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Abstract— Crops are an important source of food and other
products. In conventional farming, tractors apply large amounts
of agrochemicals uniformly across fields for weed control
and plant protection. Autonomous farming robots have the
potential to provide environment-friendly weed control on a
per plant basis. A system that reliably distinguishes crops,
weeds, and soil under varying environment conditions is the
basis for plant-specific interventions such as spot applications.
Such semantic segmentation systems, however, often show a
performance decay when applied under new field conditions.
In this paper, we therefore propose an effective approach to
unsupervised domain adaptation for plant segmentation systems
in agriculture and thus to adapt existing systems to new
environments, different value crops, and other farm robots. Our
system yields a high segmentation performance in the target
domain by exploiting labels only from the source domain. It
is based on CycleGANs and enforces a semantic consistency
domain transfer by constraining the images to be pixel-wise
classified in the same way before and after translation. We
perform an extensive evaluation, which indicates that we can
substantially improve the transfer of our semantic segmentation
system to new field environments, different crops, and different
sensors or robots.

I. INTRODUCTION

Crops make a substantial contribution to the production
of food, feed, fuel, and fiber. Intensive crop production,
however, has several negative impacts on our ecosystem, for
example, through the massive application of agrochemicals.
Farming robots have the potential to reduce negative impacts
by a targeted, per-plant application of agrochemicals such as
herbicides. Equipped with actuators, like selective sprayers,
lasers, or mechanical tools, robots can enable selective and
targeted treatments. Thus, robots may evolve to an effective
and at the same time environment-friendly way to perform
weed control.

Farming robots often rely on vision-based classification
systems that distinguish between crops, weeds, and soil
in real-time. They mostly use fully convolutional networks
(FCNs) for semantic segmentation. These classification sys-
tems typically achieve a performance around 90+% when the
trained classifiers are deployed in the same or at least similar
field conditions [9], [13]. However, the performance of a
classifier, which has been trained on a particular dataset, i.e.,
the source domain, suffers substantially when being deployed
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Fig. 1: Data acquisition under varying conditions, in different fields,
and with different cameras and robots leads to highly distinctive im-
age domains that challenge pre-trained plant classification systems
to generalize well. We propose an effective approach for adapting
existing systems to new environments, different crops, and other
different field conditions.

in new field environments or under changing conditions,
i.e., in the target domain. This gap in performance between
source and target domain is caused by the domain-shift
between the domains. The domain-shift is affected by a
different visual appearance, induced by different weed types,
growth stages of plants, soil conditions, and illuminations.

Current approaches perform supervised domain adaptation
of the classifiers to achieve a suitable performance on the
target domain [9], [14]. Supervised retraining requires addi-
tional labels for new data from the target domain. In practice,
however, we are often faced with scenarios where we solely
have access to labeled images from the source domain and
only unlabeled image data from the target domain, for
example, when a robot enters a new field environment or is
equipped with a new vision system. Thus, purely supervised
approaches prevent the effective use of such classification
systems at scale, due to the continuous label effort associated
with domain changes.

In this paper, we aim at bridging the performance gap in
visual crop and weed classification through transferring the
visual classifier to the targeted domain without the need for
an additional labeling effort. We target unsupervised domain
adaptation towards an approach that enables us to train an
FCN with suitable performance on the target domain while
exploiting labels only from the source domain.

The main contribution of this work is an effective approach
to unsupervised domain adaptation for plant segmentation
systems in agriculture and thus adapt existing systems to new



environments, different value crops, and other farm robots.
Our system yields a high segmentation performance in the
target domain by solely using labeled RGB image data from
the source domain and unlabeled RGB image data from the
target domain. Our approach learns a mapping between the
unpaired images from the source and target domain and is
based on CycleGANs [20]. As CycleGANs give no guarantee
to preserve the semantic information during the domain
transfer, we enforce semantic consistency during domain
transfer by constraining the images to be pixel-wise classified
in the same way before and after translation.

In sum, we make the following claims: our approach
(i) provides a solid performance for the semantic segmen-
tation of crop, weed, and soil in the target domain, while
not requiring extra labels from the target domain for the
adaption of the classifier, (ii) outperforms CycleGANs and
other baselines on the target domain for all tested datasets,
(iii) allows to perform domain adaptation between different
field environment, different crops, and different robots and
camera setups. All claims are experimentally validated on
real-world data.

II. RELATED WORK

Semantic segmentation of agricultural field scenes is a key
step to interpret the sensor data for reliable robot-based weed
control. They classify every pixel in an image and determine
the semantic class it belongs to. Over the past few years,
CNN-based approaches [2], [9], [11], [14], [15], [16], [17]
became the standard solution for this task, overcoming the
requirement of handcrafted features [4], [12], [7].

In our previous work [9], we present an end-to-end train-
able FCN that simultaneously estimates plant stem locations
and a pixel-wise semantic segmentation of plants. This work
implements a joint encoder for extracting image features
and two task-specific decoders for the task. Building upon
this, we enhance the approach for improved performance
in new field environments by exploiting crop arrangement
information of the field [10]. Potena et al. [16] propose a
fast classification pipeline for accurate crop-weed identifi-
cation. Based on RGB and near-infrared images, they use
CNNs for binary vegetation detection in a first step and
sequentially perform a CNN-based crop-weed classification
only on vegetation pixels. The work by Milioto et al. [14]
proposes to extend the RGB input by task-relevant back-
ground knowledge such as vegetation indices to generalize
better to new field conditions. McCool et al. [13] use a
mixture of lightweight deep CNNs to segment weeds in
real-time with high accuracy. For reasons of efficiency and
improved accuracy, they introduce a three-stage approach:
tune a pre-trained model, compute a lightweight deep CNN
by employing model compression techniques, and combine
several lightweight models to form a mixture model that
enhances the performance. The work, however, does not
address a transfer between domains. Our approach proposed
in this paper enables us to enhance any existing segmentation
system by generalization capabilities while keeping the same
runtime for real-time deployment. In contrast to all these

works, we aim at improving the generalization capabilities
of the classifier by actively considering the domain shift of
the image data in an unsupervised way.

A variety of unsupervised domain adaptation approaches
use generative adversarial networks (GANs) [3] for training
classification systems based on synthetic images. Zhu et
al. [20] introduce CycleGAN, an image-to-image translation
approach without relying on aligned image pairs. They trans-
late images from the source towards the target domain such
that the translated images are indistinguishable from real
images of the target distribution. Experiments on different
scenarios like translating horses to zebras or paintings to
real photos show outstanding qualitative results. We also
employ CycleGAN within our approach to translate source
images towards the target domain of new field environments.
Since CycleGAN fails in properly preserving semantics, we
extend the approach and additionally enforce a semantic
consistency in the domain translation. Hoffman et al. [6] pro-
poses CyCADA, a domain adaptation approach for semantic
segmentation of urban scenes, using CycleGAN [20]. They
enforce semantic consistency between the real and synthetic
images of urban scenes. Chen et al. [1] present CrDoCo
for domain transfer that includes cross-domain consistency
in the output space during training the target segmentation
network. Similarly to our approach, they employ an image-
to-image translation module for translating images between
source and target domain. Inspired by these approaches,
we perform domain adaptation for agriculture field scenes
with additional semantic constraints. We achieve a strong
adaptation performance so that we can translate our semantic
segmentation system to new field environments, different
crops, and other robots and sensors.

III. UNSUPERVISED DOMAIN ADAPTATION

We propose an unsupervised domain adaptation approach
that can adapt existing segmentation systems for crop-weed
classification to new domains, still yielding a high classifi-
cation performance. We exploit unpaired image sets from a
source domain X and target domain Y as well as labels
only from X . Our domain adaptation approach is based
on CycleGANs [20] and learns the mapping between the
source and the target domain in an unsupervised manner. Our
approach consists of two domain-specific fully convolutional
neural networks (FCNs) for semantic segmentation, two gen-
erator networks for domain adaptation, and two discriminator
networks.

In a first step, we train the Source-FCN, i.e., the FCN
for domain X , in a supervised way using RGB images
and labels from X . Second, we perform the actual domain
adaptation to train a Target-FCN, i.e., the FCN for Y ,
without requiring labels from Y . We achieve this by jointly
training two generator networks G and F along with the
Target-FCN. The generator networks G and F perform the
translation of images into the style of the opposite domain,
i.e., G : X → Y and F : Y → X . During the training of
the GAN, their respective discriminators DX and DY aim to
distinguish between real and generated images. Technically,
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Fig. 2: Our approach consists of a Source-FCN fX , Target-FCN fY and two generators G and F for mapping images in each direction.
During training the semantic consistency domain adaptation we enforce the translated image G(x) in the style of the target domain as
well as the reconstructed image F (G(x)) to be classified in the same way as it was before translation. Since we have no access to target
labels, we use the prediction of the translated image F (y) for enforcing semantic consistency in the opposite mapping direction.

the discriminator networks can be seen as dynamically-
updated loss functions that train the generators to create
images that are close to real images. At the same time, the
generators try to deceive the discriminators for recognizing
whether the image is real or generated [3].

We use the translated images G(x) in the style of the target
domain alongside with copied labels from the source domain
to optimize the Target-FCN in a supervised manner. Thus,
the generators must preserve semantic consistency such that
the Target-FCN can be trained appropriately. Therefore, we
propose a semantically consistent domain transfer by con-
straining the images to be classified in the same way before
and after translation. As a result, our approach generates
labeled images of the target domain that also enables us to
retrain existing segmentation systems.

A. Domain-Specific FCNs

We differentiate two separate, domain-specific FCNs de-
signed for the task of semantic segmentation. The Source-
FCN classifies images that share the source domain distribu-
tion, whereas the Target-FCN works on images in the target
domain. Both FCNs share the same network architecture.
They take RGB images as input and output respective seman-
tic segmentation maps, encoding a pixel-wise classification
into crop, weed, and soil/background. The network archi-
tecture incorporates five fully convolutional building blocks
based on the U-Net [19] architecture.

For training, we use a loss LIoU approximating the in-
tersection over union (IoU) metric. Plant pixels are typically
under-represented concerning the amount of soil/background.
The loss LIoU, however, is more stable with imbalanced
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Fig. 3: The generators G and F work on RGB images and output
translated RGB images in the opposite domain. The architecture
consists of six ResNet building blocks [5], [20]. Numbers refer to
the used filters in the layers.

class labels [18] and thus well-suited for our crop-weed
classification. Additionally, we penalize errors for the weeds
and crops by weighting LIoU with a factor of four and
two, respectively, as this weight factors led to the best
segmentation performance within our hyperparameter search.

B. Unsupervised Domain Adaptation Exploiting Semantics

For the training, we simultaneously use source images
x ∈ X , target images y ∈ Y , and pixel-wise labels
sX ∈ X . In a forward pass, we translate the images between
the domains within two cycles, see Fig. 2. For the first
cycle (blue), G translates x into the style of the target
domain. Then, F translates G(x) back into the style of
the source domain. Both generators share the same network
architecture, as shown in Fig. 3, consisting of an encoder, a
decoder, and a transformer of six ResNet building blocks [5],
[20] that are responsible for mapping features between



both domains. Following Zhu et al. [20], we enforce a
cycle consistency constraint F (G(x)) ≈ x through an L1-
loss Lcycle = ||F (G(x))− x||1 and apply an adversarial loss
LGAN(G,DY ) as proposed by Goodfellow et al. [3]. Here, G
tries to generate G(x) that look similar to y, while DY tries
to distinguish between G(x) and y. The same procedure is
performed for the second cycle (green in Fig. 3), but with
the respective images and networks of the other domain. The
two loss terms add up to equal shares from both cycles. We
refer to the CycleGAN paper by Zhu et al. [20] for more
details.

The problem with CycleGANs is that they give no guar-
antee to preserve the semantic information of sX for the
translated image G(x). Semantic consistency between G(x)
and sX , however, is key to train the Target-FCN. Therefore,
we propose additional semantic consistency constraints for
training the domain adaption. The key idea is that all images
of one cycle, i.e., x, G(x), F (G(x)) (blue in Fig. 3) or
y, F (y), G(F (y)) (green in Fig. 3), should share the same
semantic information. We include the two domain-specific
FCNs into the training process and compute additional se-
mantic losses that finally add to the overall training objective.
We freeze the weights of the pre-trained Source-FCN fX to
keep stable predictions on images in the style of the source
domain and initialize the Target-FCN fY according to the
weights of the Source-FCN. During the training procedure,
we jointly optimize the generators along with the Target-
FCN towards a high classification performance in the target
domain.

In our approach we propose to use two additional seman-
tic losses for each cycle. Fig. 2 illustrates the additional
loss terms for the first cycle (blue). First, we compute
LIoU(s̄G(x), sX) between the source labels sX and the pre-
diction of the Target-FCN on the translated image, i.e.
s̄G(x) = fY (G(x)). This forces the generator to produce
semantically consistent images in the target domain and
serves as the training objective for the Target-FCN. Second,
we force also the reconstructed images to be semantically
aligned with the ground truth by LIoU(s̄F (G(x)), sX), with
s̄F (G(x)) = fX(F (G(x))). This adds to the cycle consistency
constraint, thus, supports the stability and convergence of the
generator F . In case of the second cycle (green), we have no
access to labels in the target domain. Thus, we constrain the
predictions s̄Y = fY (y) as well as s̄G(F (y)) = fY (G(F (y)))
to match with the prediction of the Source-FCN for the
translated image, i.e. s̄F (y) = fX(F (y)). We argue, that
the Source-FCN provides stable predictions on images in
the style of the source domain.

Thus, our proposed full semantic loss adds up to:

Lsemantic(G,F, fX , fY )

= LIoU(s̄G(x), sX) + LIoU(s̄F (G(x)), sX) (1)
+ LIoU(s̄Y , s̄F (y)) + LIoU(s̄G(F (y)), s̄F (y)).

Consequently, the full objective composes to:

L (G,F,DX , DY , fX , fY ) = LGAN (G,DY , F,DX)

+ Lcycle(G,F ) + Lsemantic(G,F, fX , fY ). (2)

C. Training

The goal of the training procedure is to obtain a Target-
FCN, which performs well on the target domain. At this
point, we assume to have already a trained expert for the
source domain, i.e., the Source-FCN. We train the gener-
ators and discriminators along with the Target-FCN within
our domain adaption procedure. In this paper, we train all
models, including the domain-specific FCNs, for 400 epochs
with an initial learning rate of 0.0002. We linearly decrease
the learning rate towards zero after 100 epochs. We use the
Adam [8] optimizer and randomly initialize the weights using
the normal distribution θinit ∼ N (0, 0.0002). For all semantic
losses, we use the IoU-based loss as described in Sec. III-
A. For regularization, we augment image data during the
training. From each training image, we randomly sample a
patch of size 240× 240 px and rotate it randomly, keeping
the original scale on which the Source-FCN was trained for.
During test time, we do not conduct data augmentation but
perform the inference image translation and classification on
the original image size.

IV. EXPERIMENTAL EVALUATION

We design the experiments to support our three claims:
our approach (i) provides solid performance for crop-weed
classification in new domains without requiring extra labels
of the target domain for its adaption, (ii) outperforms Cycle-
GANs and other baselines on the target domain, (iii) can
transfer a classifier between different field environments,
different crops, and different camera setups.

We carry out the experiments on eight different real-world
datasets, which we collected with farm robots as well as
UAVs. On the field robots, we used the cameras AD-130GE
from JAI or the MAKO G-158 from Allied Vision. With
UAVs, we used the Zenmuse X5s from DJI. All cameras
provide RGB images at different image resolutions. We
acquired all datasets such that the ground sampling distance
is around 1 mm

px . Thus, scaling plays a minor role for the
domain adaption. In total, we evolute our approach on 6.221
images containing sugar beets, sunflowers, different weed
types, different growth stages, and different soil conditions.
The datasets were collected under natural or artificial lighting
conditions. Tab. I summarizes the key properties of the used
datasets in our experiments.

We selected challenging scenarios for crop-weed classifi-
cation in practice, where the performance typically suffers if
no adaptation of the classifier is performed. First, we transfer
a classifier for detecting sugar beets and weeds between
different fields. Second, we transfer a classifier between
the task of detecting sugar beets and sunflowers. Third, we
transfer a classifier between two sugar beet fields, where we
acquired the data with different camera systems.

For the assessment of the classifier as well as the domain
adaption performance, we measure the average IoU across
the classes crop, weed, and soil, i.e.,

mIoU =
1

C

C∑
c=1

IoUc with c = {crop, weed, soil}, (3)



TABLE I: Key properties of the datasets and pixel-wise classification results. We report the average IoU across crop, weed, and soil.

Source Domain Target Domain
Data #Images Crop Leaf Stage Camera Robot Upper Bound Data Vanilla DiAda CGAN Ours Upper Bound

Transfer between different fields.

BONN 2148 Beet 4-8 JAI BoniRob 81 STUTTGART 24 65 61 72 84
STUTTGART 665 Beet 2-8 JAI BoniRob 84 BONN 11 57 65 74 81

UAV-BONN 380 Beet 4-12 ZX5s Inspire-II 85 UAV-ZURICH 39 45 52 61 66
UAV-ZURICH 336 Beet 4-12 ZX5s Inspire-II 66 UAV-BONN 42 54 61 85 85

Transfer between different crop types.

SUGARBEET 305 Beet 4-6 JAI BoniRob 76 SUNFLOWER 29 38 61 67 75
SUNFLOWER 97 Sunflower 4-6 JAI Self-built 75 SUGARBEET 38 58 43 70 76

Transfer between different cameras / robots.

MAKO 920 Beet 2 MAKO Self-built 70 JAI 13 49 38 49 62
JAI 1370 Beet 2-4 JAI BoniRob 62 MAKO 39 45 33 62 70

where the data association between the samples in the
prediction and the ground truth is given by the pixel-wise
alignment of the image data.

For comparison, we also evaluate different baselines. First,
we naively deploy the trained Source-FCN on the target
domain to estimate the expected classifier performance for
a new domain without adaptation. We refer to this baseline
with the term “vanilla”. Next, we evaluate the original imple-
mentation of “CycleGAN” (CGAN). In this case, we perform
the domain adaptation using CycleGAN and train the Target-
FCN on the translated images along with the source labels.
Finally, we perform “direct adaption” (DiAda). Here, we
preprocess the source and target domain images considering
the same channel-wise color correction. We treat each image
and each channel c independently. We standardize the image
by subtracting the channel mean µc and dividing by the
channel-wise standard deviation σc:

x̄c
ij =

xc
ij − µc

σc
, with c = {red, green, blue}. (4)

Subsequently, we perform contrast stretching of the entire
image, i.e.,

x̃ij =
x̄ij −min(x̄)

max(x̄)−min(x̄)
, (5)

After color correction, we train the Source-FCN using the
preprocessed images from the source domain and deploy the
classifier on the preprocessed images from the target domain
(analog to the vanilla approach). The direct adaption entails a
shift of the intensity distribution towards a common interme-
diate distribution for both domains. Thus, the pixel intensities
of the RGB images are distributed more similarly which may
reduce the domain-shift. In our previous publication [11], we
showed that the direct adaptation of both domains leads to a
substantial increase in the performance of the Target-FCN.

To better understand the performance of the transferred
classifiers on the target domain, we additionally evaluate the
performance of the domain-specific FCNs on the domain, on
which we trained them explicitly. This gives us information
about the theoretically possible performance if the classifier
had access to the labels of the target domain during the

training phase. In other words this performance reflects an
upper boundary for the expected generalization performance
of the transferred classifiers.

A. Transfer Between Different Fields

The first set of experiments is designed to show that our
approach can transfer a crop-weed classifier between differ-
ent field environments and provides a reliable performance
in the target domain without requiring additional labeled data
for its adaption. We consider four datasets recorded in dif-
ferent field environments. We collected the datasets BONN
and STUTTGART with the DeepField Robotics BoniRob
platform as depicted in Fig. 1 (left, middle), and the datasets
UAV-BONN and UAV-ZURICH with the DJI Inspire II UAV.
All datasets contain sugar beets at 2-12 leaf growth stages
and serve a substantial amount of different weeds types. The
STUTTGART dataset has roughly 15% of the crops and
weeds overlapping in the images. Fig. 4 depicts an example
image for the respective datasets. The RGB images reveal
the different domains that we face in this experiment.

We perform one classifier transfer between the BoniRob
datasets BONN and STUTTGART and one between the
UAV datasets UAV-BONN and UAV-ZURICH. We perform
the transfers in both directions. Tab. I summarizes the seg-
mentation performance obtained by our approach and the
considered baselines. First, we see that the vanilla baseline
fails on all target domains indicating the need for any kind
of domain adaptation methods. Our approach substantially
outperforms all other baselines. As a noteworthy result, our
transferred Target-FCN between the UAV datasets UAV-
ZURICH to UAV-BONN achieves the same mIoU concern-
ing the upper boundary of around 85% mIoU. For the reverse
experiment as well as the transfer between the BONN and
STUTTGART datasets, our approach obtains around 8% less
mIoU compared to the upper boundary. Compared to the
CycleGAN baseline, our approach gains around 13% and
18% concerning the direct adaptation baseline.

Fig. 4 reveals excellent crop-weed classification results
for our approach, whereas the Target-FCN trained with
the CycleGAN approach produces more errors between all
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Fig. 4: Qualitative results. Our approach exploiting semantics provides a better translation into the target domain compared to CycleGANs.
Our approach preserves fine structures and properly transfers the semantic information in a pixel-wise manner. The CycleGAN approach
suffers from missing semantic information. It wrongly translates pixels that belong to small vegetation objects or fine structures. For the
sake of brevity, we show only one direction and neglect to visualize the results based on the direct adaption baseline.

considered classes. The inspection of the translated images
G(x) for the BONN and UAV-BONN datasets illustrates
a solid domain adaption to the target domain. Our visual
inspection of the entire test datasets shows that our approach
reliably generates images in the style of the target domain
while keeping the semantics of the source domain images. In
case of the CycleGAN baseline, the generators miss details
in the texture as well as the semantic information for small
vegetation objects and fine structures like grass-weeds. This
in turn leads to a weaker crop-weed classification in the target
domain, since the target FCN is trained with lower quality
image material. The direct adaption baseline mostly suffers
from a confusion between the classes crop and weed by the
Target-FCN.

These results demonstrate the ability of our approach for
transferring an FCN for crop-weed classification to different
field environments without the need of extra labels from
the target domain. The different growth stages of plants and
weeds as well as the exposure conditions seem to have little
influence on performance. Furthermore, these results convey
that using our proposed semantic consistency constraints
allow our approach to adequately preserve the semantic
information between the source and target domain.

B. Transfer Between Different Crop Types

The second set of experiments is designed to show that our
approach can transfer a classifier between sugar beets and
sunflowers. Please note that the challenge in this transfer is
less in the appearance of the crop plants themselves but rather

in the substantially different appearance of the overall fields.
We consider the SUGARBEET dataset, which we recorded
with the BoniRob on a field near Bonn, Germany, and the
SUNFLOWER dataset, which we recorded with a self-built
robot near Ancona, Italy. Both datasets contain crop plants at
4-6 leaf growth stage and 14 weed species in total. Compared
to the previous experiment, the soil conditions differ more
and both datasets contain small weeds of size 0.5-4 cm2.

Tab. I summarizes the obtained segmentation performance.
Our approach achieves the best generalization capabilities
to a new crop and outperforms all baselines. Our approach
achieves 67% mIoU for the SUNFLOWER and 70% mIoU
for the SUGARBEET dataset, which is around 7% less
mIoU compared to the achievable upper boundary. Neither
the CycleGAN nor the direct adaptation baseline perform
on a comparable level. The direct adaptation fails on the
SUNFLOWER dataset due to a wrong segmentation of the
vegetation. The white gravel is often classified as plant or
weed. Compared to that, the CycleGAN performs better. It
can generate the basic style of the target domains, thus,
making the Target-FCN aware of the new soil conditions.
This underlines the need for active domain adaptation con-
sidering specific characteristics of both domains. However,
the CycleGAN approach is not able to properly translate
small weeds in a sufficient quality. As a result, the Target-
FCN predicts most of the vegetation in the respective target
domains as crop plants.

The qualitative results in Fig. 4 illustrate that our approach



performs better for those small vegetation objects. It correctly
preserves the semantic information during translation into
the target domain. Most of the remaining error between
our approach and the theoretical upper bound is caused by
wrongly classified plant and weed contours.

C. Transfer Between Different Cameras

The last set of experiments is designed to show that our
approach is able to transfer a classifier between two different
robots that employ different cameras. The MAKO dataset
is recorded with the MAKO-G 158 camera under natural
lighting conditions on a field near Ulm, Germany, whereas
the JAI dataset is recorded with the BoniRob using the JAI-
AD-130GE camera on a field near Zurich, Switzerland. Most
of the vegetation in these datasets is of size 0.2-4.0 cm2.
These datasets are the most challenging ones as the obtained
upper bound performance already suggests, see Tab. I. Our
inspection of the upper bound performance reveals that the
FCN classifiers have problems with distinguishing very small
sugar beets and weeds at a size of 0.2 cm2-2.0 cm2.

Also in this experiment our approach outperforms the
other baselines approaches, except for the direct adaptation.
Both our approach and DiAda obtain 49% mIoU for the
transfer of the MAKO to the JAI data. For the reverse
run, our approach achieves 62% mIoU on the MAKO data
outperforming vanilla, direct adaptation, and CycleGAN.
Concerning all experiments, the good performance for the
direct adaptation on the JAI data can be treated as an outlier.
On average, our approach obtains 11% less mIoU compared
to the upper boundary. The performance loss is mainly
caused by wrong prediction of small plants and weeds.

Noteworthy is the low performance obtained by Cycle-
GAN. CycleGANs can not preserve the semantic information
for small plants during the image translation. The wrong
translation prevents a correct adjustment of the Target-FCN
to the MAKO data. The qualitative results in Fig. 4 illustrate
for the JAI to MAKO experiment, that the CycleGAN maps
pixels from the actual soil class to vegetation pixels in the
target domain, whereas our approach translates the semantic
information correctly. This result confirms the beneficial
properties for our domain adaptation exploiting the semantic
information induced by the source labels.

V. CONCLUSION

In this paper, we presented an unsupervised domain adap-
tation approach to the problem of pixel-wise crop-weed
classification. Our approach enables to train an FCN that
achieves a solid performance in changing domains such
as new field environments, different crops, and different
sensors or robots, while exploiting labeled data only from
a source domain. Our approach learns a mapping between
unpaired images from the source and target domain by
exploiting cycle as well as semantic consistency constraints.
Our extensive evaluation demonstrates that we outperform
CycleGANs and other baselines in changing domains and
substantially improve the generalization capabilities of crop-
weed classification systems. We believe that this approach

is an important step towards the real-world deployment of
agricultural robots at scale.
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