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I. MOTIVATION AND RELATED WORK

The ability to identify which parts of the environment are
static and which ones are moving is key to safe and reliable
autonomous navigation. It supports the task of predicting
the future state of the surroundings, collision avoidance, and
planning. This knowledge can also improve and robustify
pose estimation, sensor data registration, and simultaneous
localization and mapping (SLAM). Thus, accurate and reliable
moving object segmentation (MOS) in sensor data at frame
rate is a crucial capability supporting most autonomous mobile
systems. Depending on the application domain and chosen
sensor setup, moving object segmentation can be a challenging
task. While there has been a large interest in vision-based
moving object segmentation [27, 23, 20] and approaches
combining vision and LiDAR sensors [33, 22], we concentrate
here on approaches using only LiDAR sensors. Below, we
distinguish between map-based and map-free approaches.

Map-based approaches. Most of the existing LiDAR-
based approaches target the cleaning of a point cloud map.
These methods mostly run offline and rely on a prebuilt map.
Some methods use time-consuming voxel ray casting and
require accurately aligned poses to clean the dense terrestrial
laser scans [12, 25]. To alleviate the computational burden,
visibility-based methods have been proposed [21, 32]. These
types of methods associate a query point cloud to a map
point within a narrow field of view, e.g. cone-shaped used by
Pomerleau et al. [21]. Recently, Pagad et al. [18] propose an
occupancy map-based method to remove dynamic points in
LiDAR scans. Kim et al. [14] propose a range-image-based
method, which exploits the consistency check between the
query scan and the pre-built map to remove dynamic points.
Even though such map-based methods can separate moving
objects from the background, they need a pre-built and cleaned
map and therefore usually can not achieve online operation.

Map-free approaches. Recently, LiDAR-based semantic
segmentation methods operating only on the sensor data have
achieved great success [17, 8, 15]. Wang et al. [31] tackle the
problem of segmenting things that could move from 3D laser
scans of urban scenes, e.g. cars, pedestrians, and bicyclists.
Ruchti and Burgard et al. [24] also propose a learning-based
method to predict the probabilities of potentially movable
objects. Dewan et al. [10] propose a LiDAR-based scene flow
method that estimates motion vectors for rigid bodies. Based
on that, they recently developed a semantic segmentation
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Fig. 1: Moving object segmentation using our current approach. Our
method can detect and segment the currently moving objects given
point cloud data exploiting its range projection. Instead of detecting
all potentially movable objects such as vehicles or humans, our
approach distinguishes between actually moving objects (labeled in
red) and static or non-moving objects (black) in the upper row. At the
bottom, we show the range image and our predictions in comparison
to the ground truth labels.

method [9], which exploits the temporally consistent infor-
mation from the sequential LiDAR scans. Bogoslavskyi and
Stachniss [2] propose a class-agnostic segmentation method
for 3D LiDAR scans that exploits range images to enable
online operation and leads to more coherent segments, but
does not distinguish between moving and non-moving objects.

II. PRELIMINARY RESULTS

Semantic information has been successfully used in multiple
LiDAR-based applications, e.g., SLAM [6], loop closing [4]
and localization [5]. Towards moving object segmentation,
semantic segmentation can also be seen as a relevant step.
Most existing semantic segmentation methods, however, only
find movable objects, e.g. vehicles and humans, but do not
distinguish between actually moving objects, like driving cars
or walking pedestrians, and non-moving/static objects, like
parked cars or building structures. There are also multiple 3D
point cloud-based semantic segmentation approaches [29, 28,
26], which also perform well in semantic segmentation tasks.
Among them, Shi et al. [26] exploit sequential point clouds and
predict moving objects. However, based on networks operating
directly on point clouds, these methods are usually heavy
and difficult to train. Furthermore, most of them are both
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Fig. 2: Mapping results on KITTI Odometry dataset sequence 08, frame 3960-4070, where we show the accumulated point cloud (a) without
removing segments and (b) when we remove the segments predicted as moving.

time-consuming and resource-intensive, which might not be
applicable for autonomous driving.

Instead of using 3D point cloud-based approaches, we inves-
tigate the usage of range projection-based semantic segmen-
tation methods to achieve real-time capability and operation
beyond the frame rate of the LiDAR sensor. To distinguish
the moving and non-moving object, we first combined the
semantic segmentation with a SLAM method and proposed
a semantic SLAM [6]. The proposed semantic SLAM method
allows us to generate high-quality semantic maps, while at the
same time improve the geometry of the map and the quality
of the odometry by filtering out moving objects, like moving
cars, while keeping static objects, like parked cars. To this end,
we proposed a dynamic filter within the SLAM pipeline. We
filter dynamics by checking semantic consistency between the
new observation and the world model, when we update the
map. If the labels are inconsistent, we assume those surfels
belong to an object that moved between the scans. Therefore,
we add a penalty term to the computation of the stability term
in the recursive Bayes filter. After several observations, we
can remove the unstable surfels. In this way, we achieve the
detection of dynamics and finally the removal.

Though our semantic SLAM method distinguishes the mov-
ing and non-moving objects to improve odometry and mapping
results, it needs to maintain a map. To achieve non-map-based
MOS, we recently proposed a novel approach [7], which ex-
ploits sequential range images combined with a convolutional
neural network. We investigate the usage of three recent range
projection-based semantic segmentation methods proposed by
Milioto et al. [17], Cortinhal et al. [8], and also ours [15]
to tackle MOS with the prospect of real-time capability and
operation beyond the frame rate of the LiDAR sensor. Our
method does not rely on a pre-built map and operates online.
We exploit residuals between the current frame and the previ-
ous frames as an additional input to the investigated semantic
segmentation networks to enable class-agnostic moving object
segmentation. Note that the proposed method does not depend
on a specific range projection-based semantic segmentation ar-
chitecture. For training, we reorganize the SemanticKITTI [1]
dataset and merge the original labels into two classes, moving

and static. By training the network with proposed new binary
masks, our method distinguishes between moving cars and
parked cars in an end-to-end fashion. As shown in Fig. 2, we
compare the aggregated point cloud maps (a) directly with
the raw LiDAR scans, (b) with the cleaned LiDAR scans
by applying our MOS predictions as masks. As can be seen,
there are moving objects present that pollute the map, which
might have adversarial effects, when used for localization or
path planning. By using our MOS predictions as masks, we
can effectively remove these artifacts and get a clean map.
Furthermore, our method operates online in real-time.

III. FUTURE WORK

Joint Segmentation. Since MOS and semantic segmenta-
tion are highly related, a joint framework will improve the
performance of both tasks. In my next step, I will combine
both tasks by proposing a joint network, which fulfills seman-
tic segmentation together with moving object segmentation.

Spatio-temporal Architecture. Recently, several well-
studied techniques in natural language processing, e.g., long
short-term memory (LSTM) [13] and Transformer [30], have
been successfully transferred to computer vision tasks and
achieve very promising results, e.g., image classification [11],
image completion [19], object detection [3] and semantic
segmentation [16]. Instead of using sequential information
with 2D CNN, I plan to also exploit such spatio-temporal
architectures to encode the information of LiDAR frames to
better distinguish between moving and non-moving objects.

Unsupervised Learning and Uncertainty Estimation.
Traditional supervised learning methods have achieved rea-
sonable results in moving object segmentation, however, it
highly depends on human involvement in annotating and does
not guarantee a good generalization in unseen environments.
Furthermore, traditional learning-based segmentation methods
have not been derived from a probabilistic framework that can
offer uncertainty estimates. I plan to investigate an unsuper-
vised learning method with uncertainty estimation to better
describe the probability of an object to be moving or not,
rather than a simple binary classification. The uncertainty
representation is needed for long-term map maintenance and
localization.
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J. Behley, and C. Stachniss. OverlapNet: Loop Closing for
LiDAR-based SLAM. In Proc. of Robotics: Science and
Systems, 2020.
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