platform. The good experiences are stored
into a database. Over time, the database will grow and consist
of those paths that have been approved by the user. Our work
consists of a planning system that exploits such a database
of examples to produce similar paths to those experienced.
In this way, user preferences are taken into account without
limiting the flexibility of a general planning system.

B. Overview of the System

Our system is realized through a two-level structure for
robot navigation, in which both of the levels aim at generat-
ing paths that exploit the previous experiences. Given a start
and goal robot configurations in an environment, the global
level computes a plan between these two configurations. It
depends on the global map and does not generalize the ex-
ploitation of experiences across different environments. The
local level handles dynamic changes in the environment and
plans deviations from the global path to avoid collisions with
unforeseen obstacles while respecting the user preferences.
To achieve this, only local obstacle locations matter, therefore
it is largely independent from the environment itself and
generalizes well to other scenes.

We consider three key concepts for realizing a flexible
navigation system that can exploit positive experiences in
the planning process. The remainder of this section briefly
explains these concepts, which will be described in detail in
the subsequent sections.

a) Path Representation: To describe a rated path or
experience, we use an ordered list of relevant robot config-
urations along the path A = {a1, . . . , an}, called attractors.
In a planning problem within the 2D plane, an attractor could
be a (x, y, θ) configuration. An example of such attractors is
given in Figure 1. Details are given in Section IV.

b) Situation Description: To plan exploiting similar
previous experiences, it is essential to define a similarity
relation among tasks. To this end, we introduce a situation
descriptor to describe a task. A different description is used
on the global and the local scale. The global descriptor dg is



Fig. 1: Attractor representation of a local path P =
qs, a1, a2, a3, qg . A local attractor is described by (δ, φ, γ) with
respect to the obstacle centered in O.

environment-dependent, while the local descriptor dl relies
just on the local setup. Further details are given in Section V.

c) Planning Exploiting Experiences: We propose a
planning framework that employs a modified version of the
Attractor Guided Planner (AGP) [2] on a global and a local
planning level. The key idea is to use bi-directional RRT
and to guide the sampling process to prefer trajectories
that match previous experiences. If no previous experience
matches the current situation, the system degrades to standard
bi-directional RRT. As described in details in Section VI, the
global and the local levels rely on different assumptions and
run in parallel distinct planning instances.

IV. PATH REPRESENTATION

To represent a path, we recall the concept of attractors
adopted in [2]. The attractors of a path are the set A of
relevant robot configurations that allow for reproducing the
structure of the corresponding path. Given a path P , it can be
represented as P = qs, a1, . . . , an, qg , where a1, . . . , an ∈
A and qs and qg are respectively the start and goal robot
configurations. To save an experienced example, we extract
its attractors and store them into the database.

In our system, we employ a window-based line fitting
algorithm to compute the attractors of a path. It iteratively
adds the path points to a window of dynamic size. If a line
fits through the points in the window up to a threshold,
the successive point is added. Otherwise, the last added
point is identified as candidate attractor and the window is
reinitialized. For each candidate attractor, we check whether
a straight motion from the previous attractor is valid and
collision free. If this is the case, the candidate attractor is
added to the list of attractors for the corresponding path.
Otherwise the previous point in the path is identified as
new candidate attractor and a new check is performed. This
procedures iterates until all path points are processed. The
result is an ordered list of attractors represented in the
environment frame describing the corresponding path.

The global and local level of our system differ for the
way to store and reuse the attractors, so we maintain the
examples in two distinct databases: DG for the experienced
global paths and DL for the local ones. The global level
depends on the global static map of the environment, there-
fore the attractors can be directly stored in map coordinates
in DG. The local level instead is not subordinate to the

environment itself, so a transformation needs to be applied
to the attractors to make them independent of the world
frame. To this end, we consider a coordinate transformation
to the coordinate system illustrated in Figure 1 that is based
on the local path and current blocking obstacle. Our local
coordinate system is defined by the vector υ, that has the
same orientation as the vector υ′ that connects the start to the
goal positions, and is centered in the center of the obstacle
O. In this frame, we identify each attractor by (ρ, φ, γ),
where ρ is the distance of the robot to O, φ and γ are
the angles that the line passing by O and the center of
the robot R forms respectively with υ and the robot axis.
This coordinate system unambiguously determines the poses
of the attractors considering only on local information, and
accordingly allows to transfer experiences across different
environments. To further generalize over different obstacles,
instead of ρ, we can take into account δ, i.e. the distance of
the attractor from the obstacle surface along ρ. Considering
the coordinates (δ, φ, γ) allows to reuse an experienced local
strategy even in the cases in which the obstacle encountered
by the robot has different dimensions still keeping a safe
distance from it. To exploit an experienced local path for a
new navigation task, these local coordinates are transformed
back in the frame of the current environment and used to
guide the new planning.

V. SITUATION DESCRIPTION

To generalize properly from previous experiences when
planning for a new task, it is fundamental to identify which
of the experienced solutions fits the current situation. To this
end, we define a situation descriptor that allows for com-
paring tasks and identifying the experience to exploit. Since
the ability to generalize to new tasks is largely dependent on
how we describe the situation [1], we defined two distinct
situation descriptors to deal with global and local situations.
A descriptor represents the situation from a navigation point
of view and fits the objectives and assumptions considered
at each level.

At global level, we define a situation descriptor dg that
consists of the start and goal configurations of the robot
expressed in the environment frame. To estimate the simi-
larity between two tasks in this environment, we compute
the sum of the Euclidean distances between the start and
goal configurations of the robot and consider a threshold to
decide at which distance they are similar. This approach is a
rather straightforward, but it has been shown to be effective
for static environments [2]. This metric allows for multiple-
queries on a single environment but provides no information
across different environments. This definition of situation
descriptor together with the path representation introduced
above allows for considering at global level every sub-path
contained in a path as a distinct experience. To achieve this,
each attractor is stored individually in DG with a reference
to its belonging path. When a new task is requested, the
database is searched for the pair of robot configurations
(qi, qj) such that qi and qj belong to the same path P and
the sum of the distances to the start and goal configurations



Fig. 2: Description of the local situation. The local descriptor dl
includes the local start (dark blue) and goal (light blue), the estimate
of the structure of the obstacle (yellow) and of the extent of free
space around it (red).

of the new task is the lowest. In this way, the new plan can
be guided by any of the sub-paths of P .

At local level instead, we want to generalize local strate-
gies across different environments and obstacles. Hence, the
local descriptor dl needs to be independent from the whole
environment and to take into account just local information.
We defined it as a vector that consists of 3 main components
for a total of 22 attributes, represented in Figure 2.

1) Local start and goal configurations are encoded con-
sidering the coordinate system (ρ, φ, γ) introduced in
Section IV that is based only on local information.
Referring to Figure 2, d′l = {ρs, φs, γs, ρg, φg, γg}.

2) Shape and dimension of the obstacle are estimated
by computing the distance from the obstacle center
O to the obstacle surface in the direction defined
by the υ vector introduced in the previous section
and repeating this measurement in 7 other different
directions, each shifted of 45 degrees from each other,
d′′l = {e1, e2, e3, e4, e5, e6, e7, e8}.

3) Free space in the local area is estimated by considering
the same directions introduced in the second compo-
nent and computing for each of them the extents of free
space from the obstacle surface to the next obstacle,
d′′′l = {f1, f2, f3, f4, f5, f6, f7, f8}.

The resulting local descriptor is dl = d′l ∪ d′′l ∪ d′′′l . For
each good local experience, we compute its local descriptor
dl and store it into the database DL with a reference to its
corresponding attractors. When a new task is requested, DL

is searched for a similar experience comparing the current
dl with the stored ones through the sum of the Euclidean
distance between their attributes.

VI. PLANNING EXPLOITING THE EXPERIENCES

Once defined the notions of attractors for representing
paths and situation descriptor to compare tasks, we intro-
duce our motion planning system that is able to exploit
the good experiences of the robot by incorporating and
taking advantage of these concepts. To do so, we employ a
modified version of the Attractor Guided Planner (AGP) [2]
for planning at global and local level.

When a robot is asked for a new task by a user, our
system considers: the map of the current environment M ,
the database DG of the global paths experienced in M ,
the database of local paths DL, the start qs and a goal
qg configurations of the robot. The main procedure of the
system is described in Alg. 1.

Given qs and qg , PLANGLOBALLEVEL computes a global
path taking advantage from the previous experiences of the
robot in M (Alg. 2). To this end, we compute the global
descriptor dg of the current task as introduced in Section V
(line 1). The current descriptor is compared with the de-
scriptors stored in DG for the given environment M and the
attractors Attrg corresponding to the most similar task are
returned (line 2). If a similar task has been experienced, the
corresponding attractors are exploited for computing the new
path (line 3). To achieve this, we consider a bi-directional
RRT that biases its search trees to grow up sampling the
attractors Attrg . If one of them is not valid anymore in
the current status of the environment, a sample is selected
according to a dynamic Gaussian distribution centered in this
attractor with a scale growing proportionally to the number
of non-valid states sampled around it. In this way, if the
robot has experienced a task similar to the current one in a
global sense, the algorithm attempts to generate a path that
reproduces the structure of the previous solution, even when
changes occur in the environment. If no similar task is found
instead, a global path is searched from scratch using standard
bi-directional RRT that samples uniformly the states from the
configuration space (line 5).

Once a global path has been computed, EXECUTEPATH
(Alg. 3) enables the robot to execute it, re-planning when
needed. In fact, the global level assumes the environment
as static, therefore it is possible that some parts of the path
are not traversable anymore because of blocking obstacles or
changes in the environment. At each step of the robot along
this path, we check the remaining path for invalid configu-
rations in the current status of the environment and the first
encountered set of those is returned (line 2). When a set of
invalid configurations is found, re-planning is triggered to
find a local path that enables the robot to avoid the blocking
obstacle and to get back to the global path (line 4). This is
accomplished by PLANLOCALLEVEL and the resulting local
path is used to update the current path (line 5). When the
path is valid, the robot can navigate towards the next path
point (line 6).

PLANLOCALLEVEL is described in Alg. 4 and character-
izes the procedure at local level. It starts by estimating the
center of mass of the blocking obstacle O (line 1) that allows
for computing the descriptor of the current local situation
dl (line 2). The database of local paths DL is searched
for the most similar experienced task and the corresponding
attractors are retrieved (line 3). If a similar task is found,
the attractors are transformed into the frame of the current
environment (line 4) and used to guide the sampling of a
new instance of bi-directional RRT (line 5) that works in the
same way as in the global level. Otherwise, a new local path
is searched using standard bi-directional RRT (line 7).



Alg 1 MAIN(qs, qg, DG, DL,M)

1: global path ← PLANGLOBALLEVEL(qs, qg, DG,M)
2: exec path ← EXECUTEPATH(global path, qs, qg, DL)
3: USERFEEDBACK(exec path, global path,DG, DL)

Alg 2 PLANGLOBALLEVEL(qs, qg, DG,M)

1: dg ← getGlobalDescriptor(qs, qg)
2: if Attrg ← getClosestTask(dg, DG,M) 6= 0 then
3: global path← biRRT(qs, qg, guided sampling,Attrg)
4: else
5: global path ← biRRT(qs, qg, uniform sampling)

6: return global path

Alg 3 EXECUTEPATH(path, qs, qg, DL)

1: while pi ∈ path ∧ pi 6= qg do
2: invalid confs={pk, . . . pk+j}←getInvalidConfs(pi, qg)
3: if invalid confs 6= 0 then
4: local path←PLANLOCALLEVEL(pk−1, pk+j+1, DL)
5: path ← updatePath (path, local path)

6: navigateTo(pi)
7: i← i+ 1

8: return path

Alg 4 PLANLOCALLEVEL(qs, qg, DL)

1: O ← getObstacleCenter()
2: dl ← getLocalDescriptor(qs, qg, O)
3: if Attrl ← getClosestTask(dl, DL) 6= 0 then
4: Attrl ← toWorldCoord(Attrl, O)
5: local path← biRRT(qs, qg, guided sampling,Attrl)
6: else
7: local path ← biRRT(qs, qg, uniform sampling)

8: return local path

Alg 5 USERFEEDBACK(exec path, global path,DG, DL)

1: if getFeedback(global path) = good then
2: Attrg ← extractAttractors(global path)
3: storeExperience(Attrg, DG)

4: deviations ← getDeviations(exec path, global path)
5: for each dev in deviations do
6: if getFeedback(dev) = good then
7: Attrl ← extractAttractors(dev)
8: Attrl ← toLocalCoord(Attrl)
9: storeExperience(Attrl, DL)

The presented planning system differs from other ap-
proaches since it does not build any graph space [7] or
roadmap [5] over the environment. It does not rely on any
complex model or maintain hard-coded rules. We adopt a
sampling-based approach in which the sampling process is
guided by a previous experience. It maintains the flexibility
of a general planning system allowing to sample configu-
rations from the whole space when needed. This approach
results efficient when planning in (x, y, θ) unlike common
planners for robot navigation such as A∗.

VII. USER FEEDBACK

Once the robot has reached the global goal, our system
gives the user the possibility to rate its behavior. The
user can replay and evaluate through an easy-to-use GUI
each robot behavior as good or bad. As mentioned, only
positive experiences are stored and made available to guide
planning for new tasks. This enables to implicitly capture the
preferences of the user and exploit them when planning in
new similar scenarios. USERFEEDBACK (Alg. 5) enables to
collect the ratings of the user. First, a feedback is requested
for the global path (line 1). If it is regarded as good, its
attractors are extracted (line 2) and stored in DG (line 3).
Then, getDeviations computes the deviations from the global
path generated by local re-planning (line 4) and the user can
provide a feedback for each of them (line 6). When a local
path is rated good, its attractors are extracted (line 7), trans-
formed into the local coordinates introduced in Section IV
(line 8) and stored in DL (line 9).

Our planning system does not need for initial data to
work. The databases storing the good experiences are built
up online while the robot is accomplishing tasks. The higher
number of feedback the user will provide, the better the
system will fit his preferences.

VIII. EXPERIMENTAL EVALUATION

The experimental evaluation is designed to illustrate the
performance and capabilities of our system as well as to
support the main claims made in this paper: providing
behaviors for robot navigation that are (i) reproducible over
different situations, (ii) predictable for the user, and that (iii)
meet his preferences exploiting the previous experiences.

We considered a scenario inspired by the RobDREAM use
case to evaluate our work. Here, a human operator requests a
simulated KUKA mobile robot to perform several navigation
tasks in different environments. We assume the robot has full
knowledge of these environments and of the obstacles it will
encounter. Throughout this evaluation, we use bi-directional
RRT (bi-RRT) as our baseline algorithm.

The first experiment is designed to illustrate how our
planning approach works as well as its capabilities. For
that, we randomly select in a given environment a set of 10
similar tasks, i.e. planning tasks with similar start and goal
configurations, represented in Figure 3. First, we compute a
global path for each of these tasks using bi-RRT (Figure 3a).
The generated paths reveal large differences with respect to
each other: some pass by the top central room and others by
the bottom central room. This is due to the sampling-based
nature of the algorithm and it does not allow the operator
to make any prediction about how a new path for a similar
problem will look like or to express any preference about
where the robot should move.

To achieve predictable paths and meet user preferences,
we use our planning system. In Figure 3b, we consider the
same set of similar tasks as considered in Figure 3a and
assume the operator prefers the robot passing by the central
top room to accomplish them and selects the blue path as
good example. The paths in red are those generated by our



(a) bi-RRT.

(b) Global level of our system given the blue path as example.

Fig. 3: Global paths generated by standard bi-directional RRT and
by our planning system for a set of similar tasks.

system and reproduce the structure of the good path. In this
way, it is possible to predict for new similar tasks how the
paths will look like and, at the same time, the preference
expressed by the operator are satisfied.

To illustrate the local level of our planning system, we
consider a robot that is executing the global path provided
as example in Figure 3b in a dynamic environment in which
unknown obstacles. In Figure 4a, two unforeseen obstacles
block the path at two different locations. To allow the robot
to reach the goal following the global path, these obstacles
have to be avoided and therefore local re-planning is needed.
In Figure 4a, the re-planning phase is performed 10 times
for each obstacle using bi-RRT. At this level, the difference
among the generated paths is smaller than in the global case,
however the robot will behave in different ways for distinct
planning instances of the same task. To prefer the robot to
follow a definite behavior, we consider our planning system
in Figure 4b. As in the global case, given the light blue
path as example to avoid the obstacle A, the paths generated
by our system (red) for obstacle A reproduce the structure
of the example. Even though no example is provided for
the obstacle C, the paths generated to avoid it reproduce
the example provided for obstacle A. This demonstrates that
for similar local situations our system is able to reproduce
behaviors. Further, the preferences of the operator and the
predictability of robot behavior are met at local level as well.

Finally, in Figure 4c, we employ our system considering
the same local example provided in Figure 4b in a different
environment. Here, the global path (blue) is blocked in
two situations. The local situation at obstacle D is similar
to the one for the obstacle A, while no similar example
is available for the situation at obstacle E. Accordingly,

A

B
C

(a) bi-RRT.

A

B
C

(b) Local level of our system given the light blue path as example.

D

E

(c) Local level of our system in a different environment given the light
blue path in Figure 4b as example.

Fig. 4: Local paths generated by standard bi-directional RRT and
by our planning system for multiple instances of the same tasks.

the paths generated by our system (red) to avoid the first
obstacle reproduce the example, while in the second case
the paths are generated from scratch by samplig the states
uniformly. This shows the capability of the local level to
exploit examples even across different environments and its
capacity to generate paths even when no similar example is
available with results analogous to bi-RRT.

The next set of experiments is designed to illustrate the
planning performance of our approach quantitatively. To this
end, we considered 20 sets of 10 similar global navigation
tasks and 20 sets of 10 similar local tasks in the environments
of Figure 3 and 4. At first, we planned for these tasks
using bi-RRT. Then, we selected randomly 10, 20, 50,
100 and 200 of these paths both at global and local level
as examples for our system and used it to plan for the
same tasks. We ran this procedure 10 times for a total of
20,000 planning instances. To evaluate the performance of
our system, we considered three quantities: planning time,
number of sampled states while planning, percentage of area
of the environment covered by the robot when executing a
set of similar tasks. We analyze the third quantity to get a
measure of how similar are the paths generated for similar
situations. The more overlapping is the area covered by the



0

5

10

15

20

25

30

bi-RRT 10 20 50 100 200

global planning
local planning

(a) Planning time (ms).

0

10

20

30

40

bi-RRT 10 20 50 100 200

global planning
local planning

(b) Number of sampled states.

0

5

10

15

bi-RRT 10 20 50 100 200

global planning
local planning

(c) Area covered by paths for similar tasks (%).

Fig. 5: Performance comparison between bi-directional RRT and our planning system with 10, 20, 50, 100 and 200 examples.

robot to execute two paths, the more similar they are.
Figure 5 shows these quantities both for global and local

level for the considered planning settings. Our system out-
performs bi-RRT for planning time in every configuration
(Figure 5a). The time decreases incrementing the number of
examples up to approximately 50% in the local case and 60%
in the global case. Since the time for searching the database is
proportional to its dimension, when the number of considered
examples becomes large, the time tends to increase, but it is
still far better than bi-RRT. Figure 5b shows the average
number of states that are sampled during planning. When
planning for a new task, if a similar experience is available,
our system samples the corresponding attractors instead of
attempting to explore the whole environment. Therefore,
the larger is number of examples, the smaller will be the
number of sampled states. Finally, in Figure 5c, we compare
the average percentage of area of the environment occupied
by the robot when executing each set of similar tasks.
Even with few examples, the area covered by our system
is approximately 25% smaller than bi-RRT at global level
and even 35% at local level. The results at local level
are explained by the ability of our approach to generalize
experiences across different obstacles and situations. When
the number of examples available for each task increases,
also the covered area grows correspondingly.

IX. CONCLUSION

In this paper, we addressed the problem of planning
predictable and reproducible paths for mobile robots given
user preferences or previous experiences. This is impor-
tant for navigation in environments where robots share the
workspace with the humans. We proposed an easy-to-use
motion planning scheme that extends bi-directional RRT and
can take into account user preferences during navigation.
The preferences are extracted implicitly from the experiences
or demonstrations and are automatically considered in the
subsequent planning steps through the sampling procedure.
We implemented and evaluated our approach on a simu-
lated KUKA mobile robot in different environments. As
our experiments suggests, this leads to reproducible and,
thus, better to predict navigation behaviors of the robot
without requiring experts to hard-coding control strategies
or cost functions within a planner. At the same time, our
approach typically leads to shorter planning time in cases
where previous experiences can be exploited.

REFERENCES

[1] N. Jetchev and M. Toussaint, “Trajectory prediction: learning to map
situations to robot trajectories.” ACM, 2009, pp. 449–456.

[2] X. Jiang and M. Kallmann, “Learning humanoid reaching tasks in
dynamic environments,” in Proc. of the IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems (IROS), 2007, pp. 1148–1153.

[3] I. A. Şucan, M. Moll, and L. E. Kavraki, “The Open Motion Planning
Library,” IEEE Robotics & Automation Magazine, vol. 19, no. 4, pp.
72–82, December 2012, http://ompl.kavrakilab.org.

[4] J. J. Kuffner and S. M. LaValle, “Rrt-connect: An efficient approach
to single-query path planning,” in Proc. of the IEEE Int. Conf. on
Robotics & Automation (ICRA), vol. 2, 2000, pp. 995–1001.

[5] J.-M. Lien and Y. Lu, “Planning motion in environments with similar
obstacles.” in Proc. of Robotics: Science and Systems (RSS), 2009.

[6] V. Delsart and T. Fraichard, “Navigating dynamic environments with
trajectory deformation,” CIT. Journal of Computing and Information
Technology, vol. 17, no. 1, pp. 27–36, 2009.

[7] M. Phillips, B. J. Cohen, S. Chitta, and M. Likhachev, “E-graphs:
Bootstrapping planning with experience graphs.” in Proc. of Robotics:
Science and Systems (RSS), 2012.

[8] D. Berenson, P. Abbeel, and K. Goldberg, “A robot path plan-
ning framework that learns from experience,” in Proc. of the IEEE
Int. Conf. on Robotics & Automation (ICRA), 2012, pp. 3671–3678.

[9] D. Coleman, I. A. Sucan, M. Moll, K. Okada, and N. Correll,
“Experience-based planning with sparse roadmap spanners,” arXiv
preprint arXiv:1410.1950, 2014.

[10] J. Bruce and M. Veloso, “Real-time randomized path planning for
robot navigation,” in Proc. of the IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems (IROS), vol. 3. IEEE, 2002, pp. 2383–2388.

[11] M. Zucker, J. Kuffner, and J. A. Bagnell, “Adaptive workspace biasing
for sampling-based planners,” in Proc. of the IEEE Int. Conf. on
Robotics & Automation (ICRA). IEEE, 2008, pp. 3757–3762.

[12] N. Jetchev and M. Toussaint, “Trajectory prediction in cluttered
voxel environments,” in Proc. of the IEEE Int. Conf. on Robotics &
Automation (ICRA). IEEE, 2010, pp. 2523–2528.

[13] C. Sprunk, G. D. Tipaldi, A. Cherubini, and W. Burgard, “Lidar-
based teach-and-repeat of mobile robot trajectories,” in Proc. of the
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), 2013,
pp. 3144–3149.

[14] P. Furgale, P. Krüsi, F. Pomerleau, U. Schwesinger, F. Colas, and
R. Siegwart, “There and back again-dealing with highly-dynamic
scenes and long-term change during topological/metric route follow-
ing,” in ICRA14 Workshop on Modelling, Estimation, Perception, and
Control of All Terrain Mobile Robots, 2014.

[15] D. Perea-Ström, , I. Bogoslavskyi, and C. Stachniss, “Robust ex-
ploration and homing for autonomous robots,” Journ. of Rob. &
Aut. Systems, 2016.

[16] M. Mazuran, C. Sprunk, W. Burgard, and G. D. Tipaldi, “Lextor:
Lexicographic teach optimize and repeat based on user preferences,”
in Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA),
2015, pp. 2780–2786.

[17] T. Meriçli, M. Veloso, and H. L. Akın, “A case-based approach to
mobile push-manipulation,” Journal of Intelligent & Robotic Systems,
vol. 80, no. 1, pp. 189–203, 2015.

[18] R. Ros, R. L. De Màntaras, J. L. Arcos, and M. Veloso, “Team
playing behavior in robot soccer: A case-based reasoning approach,” in
International Conference on Case-Based Reasoning. Springer, 2007,
pp. 46–60.


