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ABSTRACT:

Automatic building extraction from remotely sensed images is a research topic much more significant than ever. One of the key issues
is object and image representation. Markov random fields usually referring to the pixel level can not represent high-level knowledge
well. On the contrary, marked point processes can not represent low-level information well even though they are a powerful model at
object level. We propose to combine Markov random fields and marked point processes to represent both low-level information and
high-level knowledge, and present a combined framework of modelling and estimation for building extraction from single remotely
sensed image. At high level, rectangles are used to represent buildings, and a marked point process is constructed to represent the
buildings on ground scene. Interactions between buildings are introduced into the the model to represent their relationships. At the low
level, a MRF is used to represent the statistics of the image appearance. Histograms of colours are adopted to represent the building’s
appearance. The high-level model and the low-level model are combined by establishing correspondences between marked points and
nodes of the MRF. We adopt reversible jump Markov Chain Monte Carlo (RJMCMC) techniques to explore the configuration space
at the high level, and adopt a Graph Cut algorithm to optimize configuration at the low level. We propose a top-down schema to use
results from high level to guide the optimization at low level, and propose a bottom-up schema to use results from low level to drive the
sampling at high level. Experimental results demonstrate that better results can be achieved by adopting such hybrid representation.

1 INTRODUCTION

With the progresses in image capture techniques, more and more
remotely sensed images with high spatial, spectral, temporal and
radiometric resolutions are available. With the popularity of tools
such as Google Map, more and more up-to-date geoinformation
are demanded by people. As a traditional research topic in pho-
togrammetry and remote sensing, building extraction from re-
motely sensed images is a topic much more significant than ever.

In spite of the research efforts of the past decades fully automatic
extraction is still a challenging task. The key issue is representa-
tion of objects and images (Mayer, 1999, Sowmya and Trinder,
2000, Baltsavias, 2004). Statistical approaches provide a strong
framework of modelling and estimation. Markov random fields
and marked point processes represent context-dependent entities
well (Winkler, 1995, Li, 2009, Baddeley and van Lieshout, 1993).
Based on Markov random fields (MRF), low-level information re-
ferring to the single image pixels and interaction between neigh-
bouring pixels are represented concisely. However, high-level
knowledge, such as free semantic structures and variable topol-
ogy, can not be represented by MRFs conveniently. Based on
spatial point process, high-level knowledge can be introduced via
marks attached to the points and the relationships between neigh-
bouring points. While specific shapes can be represented by ge-
ometric marks, general shape can not be determined based on
image content. This problem results from the weakness of repre-
senting low-level information.

Motivated by the complementary characteristics of Markov ran-
dom fields and marked point processes, we combine them to
represent both low-level information and high-level knowledge.

Based on this representation, we propose an automatic approach
for extracting buildings from single remotely sensed image.

2 PREVIOUS WORKS

2.1 Markov random fields based representation

Markov random fields provide a natural representation of context-
dependent entities (Besag, 1974, Geman and Geman, 1984). A
set of sites are used to represent pixels or primitives, and a set
of labels attached to each site are used to denote events that may
happen at the site. Furthermore, a neighbourhood system is used
to describe the interrelationships between sites. Benefiting from
the equivalence between MRF’s and Gibbs distribution (Ham-
mersley and Clifford, 1971), MRF can be described by local char-
acteristics. Moreover, MRF-MAP estimation can be rigorously
achieved in case of binary classification by Graph Cut algorithm
(Boykov et al., 2001) and approximately e. g. by belief propaga-
tion (Felzenszwalb and Huttenlocher, 2004).

Although there are some high-level MRF models (Li, 1994), their
structures are fixed in modelling and estimation. They are not
flexible enough to represent random structures. Successes are
demonstrated in low level, especially for regular lattices corre-
sponding to image grids. For example, image restoration (Felzen-
szwalb and Huttenlocher, 2004), stereo matching (Tappen and
Freeman, 2003), image segmentation (Rother et al., 2004) or
clustering (Zabih and Kolmogorov, 2004) are formulated as pixel
labelling problems with labels denoting pixel intensity, disparity
or object category respectively.
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Researchers introduced strong priori information into MRFs to
improve its performance of representation. (Kumar et al., 2010)
combined pictorial structures and MRFs and proposed an object
category specific MRFs model for detecting and segmenting in-
stances of a particular object category. The object-specific shape
prior is represented using pictorial structures, and it relies on a
large library of exemplars. (Winn and Shotton, 2006) adopted
a part labelling which densely covers the object and proposed a
Layout Consistent Random Field (LayoutCRF) model to impose
asymmetric local spatial constraints on these labels to ensure the
consistent layout of parts. It can detect and segment partially oc-
cluded objects of a known category. They introduced shape priori
for objects and layout of object parts. Therefore, single object or
a small number of objects can be segmented cleanly.

Since the number of objects presented in remotely sensed image
simultaneously is large, object shapes and scene topology are too
complex to be modelled using above mentioned approaches. On
the other hand, it is important to utilize such information to seg-
ment object precisely.

2.2 Marked point processes based representation

Marked point processes provide a useful representation of spa-
tially distributed objects. A set of points randomly distributed
are used to represent objects. The number of points, their po-
sitions, and their interactions are random. Furthermore, marks
are attached to each point to represent high-level knowledge such
as category or geometric shape. Marked point processes are
flexible enough to model the scene at the object level. Given
a proposed model, reversible jump Markov Chain Monte-Carlo
(Green, 1995) can be adopted to explore the configuration space
and annealing schema can be adopted to simulate the objective
distribution to find the optimal solution.

The Ariana Research Group CNRS/INRIA/UNSA introduced
marked point process into remotely sensed image analysis. They
demonstrated that marked point processes have a great potential
in object extraction from remotely sensed image. (Ortner et al.,
2007, Ortner et al., 2008) adopted rectangle to represent build-
ing footprint, and proposed an approach for building footprint
extraction from DSM. (Lafarge et al., 2008) adopted a 3D model
to represented buildings, and proposed an approach for building
reconstruction from DSM based on a library of 3D models. (Tour-
naire et al., 2010) adopted above framework and formulated the
energy in an efficient way, easy to parameterization and fast to
compute.

The devised marks, however, can only represent specific shapes.
Due to computational limitation, it is impossible to adopt a huge
number of marks to represent general shapes. And, general
shapes can not be determined based on image content adaptively.
Moreover, images are linked with the model via a data term com-
puted using hypothesis testing schema, which can not make full
use of low-level information.

3 BAYESIAN FRAMEWORK FOR BUILDING
EXTRACTION

As a whole, we represent buildings as foreground X and the
rest as background X , and formulate building extraction as fore-
ground/background segmentation in a Bayesian manner.

Given the observed image I , the buildingsX can be estimated by
maximizing the posterior:

X = arg max
X

P (X,X|I; Θ) (1)

= arg max
X

P (I|X,X; Θ)P (X,X|Θ) (2)

Figure 1: Hybrid representation.

where, Θ is a set of models and parameters, P (X,X|Θ) is the
priori probability of a specific configurationX,X conditioned on
Θ, and P (I|X,X; Θ) is the likelihood of observing an image I
given the configuration X,X conditioned on Θ.

We will address issues of modelling and estimation in section 4
and section 5 respectively.

4 MODELLING

4.1 Hybrid representation

We combine marked point processes and Markov random fields
and propose a hybrid representation for building extraction. As
illustrated in Fig.1, marked point process is adopted to represent
the high-level knowledge, i.e. the buildings and their distribu-
tion; Markov random field is adopted to represent the low-level
information, i.e. the properties of all pixels.

4.2 High-level model

At high level, only buildings are represented explicitly, the rests
are represented implicitly. The buildings are modelled as a
marked point process.

4.2.1 Marked point process A rigorous definition of spatial
point process involves measure theory which is difficult for the
readers who have not studied the subject. Instead, we present
only a simple description in this section.

Let S ⊂ R2 be a compact set, and Ωn be the set of configura-
tions X = {x1, . . . , xn} that consist of n unordered points of S,
the probability density of a specific configuration X is defined as
follows:

h(X) = αβn(X)
∏

xi∈X

φ(1)(xi) · · ·
∏

{xi1
,...,xik

}∈X

φ(k)(xi1 , . . . , xik )

(3)
where, α is the normalizing constant, n(X) is the number of
points, β is a positive constant, and φ(k)(xi1 , . . . , xik ) reflects
the interactions among k-tuplets neighbouring points.

By attaching a geometric mark mi = (li, wi, diri) to each point
xi ∈ X , we can augment a spatial point process to be a marked
point process, where, the triplet denotes the length, width and
main direction of a rectangle. The marked point is denoted as
x̂i. All buildings are represented by a rectangle-marked point
process.

Return to Bayesian formulation in section 3, h(X) is computed
from a prior term and a data term:

h(X) ∝ hp(X)hd(X) . (4)
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where, the prior term hp(X) measures the priori probability of
different scenes, the data term hd(X) measures the coherence
between the scene and the image, which is identified with the
likelihood term. hp(X) and hd(X) correspond to P (X,X|Θ)
and P (I|X,X; Θ) in Eq.(2) respectively.

4.2.2 Priori Most existing approaches rely on very specific
priori (Ortner et al., 2007, Lafarge et al., 2008). (Lafarge et al.,
2010, Benedek et al., 2010) adopted the relation overlap as a
general interaction and developed a concise priori model.

In this paper, we argue that buildings can not overlap with each
other and use this condition as a hard constraint. It is realized by
defining the following density:

hp(X) ∝ exp(θ0o(X)) (5)

where, θ0 = −∞ prevents overlapped rectangles to appear in
configuration, o(X) is the number of pairs of overlapped rectan-
gles:

o(X) =
∑

xi,xj∈X

overlap(x̂i, x̂j) (6)

where,

overlap(x̂i, x̂j) =

{
1 x̂i overlaps with x̂j
0 x̂i does not overlap with x̂j

(7)

To reflect the sparse distribution of buildings, small distances be-
tween neighbouring buildings are penalized. We augment above
model by defining the density of valid configuration as uncondi-
tional Strauss process (Strauss, 1975):

hp(X) ∝ exp(θ1n(X) + θ2p(X, r)) (8)

where θ1 and θ2 are two parameters of this model, n(X) is the
number of points in X , p(X, r) is the number of pairs of points
that are nearer than r:

p(X, r) =
∑

xi,xj∈X

d(xi, xj) ≤ r (9)

where, d(xi, xj) is the distance between xi and xj .

To reflect parallel of buildings, large difference of directions be-
tween neighbouring buildings are penalized. We augment above
model by adding a direction term:

hp(X) ∝ exp(θ3q(X, r)) (10)

where, q(X, r) is sum of square of direction differences between
neighbouring buildings no far than r:

q(X, r) =
∑

xi,xj∈X,d(xi,xj)≤r

α2(x̂i, x̂j) (11)

where, α(x̂i, x̂j) is the difference of the directions of xi and xj :

α(x̂i, x̂j) = dir(x̂i)− dir(x̂j) (12)

where, dir(x̂i) is the main direction of the rectangle attaching to
xi. Furthermore, α(x̂i, x̂j) is compared with 0, π/2, · · · , 2π and
the minimal difference is adopted as the result. This measure can
reflect both parallel and orthogonal of buildings.

Finally, we combine above models and get a full distribution as
follows:

hp(X) ∝ exp(θ0o(X) + θ1n(X) + θ2p(X, r) + θ3q(X, r))
(13)

where the first term assures that neighbouring buildings do not
overlap with each other, the second and third terms assure that
all building distribute sparsely, the last term assures that neigh-
bouring buildings align with each other. θ0 ∈ Θ, θ1 ∈ Θ, θ2 ∈
Θ, θ3 ∈ Θ, r ∈ Θ are all parameters of the model.

4.2.3 Data term The data term measures the coherence be-
tween the scene and the image, i.e. the likelihood of presenting
an image given the scene:

hd(X) = P (I|X,X; Θ) (14)

Since the low-level model links both high-level model and image,
it serves as an intermediate model between marked point process
and image, the data term is calculated based on low-level model.
Details will be presented in section 4.4.2.

4.3 Low-level model

At the low level, both foreground and background are modelled
explicitly and together as a Markov Random Field.

4.3.1 Markov random field Since foreground and back-
ground can be denoted by two labels, we model them as an Ising
model (Li, 2009). The probability of presenting a specific config-
uration f is computed as follows:

P (f) =
1

Z
exp(−U(f)) (15)

∝ exp(−(Up(f) + Ud(f))) (16)

where, Z is a normalizing constant called the partition function,
which is common to all configurations and can be ignored in
computation. Up(f) and Ud(f) correspond to P (X,X|Θ) and
P (I|X,X; Θ) in Eq.(2) respectively.

4.3.2 Priori The priori energy Up(f) for Ising model is cal-
culated as follows:

Up(f) =
∑
i,j

|fi − fj | (17)

where, i and j are horizontally or vertically neighbouring pixels,
all neighbouring pixels with different labels contribute to the total
energy.

Above priori term is based on the assumption that the random
field varies smoothly everywhere. Every pair of pixels with
different labels will increase the priori energy and decrease the
probability. In fact, neighbouring pixels in foreground or back-
ground regions should have the same labels. neighbouring pixels
across the region boundaries should have different labels. In other
words, label field should be allowed to change at region bound-
aries without increasing the priori energy.

To reflect such priori knowledge, neighbouring pixels across re-
gions should contribute nothing to the priori energy, while as
neighbouring pixels within regions should contribute to the priori
energy as traditional way. We augment above priori term to be:

Up(f) =
∑
i,j

βi,j |fi − fj | (18)

where, if i and j across foreground and background regions, βi,j
should be 0; otherwise, it should be 1.

Such discontinuity preserving constraint is more reasonable than
the simplest constraint making configuration varies smoothly ev-
erywhere. However, It is difficult to express the discontinuity pre-
serving constraints because nothing is known in advance about
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the regions and their boundaries. In the proposed hybrid repre-
sentation, the high-level model provides a guess of such knowl-
edge, it can be utilized to calculate βi,j . Details will be presented
in section 4.4.1.

4.3.3 Data term The data term Ud(f) corresponds to the
likelihood is defined as follows:

Ud(f) = Ud(I|f) =
∑
i

U(Ii|f) (19)

where, the energy U(Ii|f) is calculated as follows:

Ud(Ii|f) =

{
− log(P (Ii|Hb)) fi = 0
− log(P (Ii|Hf )) fi = 1

(20)

where, Hb ∈ Θ and Hf ∈ Θ, are two normalized his-
tograms for background and foreground respectively. P (Ii|Hb)
and P (Ii|Hf ) measures the likelihood of the pixel with colour Ii
belonging to background and foreground respectively.

4.4 Linking high-level and low-level models

Each marked point at the high level denotes one building, and
it corresponds to one rectangular region in the Markov random
field at the low level. The high-level model and the low-level
model are combined together by establishing correspondences of
marked points at the high level and regions (each one consists
of a set of pixels) at the low level. High-level knowledge is
introduced as a priori term in the MRF and low-level information
is introduced into data term in the marked point process. In this
way, a flexible and robust representation is achieved.

4.4.1 Priori As pointed out in section 4.3.2, high-level
knowledge can be utilized to construct a discontinuity preserv-
ing a priori term for the low-level model.

Suppose that there are a set of marked points at the high level,
we can get a set of rectangular regions at low level by projecting
the marked points on to the grid of Markov random field. Each
pixel i has one label fi which denotes its class, i. e. foreground
or background. Without loss of generality, suppose that i and j
are neighbouring pixels. The discontinuity preserving priori term
is constructed by defining βi,j as follows:

βi,j =

{
0 fi 6= fj
1 fi = fj

, (21)

i. e. the label configurations of the Markov random field are not
evaluated at the borders induced by the marked point process.

4.4.2 Data term Suppose that there is a set of marked points
at the high level. We can obtain a set of rectangular regions at
the low level by projecting the marked points on to the grid of
Markov random field. Each pixel i has one label fi which denotes
its class, i. e. foreground or background. Using Eq.(19), we can
calculate the data term for the high level model.

More specifically, summing the data terms over one rectangular
region, we get the data term corresponding to one marked point
at the high level.

5 OPTIMIZATION

We adopt simulated annealing to simulate the posterior distribu-
tion so that an optimal configuration can be achieved as the tem-
perature gradually approaches zero. It iteratively simulates the
distribution h

1
T (X) with T gradually decreasing to 0.

Furthermore, we use reversible jump Markov random Monte
Carlo (rjMCMC) techniques to explore the configuration space
at the high level, an uniform birth and death kernel and a trans-
lation kernel are developed to generate new states according the
current state. The former randomly generates a point together
with a rectangle (length, width and direction) in the image re-
gion, while the latter randomly selects an existing rectangle and
adjusts its parameters randomly. The new state is adopted with
an accept rate to keep the detailed balance.

What distinguishes our approach from existing ones is that a top-
down schema and a bottom-up schema are proposed for random
sampling. In each sample, it first generates a new state at high
level, then uses it to guide the optimization at low level, then uses
the optimization results to adjust state at high level.

5.1 Top down schema

Since there are a large number of buildings presented in remotely
sensed image simultaneously, previous MRF based approaches
need seed pixels provided manually. Otherwise, neighbouring
buildings can not be distinguished well without knowledge about
their spatial distribution. We, however, use the results at the high
level to provide the information about the spatial distribution and
approximate shapes of buildings.

Low-level optimization is conducted only when a new marked
point is birthed. Given a new states, i. e. a new rectangle-marked
point. we use it to guide the optimization at low level:

1. Project the rectangle into image to get projected regions;

2. Construct discontinuity preserving priori term for low-level
model;

3. Adopt Graph Cut algorithm (Greig et al., 1989) to optimize
the proposed object function with discontinuity preserving
priori term, the optimization is conducted in the projected
regions and it results in some building regions.

5.2 Bottom up schema

Motivated by the data driven MCMC (Tu and Zhu, 2002), we use
results at low level to drive the sampling, i. e. compute new state
according results of optimization at low level. In their data driven
MCMC, the low-level results are computed by edge detection or
segmentation and are fixed in the process of MCMC sampling. In
our approach, the low-level results are computed from low level
optimization and vary in the process of MCMC sampling.

Given the optimization results achieved at low level, i. e. some
building regions at low level, we use them to adjust the new state
at high level:

1. Select the largest one and find a minimal rectangle enclosing
the selected region;

2. Adjust the new marked point to be the rectangular region
found above;

3. Calculate the data term based on the optimization result in-
stead of the original marked point;

4. Calculate the accept rate using the data term calculated
above;

5. Move the current state to the (adjusted) new state with the
accept rate.
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Figure 2: Extraction results: the first row illustrates the original
images, the second row illustrates the reference extraction results,
which are annotated manually, the rest rows illustrate extraction
results based on Marked point processes, Markov random fields,
and hybrid representation.

Benefited from optimization at low level, more precise building
region can be found in each random sampling, this may improve
the definition of both shape and data term. As a result, this
schema may drive rjMCMC sampling to achieve better results.
Theoretical foundation is guaranteed by simulated annealing and
rjMCMC technique, which is our computation framework.

6 EXPERIMENTS

6.1 Results and comparison

We apply our approach to extract buildings from three satellite
images of developed urban or suburban areas. For compari-
son, we also apply marked point processes based approach and
Markov random fields based approach to extract buildings.

In this experiment, the histograms Hb and Hf (i.e. three dimen-
sional arrays) are learned from real images by manually anno-
tating images. The rest parameters are set as follows: θ0 =
−∞, θ1 = 1, θ2 = −0.01, θ3 = −0.01, r = 10pixels.

The original images, manually annotated reference images, and
extraction results are presented in Fig.(2). As illustrated, there
are some clear errors in the third row achieved by marked point
processes based approach. Since the data term for a rectangle is
calculated as a whole but not pixelwise, some regions that con-
tain buildings may be recognized as a building region by mistake.
Theoretically, infinite sampling can remove such cases, however,
it can not be achieved in practice.

As illustrated, there are many buildings missed in the fourth row
achieved by Markov random fields based approach. Since the
priori term (smooth term) drive the results as smooth as possible,
some regions with low density of being buildings are segmented
as background by mistake. On the contrary, some regions be-
tween neighboring buildings are segmented as foreground.

As illustrated, the last row achieved by our hybrid representation
is better than above rows. Benefited from the hybrid represen-
tation, both high-level knowledge and low-level information are
well-represented and utilized in the process of building extrac-
tion. The point distribution at high level provides a topology
structure of the scene. Based on the topology, the optimization
at the low level is expected to achieve robust results. The de-
tailed data terms computed at low level improve foreground and
background distinguishing at high level.

We also recorded the number of building pixels extracted as
building pixels, building pixels extracted as non-building pixels,
and non-building pixels extracted as building pixels. They are
divided by the total number of building pixels and presented in
Tab.(1, 2 and 3) respectively. As illustrated, the results achieved
by hybrid representation are much better than those of Markov
random fields based approach, they are also better than those of
marked point processes based approach, especially indicated by
False Negative, which means the number of non-building pixels
extracted as building pixels.

Table 1: Quantitative evaluation on first image
True False Positive False Negative

MPP-based 0.53 0.47 0.14
MRF-based 0.41 0.59 0.04

Hybrid-based 0.52 0.48 0.09

Table 2: Quantitative evaluation on second image
True False Positive False Negative

MPP-based 0.56 0.44 0.15
MRF-based 0.44 0.56 0.04

Hybrid-based 0.57 0.43 0.08

Table 3: Quantitative evaluation on third image
True False Positive False Negative

MPP-based 0.74 0.26 0.34
MRF-based 0.69 0.31 0.07

Hybrid-based 0.78 0.22 0.13

7 CONCLUSION

This paper presents a hybrid representation for buildings in re-
motely sensed image and an approach for building extraction
from single remotely sensed image. First, it formulates building
extraction in a Bayesian framework. Then, it addresses modelling
issue and optimization issue respectively. Buildings are modelled
at two levels. At the high level, marked point processes are used
to represent such high-level knowledge as topology structure of
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a scene. At the low level, a Markov random field is used to rep-
resent pixel colour and interaction. After establishing a link be-
tween high-level model and low-level model, it proposes a top-
down schema and a bottom-up schema optimizing an objective
function. Benefited from the hybrid representation and opti-
mization schema, good extraction results are achieved as demon-
strated by experiments presented in this paper.

To our knowledge, it is the first work on the combination of
marked point process and Markov random fields. Therefore,
there are many issues to be investigated in the near future. First,
the optimization schema can be improved greatly since the inter-
actions between high-level model and low-level model are not
fully utilized. Second, much more information from the im-
age data need to be explored to improve the extraction quality
since histograms of colours do not fully represent information
contained in the images, this can be seen in the density images
calculated using histograms.
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