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Abstract
Localization and mapping are key capabilities of autonomous systems. In this paper, we propose a modified Siamese network
to estimate the similarity between pairs of LiDAR scans recorded by autonomous cars. This can be used to address both, loop
closing for SLAM and global localization. Our approach utilizes a deep neural network exploiting different cues generated
from LiDAR data. It estimates the similarity between pairs of scans using the concept of image overlap generalized to range
images and furthermore provides a relative yaw angle estimate. Based on such predictions, our method is able to detect loop
closures in a SLAM system or to globally localize in a given map. For loop closure detection, we use the overlap prediction as
the similarity measurement to find loop closure candidates and integrate the candidate selection into an existing SLAM system
to improve the mapping performance. For global localization, we propose a novel observation model using the predictions
provided by OverlapNet and integrate it into a Monte-Carlo localization framework. We evaluate our approach on multiple
datasets collected using different LiDAR scanners in various environments. The experimental results show that our method
can effectively detect loop closures surpassing the detection performance of state-of-the-art methods and that it generalizes
well to different environments. Furthermore, our method reliably localizes a vehicle in typical urban environments globally
using LiDAR data collected in different seasons.

Keywords Loop closing · Localization · SLAM

1 Introduction

Over the past decades, LightDetection andRanging (LiDAR)
sensors became key components of the sensor suite of
autonomous vehicles that allows to perceive and navigate
the world. Especially mapping and localization systems can
leverage the geometric information provided by LiDAR sen-
sors covering the 360◦ surroundings of the vehicle. Accurate
odometry estimation allows to build locally consistent maps,
and a reliable loop closure detection enables SLAM systems
to correct accumulated drift and to build globally consistent
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maps. These globally consistent maps can then be used to
localize the vehicle. Both tasks, the loop closure detection
and localization, need to determine the similarity between
pairs of laser range scans. The similarity of laser range scans
of the same scene should be high regardless of the sensor
locations used to capture them, but should be low if the sen-
sor observes different parts of the environment.

In this article, we show that our prior work (Chen et al.
2020a, b) can be formulated as a general approach, which
exploits a neural network to estimate the similarity between
laser range scans produced by a rotating 3D LiDAR sensor
mounted on a wheeled robot or autonomous vehicle to tackle
loop closing and global localization as shown in Fig. 1. The
proposed network predicts both, a so-called overlap defined
on range images corresponding to the similarity between the
3D LiDAR scans and a yaw angle offset between the two
scans. The concept of overlap is used in photogrammetry to
describe the configuration of image blocks, e.g., of aerial sur-
veys, andwe extend this to LiDAR range images. It is a useful
tool for estimating the similarity between pairs of LiDAR
scans, which can be used to find loop closure candidates and
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estimate the likelihood of an observation given the sensor
position. The yaw estimate can serve as an initial guess for
a subsequent application of the iterative closest point (ICP)
algorithm (Besl and McKay 1992) to determine the precise
relative pose between scans to derive loop closures con-
straints for pose graph-based optimization in SLAM. During
localization, the yaw estimate can be used to estimate the
heading likelihood of the current observation.

The main contribution of this article is a deep neural
network that exploits different types of information gener-
ated from LiDAR scans to provide overlap and relative yaw
angle estimates between pairs of 3D scans. This information
includes depth, normals, and intensity/remission values. We
additionally exploit a probability distribution over semantic
classes, which can be computed for each laser beam. Our
approach relies on a spherical projection of LiDAR scans
rather than the raw point clouds, which makes the proposed
OverlapNet comparably lightweight. We furthermore test
our method in different applications for autonomous vehi-
cles and mobile robots. We integrate our OverlapNet into a
state-of-the-art SLAM system (Behley and Stachniss 2018)
for loop closure detection and evaluate its performance also
with respect to generalization to different environments. We
also integrate our OverlapNet as the observation model in a
Monte-Carlo localization (MCL) approach for updating the
importance weights of the particles.

To test LiDAR-based loop closing, we train the proposed
OverlapNet on parts of the KITTI odometry dataset and eval-
uate it on unseen data. We thoroughly evaluate our approach,
provide ablation studies using different modalities, and test
the integrated SLAM system in an online manner. Further-
more, we provide results for the Ford campus dataset, which
was recorded using a different sensor setup in a different
country and a differently structured environment. The exper-
imental results suggest that our method outperforms other
state-of-the-art baseline methods and is able to generalize
well to unseen environments.

To test LiDAR-based global localization, a dataset has
been collected in different seasons with multiple sequences
repeatedly exploring the same crowded urban area using our
own car setup. Based on our novel observation model, MCL
achieves global localization using 3D LiDAR scans over dif-
ferent seasons with a comparably small number of particles.

In sum, our approach is able to (i) predict the overlap and
relative yaw angle between pairs of LiDAR scans by exploit-
ing multiple cues without using relative poses, (ii) combine
odometry information with overlap predictions to detect cor-
rect loop closure candidates, (iii) improve the overall pose
estimation results in a state-of-the-art SLAM system yield-
ing more globally consistent maps, (iv) initialize ICP using
the OverlapNet predictions yielding correct scan matching
results, (v) build a novel observation model and achieve

Fig. 1 Overview: We use a siamese network with two LiDAR scans as
input. The result of OverlapNet consisting of the overlap percentage and
yaw angle offset can be used for loop closing and/or global localization

global localization. The source code of the implementation
of our approach is publicly available (see Sect. 6.1).

2 Related work

Various sensor modalities have been used in autonomous
cars and wheeled robots for loop closing and localization
(Thrun et al. 2005; Stachniss et al. 2016). Here, we mainly
concentrate on related work addressing 3D LiDAR-based
approaches. Since our method address both loop closing and
global localization, we discuss the relatedwork in both topics
separately and concentrate on LiDAR-based approaches.

2.1 Loop closing for SLAM

Loop closing is the problem of correctly identifying that a
robot has returned to a previously visited place and is a key
component in SLAM systems. For example, Steder et al.
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(2011) propose a place recognition systemoperating on range
images generated from 3D LiDAR data that uses a combina-
tion of bag-of-words and NARF features (Steder et al. 2010)
for relative poses estimation. Röhling et al. (2015) present an
efficientmethod for detecting loop closures through theuseof
similaritymeasures on histograms extracted from 3DLiDAR
scans of an autonomous ground vehicle and an optimization-
based SLAM system. The work by He et al. (2016) presents
M2DP, which projects a LiDAR scan into multiple reference
planes to generate a descriptor using a density signature of
points in each plane. Besides using pure geometric infor-
mation, there are also methods (Cop et al. 2018; Guo et al.
2019) exploiting the remission information, i.e., how well
LiDAR beams are reflected by a surface, to create descriptors
for localization and loop closure detection with 3D LiDAR
data. Other researchers link LiDAR observations with back-
ground knowledge about the environment to create global
constraints, similar to a loop closure (Vysotska and Stach-
niss 2017).

Recently, deep learning-based methods that yield features
in an end-to-end fashion have been proposed for loop closing
to overcome the need for hand-crafting features. For exam-
ple, Dubé et al. (2017) investigated an approach that matches
segments extracted from a scan to find loop closures via
segment-based features. A geometric test via RANS- AC
is used to verify a potential loop closure identified by the
matching procedure. Based on such segments, Cramariuc
et al. (2018) train a CNN to extract descriptors from seg-
ments and use it to retrieve near-by place candidates. Uy
and Lee (2018) propose PointNetVLADwhich is a deep net-
work used to generate global descriptors for 3D point clouds.
It aggregates multiple LiDAR scans and end-to-end encodes
a global descriptor to tackle the retrieval and place recog-
nition task. Yin et al. (2019) develop LocNet, which uses
semi-handcrafted features learning based on a siamese net-
work to solve LiDAR-based place recognition. Schaupp et al.
(2019) propose a system called OREOS for place recog-
nition. They use a convolutional neural network to extract
compact descriptors from LiDAR scans and use the features
to retrieve near-by place candidates from a map and to esti-
mate the yaw discrepancy. Most recently, Zaganidis et al.
(2019) proposed a normal distributions transform histogram-
based loop closure detection method, which is assisted by
semantic information. Kong et al. (2020) also use seman-
tic graphs for place recognition for 3D point clouds. Their
network is capable of capturing topological and semantic
information from the point cloud and also achieves rotational
invariance.

Contrary to the above-mentioned methods, our method
exploits multiple types of information extracted from 3D
LiDAR scans, including depth, normal information, inten-
sity/remission and probabilities of semantic classes gen-
erated by a semantic segmentation system developed and

reported by Milioto et al. (2019) and Milioto and Stachniss
(2019). Our method furthermore uses a siamese network
to learn features and yield predictions end-to-end, which
directly provides estimates for overlap and the relative yaw
angle between pairs of LiDAR scans. Based on that, our
method can be used not only for detecting loop closure can-
didates but also provides an estimate of the matching quality
in terms of the overlap.

2.2 Global localization

Besides loop closing, our method can be further used for
LiDAR-based localization. Localization is a classical topic
in robotics (Dellaert et al. 1999; Thrun et al. 2005). For
localization given a map, one often distinguishes between
pose tracking and global localization. In pose tracking, an
approach needs to locally localize the vehicle from a known
pose and the pose is updated over time. In global localization,
no pose prior is available and an approach needs to localize
the vehicle globally. In this work, we address global local-
ization using 3D LIDAR sensors without assuming any pose
prior from GPS or other sensors.

A popular traditional framework for robot localization
relies on probabilistic state estimation techniques is Monte-
Carlo localization (Dellaert et al. 1999; Fox et al. 1999),
which uses a particle filter to estimate the pose of the robot.

In the context of autonomous cars, there are many
approaches building and using high-definition (HD) maps
for localization. For example, Levinson et al. (2007) utilize
GPS, IMU, and LiDAR data to build HD maps for localiza-
tion. They generate a 2D surface image of ground reflectivity
in the infrared spectrum and define an observationmodel that
uses these intensities. Wolcott and Eustice (2015) propose a
new scan matching algorithm that leverages Gaussian mix-
ture maps to exploit the structure in the environment. The
uncertainty in intensity values has been handled by building
a prior HD map. Barsan et al. (2018) use a fully convolu-
tional neural network to perform online-to-mapmatching for
improving the robustness to dynamic objects and eliminat-
ing the need for LiDAR intensity calibration. Their approach
requires a good GPS prior to achieve good performance.
Basedon this approach,Wei et al. (2019) proposed a learning-
based compression method for HD maps, which compresses
the intermediate representations of the neural network while
retaining important information for downstream tasks. Mer-
fels andStachniss (2016) present an efficient chain graph-like
pose graph for vehicle localization exploiting graph opti-
mization techniques and different sensing modalities. Based
on that work, Wilbers et al. (2019) propose a LiDAR-based
localization system performing a combination of local data
association between laser scans and HDmaps, temporal data
association smoothing, and a map matching approach for
robustification. To compress the map for online localization,
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Wiesmann et al. (2021) propose a deep network to compress
and decompress the point cloud maps. Recently, Vizzo et al.
(2021) also propose a light-weighted mesh mapping algo-
rithm using Poisson surface reconstruction for LiDAR scans
and later using the mesh maps for LiDAR-based localiza-
tion (Chen et al. 2021).

Other approaches aim at performing LiDAR-based place
recognition to initialize localization. For example, Kim et al.
(2019) transform point clouds into scan context images and
train a CNN based on such images. They generate scan con-
text images for both the current frame and all grid cells of
the map and compare them to estimate the current location as
the cell presenting the largest score. Yin et al. (2019) propose
a siamese network to first generate fingerprints for LiDAR-
basedplace recognition and thenuse iterative closest points to
estimate themetric poses.Cop et al. (2018) propose a descrip-
tor for LiDAR scans based on intensity information. Using
this descriptor, they first perform place recognition to find a
coarse location of the robot, eliminate inconsistent matches
using RANSAC (Fischler and Bolles 1981), and then refine
the estimated transformation using iterative closest points.

Recently, several approaches exploiting semantic infor-
mation for 3D LiDAR localization have been proposed.
Zhang et al. (2018) utilize both ground reflectivity features
and vertical features for localizing autonomous cars in rainy
conditions. Both a histogram filter and a particle filter are
integrated to estimate the posterior distributions of the vehi-
cle poses. Using a similar idea, Ma et al. (2019) combine
semantic information such as lanes and traffic signs in a
Bayesian filtering framework to achieve accurate and robust
localizationwithin sparseHDmaps. Yan et al. (2019) exploit
buildings and intersections information from aLiDAR-based
semantic segmentation system to localize onOpenStreetMap
data using 4-bit semantic descriptors. Not targeting tiny
descriptors but the exploitation of prior knowledge for local-
ization has also been tackled by Silver and Stentz (2011).
They use satellite imagery of outdoor scenes and propose
a sensor model to link the observation of the robot with
the aerial imagery. Schaefer et al. (2019) detect and extract
pole landmarks from 3D LiDAR scans for long-term urban
vehicle localization. The proposed pole detector considers
both the laser ray endpoints and the free space in between
the laser sensor and the endpoints, which demonstrates reli-
able and accurate localization performance. Tinchev et al.
(2019) propose a learning-based method to match segments
of trees and localize in both urban and natural environments.
The approach learns a light feature space representation
which can be deployed using only a CPU. In our previous
work (Chen et al. 2019), we also exploit semantic infor-
mation to improve the localization and mapping results by
detecting and removing dynamic objects. Sun et al. (2020)
use a deep-probabilistic model to accelerate the initializa-
tion of the Monte Carlo localization and achieve a fast

(a)

(b) (c)

Fig. 2 Overlap estimations of one frame to all others. a The red arrow
points out the position of the query scan. b If we directly use Eq. (3)
to estimate the overlap between two LiDAR scans without knowing the
accurate relative poses, it is hard to decide which pairs of scans are true
loop closures, since most evaluations of Eq. (3) show high values. c In
contrast, our OverlapNet can predict the overlaps between two LiDAR
scans without the relative transformation between the scans such that
only the correct location get a high overlap

localization in outdoor campus environments. This hybrid
LiDAR-based localization approach integrates a learning-
based with a Markov-filter-based method, which makes it
possible to effectively and efficiently provide global local-
ization results.

Different to the above discussed methods (Barsan et al.
2018; Ma et al. 2019; Wei et al. 2019), which use GPS as
prior for localization, ourmethod only exploits LiDAR infor-
mation to achieve global localization without using any GPS
information. Moreover, our approach uses range scans with-
out explicitly exploiting semantics or extracting landmarks.
In contrast to approaches that performplace recognition (Kim
et al. 2019; Cop et al. 2018; Yin et al. 2019), our approach
relies on convolutional neural networks to predict the over-
lap between range scans and their yaw angle offset and we
exploit this information as an observation model for Monte-
Carlo localization.

3 OverlapNet

The idea of overlap that we are using here has its origin in the
photogrammetry and computer vision community (Hussain
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and Bethel 2004). To successfully match two images and to
calculate their relative orientation, the images must overlap.
This can be quantified by defining the overlap value as the
percentage of pixels in the first image,which can successfully
be projected back into the second image without occlusion.
Note that this measure is not symmetric. If there is a large
scale difference of the image pair, e.g., one image shows a
wall and the other shows many buildings around that wall,
the overlap percentage for the first to the second image can
be large and from the second to the first image low. In this
paper, we use the idea of overlap for range images and exploit
the range information explicitly.

3.1 Definition of the overlap between LiDAR scans

We use spherical projections of LiDAR scans as input data,
which is often used to speed up computations (Bogoslavskyi
and Stachniss 2016; Behley and Stachniss 2018; Chen et al.
2019). We project the point cloud P = {pi }, i ∈ {1, . . . , N }
to a so-called vertex map V : R2 �→ R

3, where each pixel
is mapped to the nearest 3D point. Each point pi = (x, y, z)
is converted via the function Π : R

3 �→ R
2 to spherical

coordinates and finally to image coordinates (u, v) by

(
u
v

)
=

(
1
2

[
1 − arctan(y, x)π−1

]
w[

1 − (
arcsin(zr−1) + fup

)
f−1

]
h

)
, (1)

where r = ||p||2 is the range, f = fup + fdown is the vertical
field-of-view of the sensor, andw, h are the width and height
of the resulting vertex map V .

For the LiDAR scans P1 and P2, we generate the corre-
sponding vertex maps V1, V2. We denote the sensor-centered
coordinate frame at time step t as Ct . Each pixel in coor-
dinate frame Ct is associated with the world frame W by a
poseTWCt ∈ R

4×4. Given the posesTWC1 andTWC2 , we can
reproject scanP1 into the other’s vertex map V2 and generate
a reprojected vertex map V ′

1:

V ′
1 = Π

(
T−1
WC1

TWC2P1

)
. (2)

We calculate the absolute difference of all corresponding
pixels in V ′

1 and V2, considering only those pixels that cor-
respond to valid range readings in both range images. The
overlap is then calculated as the percentage of all differences
in a certain distance ε relative to all valid entries, i.e., the
overlap of two LiDAR scans OC1C2 is defined as:

OC1C2 =
∑

(u,v) I

{ ∣∣∣∣V ′
1(u, v) − V2(u, v)

∣∣∣∣ ≤ ε
}

min
(
valid(V ′

1), valid(V2)
) , (3)

where I{a} = 1 if a is true and 0 otherwise. The func-
tion valid(V) refers to the number of valid pixels in V , since

not all pixel might have a valid LiDAR measurement associ-
ated after the projection.

We use Eq. (3) only for creating training data, i.e., only
positive examples of correct loop closures get a non-zero
overlap assigned using the relative poses between scans, as
shown in Fig. 2. Thus, the proposed approach can learn not
only high overlap values for nearby scans, but also to estimate
high overlap values for scans that correspond to the same part
of the environment and lower overlap values for different
parts. During test time, no (ground-truth) poses are available
and not required by our proposed approach. When perform-
ing loop closure detection for online SLAM, the approximate
relative poses computed by the SLAM system before loop
closure are not accurate enough to calculate suitable over-
laps by using Eq. (3) because of accumulated drift.

To verify that the estimated overlap captures more than
just the similarity of the raw scans, we tried directly cal-
culating overlaps using Eq. (3) assuming the relative pose
to be the identity and applying different orientations, e.g.,
every 30 degrees rotation around the vertical axis, and using
the maximum over all these overlaps as an estimate. Fig-
ure 2 shows the estimated overlaps for all scans using a query
scan produced by this method and the result of the estimated
overlap for all scans using OverlapNet. We leave out the
100 most recent scans because they will not be loop closure
candidates. In the case of the exhaustive approach based on
Eq. (3), many scans which are far away get high overlap val-
ues, which makes this method unsuitable for loop closing or
global localization. Our approach, however, correctly iden-
tifies the correct similarity as it produces a highly distinctive
peak around the correct location.

3.2 Overlap network architecture

A visual overview of our proposed OverlapNet is depicted in
Fig. 3.We exploitmultiple cues,which can be generated from
a single LiDAR scan, including depth, normal, intensity, and
semantic class probability information. The depth informa-
tion is stored in the range map R, which defines one input
channel. We use neighborhood information of the vertex
map to generate a normal map N , which gives three chan-
nels encoding the normal coordinates. We directly obtain the
intensity information, also called remission, from the sen-
sor and represent the intensity information as a one-channel
intensity map I. The point-wise semantic class probabilities
are computed using RangeNet++ by Milioto et al. (2019)
and we represent them as a semantic map S. The semantic
segmentation network delivers probabilities for 20 different
classes. For efficiency reasons, we reduce the 20 dimensional
RangeNet++ output to a compressed 3 dimensional vector
using principal component analysis. All the information is
combined as the input of the OverlapNet with the size of
64 × 900 × 8.
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Fig. 3 Pipeline overview of our proposed approach. The left-hand side
shows the preprocessing of the input data which exploits multiple cues
generated from a single LiDAR scan, including range R, normal N ,
intensity I, and semantic class probability S information. The right-

hand side shows the proposed OverlapNet which consists of two legs
sharing weights and the two heads use the same pair of feature volumes
generated by the two legs. The outputs are the overlap and relative yaw
angle between two LiDAR scans

Our proposed OverlapNet is a siamese network architec-
ture (Bromley et al. 1993), which consists of two legs sharing
weights and two heads that use the same pair of feature vol-
umes generated by the two legs. The trainable layers are listed
in Table 1.

3.2.1 Legs

The proposed OverlapNet has two legs, which have the same
architecture and share weights. Each leg is a fully con-
volutional network consisting of 11 convolutional layers.
This architecture is quite lightweight, i.e., it only consists
of 1.8 million parameters, and generates feature volumes of
size 1 × 360 × 128.

Note that our range images are cyclic projections and that
a change in the yaw angle of the vehicle results in a cyclic
column shift of the range image. Thus, the single row in
the feature volume can represent a relative yaw angle esti-
mate because a yaw angle rotation results in a pure horizontal
shift of the input maps. As the fully convolutional network
is translation-equivariant, the feature volume will be shifted
horizontally in the same manner. The number of columns of
the feature volume defines the resolution of the yaw estima-
tion, which is 1◦ in the case of our leg architecture.

3.2.2 Delta head

The delta head is designed to estimate the overlap between
two scans. It consists of a delta layer, three convolutional
layers, and one fully connected layer.

The delta layer, which is shown in Fig. 4, computes all
possible absolute differences of all pixels. It takes the out-

put feature volumes Ll ∈ R
H×W×C from the two legs l ∈

{0, 1} as input. These are stacked in a tiled tensor Tl ∈
R

HW×HW×C as follows:

T0(iW + j, k, c) = L0(i, j, c), (4)

T1(k, iW + j, c) = L1(i, j, c), (5)

with k = {0, . . . , HW − 1}, i = {0, . . . , H − 1} and j =
{0, . . . ,W − 1}.

Note that T1 is transposed with respect to T0, as depicted
in the middle of Fig. 4. After that, all differences are cal-
culated by element-wise absolute differences between T0

and T1.
By using the delta layer, we can obtain a representation of

the latent difference information,which can be later exploited
by the convolutional and fully-connected layers to estimate
the overlap. Different overlaps induce different patterns in
the output of the delta layer.

3.2.3 Correlation head

The correlation head (Nagashima et al. 2007) is designed to
estimate the yaw angle between two scans using the feature
volumes of the two legs. To perform the cross-correlation,
we first pad horizontally one feature volume by copying
the same values (as the range images are cyclic projections
around the yaw angle). This doubles the size of the feature
volume. We then use the other feature volume as a kernel
that is shifted over the first feature volume generating a 1D
output of size 360. The argmax of these correlation values
serves as the estimate of the relative yaw angle of the two
input scans with a 1◦ resolution.
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Table 1 Layers of our network
architecture

Operator Stride Filters Size Output Shape

Legs Conv2D (2, 2) 16 (5, 15) 30 × 443 × 16

Conv2D (2, 1) 32 (3, 15) 14 × 429 × 32

Conv2D (2, 1) 64 (3, 15) 6 × 415 × 64

Conv2D (2, 1) 64 (3, 12) 2 × 404 × 64

Conv2D (2, 1) 128 (2, 9) 1 × 396 × 128

Conv2D (1, 1) 128 (1, 9) 1 × 388 × 128

Conv2D (1, 1) 128 (1, 9) 1 × 380 × 128

Conv2D (1, 1) 128 (1, 9) 1 × 372 × 128

Conv2D (1, 1) 128 (1, 7) 1 × 366 × 128

Conv2D (1, 1) 128 (1, 5) 1 × 362 × 128

Conv2D (1, 1) 128 (1, 3) 1 × 360 × 128

Delta Head Conv2D (1, 15) 64 (1, 15) 360 × 24 × 64

Conv2D (15, 1) 128 (15, 1) 24 × 24 × 128

Conv2D (1, 1) 256 (3, 3) 22 × 22 × 256

Dense – – – 1

Fig. 4 The delta layer: Computation of pairwise differences is effi-
ciently performed by concatenating the feature volumes and transposi-
tion of one concatenated feature volume

3.3 Loss function

We train our OverlapNet end-to-end to estimate the overlap
and the relative yaw angle between two LiDAR scans at the
same time. Typically, to train a neural network one needs
a large amount of manually labeled ground truth data. In
our case, this is (I1, I2, YO , YY ), where I1, I2 are two inputs
andYO ,YY are the ground truth overlaps and the ground truth
yaw angles respectively. We are, however, able to generate
the input and the ground truth without any manual effort in
a fully automated fashion given a dataset with pose infor-
mation. From given poses (e.g., obtained using a GPS+IMU
combination), we can calculate the ground truth overlap and
relative yaw angles directly. We denote the legs part network
with trainable weights as fL(·), the delta head as fD(·) and
the correlation head as fC (·).

For training, we combine the loss LO(·) for the overlap
and the loss LY (·) for the yaw angle using a weight α:

L (I1, I2,YO ,YY ) = LO (I1, I2,YO)

+ αLY (I1, I2,YY ) . (6)

We treat the overlap estimation as a regression problem
and use a weighted absolute difference of ground truth YO

and network output ŶO = fD ( fL (I1) , fL (I2)) as the loss
function. For weighting, we use a scaled sigmoid function:

LO (I1, I2,YO)= sigmoid
(
s
(∣∣∣ŶO − YO

∣∣∣ + a
)

− b
)

, (7)

with sigmoid(v) = (1+exp(−v))−1, the variables a, b being
offsets, and s being a scaling factor.

For the yaw angle estimation, we use a lightweight rep-
resentation of the correlation head output, which leads to a
one-dimensional vector of size 360. We take the index of the
maximum, the argmax, as the estimate of the relative angle
in degrees. As the argmax is not differentiable, we cannot
treat this as a simple regression problem. The yaw angle
estimation, however, can be regarded as a binary classifica-
tion problem that decides for every entry of the head output
whether it is the correct angle or not. Therefore, we use the
binary cross-entropy loss given by

LY (I1, I2,YY ) =
∑

i={1,...,N } H
(
Y i
Y , Ŷ i

Y

)
, (8)

where H(p, q) = −p log(q) − (1 − p) log(1 − q) is the
binary cross entropy and N is the size of the output 1D vec-
tor. ŶY = fC ( fL (I1) , fL (I2)) is the relative yaw angle
estimate. Note that we only train the network to estimate
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the relative yaw angle of a pair of scans with overlap larger
than 30%, since it is more uncertain and difficult to estimate
the relative yaw angle if the pair of scans are less overlap-
ping which is explained more detailed in Sect. 6.2.3. More
uncertain estimations also decrease the accuracy of pose esti-
mation building on top of OverlapNet and the corresponding
experimental results can be found in Sect. 6.3.2.

4 OverlapNet for loop closing and SLAM

For loop closing, a threshold on the overlap percentage can be
used to decide whether two LiDAR scans are taken from the
same place. For finding loop closure candidates, this mea-
sure maybe even better than the commonly used distance
between the recorded positions of a pair of scans, since the
positions might be affected by drift and therefore unreliable.
Furthermore, the overlap takes the scene into account, e.g.,
occlusions between the two scans, and is a direct measure for
the number of corresponding points, which can be exploited
by ICP that most SLAM systems are employing. The over-
lap predictions are independent of the relative poses and can
be therefore used to find loop closures without knowing the
correct relative pose between scans.

4.1 SLAM pipeline

We use the surfel-based mapping system called SuMa pro-
posed by Behley and Stachniss (2018) as our SLAMpipeline
and integrate OverlapNet in SuMa replacing its original
heuristic loop closure detection method. We only summa-
rize here the key steps of SuMa relevant to our approach
and refer for more details to the original paper (Behley and
Stachniss 2018).

SuMa uses the same vertex map VD and normal mapND

as described in Sect. 3.1. Furthermore, SuMa uses projec-
tive ICP with respect to a rendered map view VM and NM

at timestep t − 1, the pose update TCt−1Ct and conse-
quently TWCt by chaining all pose increments. Therefore,
each vertex u ∈ VD is projectively associated to a reference
vertex vu ∈ VM . Given this association information, SuMa
estimates the transformation between scans by incrementally
minimizing the point-to-plane error given by

E(VD,VM ,NM )=
∑
u∈VD

(
n�
u

(
T(k)
Ct−1Ct

u − vu
))2

. (9)

Each vertex u ∈ VD is projectively associated to a refer-
ence vertex vu ∈ VM and its normal nu ∈ NM via

vu = VM

(
Π

(
T(k)
Ct−1Ct

u
))

(10)

nu = NM

(
Π

(
T(k)
Ct−1Ct

u
))

. (11)

SuMa then minimizes the objective function given in
Eq. (9) using Gauss-Newton and determines increments δ

by iteratively solving

δ =
(
J�
δ WJδ

)−1
J�
δ Wr, (12)

whereW ∈ R
n×n is a diagonalmatrix containingweightswu ,

r ∈ R
n is the stacked residual vector, and Jδ ∈ R

n×6 the
Jacobian of r with respect to the increment δ.

SuMa employs a loop closure detection module, which
considers the nearest frame in the built map as the candidate
for loop closure given the current pose estimate. Loop closure
detection works well for small loops, but the heuristic fails in
areas with only a few large loops. Furthermore, drifts in the
odometry estimate can lead to large displacements, where a
heuristic of taking the nearest frame in the already mapped
areas into account does not yield correct candidates. This
effect is shown in our experiments, see Sect. 6.3.

4.2 Covariance propagation for geometric
verification

SuMa’s loop closure detection uses a fixed search radius.
In contrast, we additionally use the covariance of the pose
estimate and error propagation to automatically adjust the
search radius.

We assume a noisy poseTCt−1Ct ={T̄Ct−1Ct , 6Ct−1Ct }with
mean T̄Ct−1Ct and covariance 6Ct−1Ct . We can estimate the
covariance matrix by

6Ct−1Ct = 1

K

E

N − M

(
J�
δ WJδ

)−1
, (13)

where K is the correction factor of the Huber robustized
covariance estimation (Huber 1981), E is the sum of the
squared weighted point-to-plane errors (the sum of squared
weighted residuals) given the pose TCt−1Ct , see Eq. (9), N is
the number of correspondences, M = 6 is the dimension of
the transformation between two 3D poses.

To estimate the propagated uncertainty during the incre-
mentally pose estimation, we can update the mean and
covariance as follows:

T̄WCt = T̄WCt−1 T̄Ct−1Ct (14)

6WCt ≈ 6WCt−1 + JCt−1Ct 6Ct−1Ct J
�
Ct−1Ct

, (15)

where JCt−1Ct is the Jacobian of Eq. (14).
Since we use the Mahalanobis distance DM as a proba-

bilistic distance measure between two poses, we make use
of Lie algebra to express T as a 6D vector ξ ∈ se(3) using
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ξ = logT, yielding

DM (TC1,TC2) =
√

Δξ�
C1C26

−1
C1C2ΔξC1C2. (16)

Using the scaled distance, we can now restrict the search
space depending on the pose uncertainty to save computation
time.

Once we find loop closure candidates, we try to align the
current point cloud to the rendered view at the correspond-
ing pose TWC j∗ using the frame-to-model ICP. For the ICP
initialization, we use the yaw angle offset estimated from
OverlapNet while keeping other setups the same as those
used in SuMa. If we have found a loop closure candidate
at timestep t , we try to verify it in the subsequent timesteps
t + 1, . . . , t + Δveri f ication , which ensures that we only add
consistent loop closures to the pose graph.

5 OverlapNet for global localization

For global localization in a Monte-Carlo localization frame-
work (Dellaert et al. 1999), one of the key challenges lies
in the design of the observation model. For the observation
model, we need to compare the sensor data and the map. As
we want to exploit the overlap and yaw angle predictions
of OverlapNet for that, our map consists of virtual scans at
discretized 2D locations on a grid. We assume that a point
cloud of the environment is available, whichwe use to extract
the map information. Then, we render virtual scans as a pre-
processing step. We can then train the network completely
self-supervised on the map of virtual scans.

Finally, we integrate an observation model using the over-
lap and a separate observation model for the yaw angle
estimates in a particle filter to perform localization.

5.1 Map of virtual scans

OverlapNet requires two LiDAR scans as input. One is the
current scan and the second has to be generated from themap
point cloud. Thus, we build a map of virtual LiDAR scans
given an aggregated point cloud by using a grid of locations
with grid resolution γ , where we generate virtual LiDAR
scans for each location. The grid resolution is a trade-off
between the accuracy and storage size of the map. Instead
of storing these virtual scans, we just need to use one leg
of the OverlapNet to obtain a feature volume F using the
input tensor I of this virtual scan. Storing the feature volume
instead of the complete scan has two key advantages: First,
it uses more than an order of magnitude less space than the
original point cloud (roughly ours: 100MB/km, raw scans:
1.7GB/km). Second, we do not need to compute theF during
localization on the map. The features volumes of the virtual

scans can directly be used to compute overlap and yaw angle
estimates with a query scan that is the currently observed
LiDAR point cloud in our localization framework.

5.2 Monte-Carlo localization

Monte-Carlo localization or MCL is a localization algo-
rithm based on the particle filter proposed by Dellaert et al.
(1999). Each particle represents a hypothesis for the robot’s
or autonomous vehicle’s 2D pose xt = (x, y, θ)t at time t .
When the robot moves, the pose of each particle is updated
with a prediction based on a motion model with the control
input ut . The expected observation from the predicted pose
of each particle is then compared to the actual observation zt
acquired by the robot to update the particle’s weight based on
the observation model. Particles are resampled according to
their weight distribution and resampling is triggered when-
ever the effective number of particles drops below 50% of
the sample size, see Grisetti et al. (2007) for details. After
several iterations of this procedure, the particles are likely to
converge around the true pose.

MCL realizes a recursive Bayesian filtering scheme. The
key idea of this approach is to maintain a probability den-
sity p(xt | z1:t ,u1:t ) of the pose xt at time t given all
observations z1:t up to time t and motion control inputs u1:t
up to time t . This posterior is updated as follows:

p(xt | z1:t ,u1:t ) = η p(zt | xt )·∫
p(xt | ut , xt−1) p(xt−1 | z1:t−1,u1:t−1) dxt−1, (17)

where η is the normalization constant resulting from Bayes’
rule, p(xt | ut , xt−1) is the motion model, and p(zt | xt ) is
the observation model. This paper focuses only on the obser-
vation model. For the motion model, we follow a standard
odometry model for vehicles (Thrun et al. 2005).

We split the observation model into two parts:

p(zt | xt ) = pL (zt | xt ) pO (zt | xt ) , (18)

where zt is the observation at time t , pL (zt | xt ) is the prob-
ability encoding the location (x, y) agreement between the
current query LiDAR scan and the virtual scan at the nearest
grid position and pO (zt | xt ) is the probability encoding the
yaw angle θ agreement between the same pairs of scans.

5.3 OverlapNet-based observationmodel

Given a particle i with the state estimate (xi , yi , θi ), the over-
lap estimates encode the location agreement between the
query LiDAR scan and virtual scans of the grid cells where
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Fig. 5 Overlap observationmodel describing p(zt | xt ) forMCL.Local
heatmap of the scan at the car’s position with respect to themap. Lighter
shades correspond to higher probabilities

particles are located. It can be directly used as the probability:

pL (zt | xt ) ∝ f (zt , zi ;w) , (19)

where f corresponds to the neural network providing the
overlap estimation between the input scans zt , zi andw is the
pre-trained weights of the network. zt and zi are the current
query scan and a virtual scan of one (x, y) location respec-
tively.

For illustration purposes, Fig. 5 shows the probabilities of
all grid cells in a local area calculated by the overlap obser-
vation model. The blue car in the figure shows the current
location of the car. The probabilities calculated by the over-
lap observation model can well represent the hypotheses of
the current location of the car.

Typically, a large number of particles are used, especially
when the environment is large. However, the computation
time increases linearly with the number of particles. When
applying the overlap observation model, particles can still
obtain relatively large weights as long as they are close to
the actual pose, even if not in the exact same position. This
allows us to use fewer particles to achieve a high success rate
of global localization.

Furthermore, the overlap estimation only encodes the
location hypotheses. Therefore, if multiple particles locate
in the same grid area, only a single inference using the near-
est virtual scan of themap needs to be done,which can further
reduce the computation time.

Given a particle i with the state vector (xi , yi , θi ), the yaw
angle estimates encode the orientation agreement between
the query LiDAR scan and virtual scans of the corresponding
grids where particles are located. We formulate the orienta-
tion probability as follows:

pO (zt | xt ) ∝ exp

⎛
⎜⎝−1

2

(
g (zt , zi ;w) − θi

)2
σ 2

θ

⎞
⎟⎠, (20)

where g corresponds to the neural network providing the yaw
angle estimation between the input scans zt , zi and w is the
pre-trained weights of the network. zt and zi are the current
query scan and a virtual scan of one particle respectively.

When generating the virtual scans of the grid map, all
virtual scans will be set facing along the absolute 0◦ yaw
angle direction. By doing this, the estimated relative yaw
angle between the query scan and the virtual scan indicates
the absolute yaw angle of the current query scan. Eq. (20)
assumes a Gaussian measurement error in the heading.

By combining overlap and yaw angle estimation, the pro-
posed observation model will correct the weights of particles
considering agreements between the query scan and the map
with the full pose (x, y, θ).

6 Experimental results

The experimental evaluation is designed to evaluate our
approach and support the claims we made in the introduc-
tion of this article, which are that our approach is able to:
(i) predict the overlap and relative yaw angle between pairs
of LiDAR scans by exploiting multiple cues without using
relative poses, (ii) combine odometry information with over-
lap predictions to detect correct loop closure candidates,
(iii) improve the overall pose estimation results in a state-
of-the-art SLAM system yielding more globally consistent
maps, (iv) initialize ICP using the OverlapNet predictions
yielding correct scan matching results, (v) build a novel
observation model and achieve global localization.

6.1 Implementation, datasets, and experimental
setups

We implemented OverlapNet based on Python and Tensor-
flow (Abadi et al. 2016). The open source implementation is
available in form of a stand-alone library, released under the
MIT license and can be obtained from GitHub.1 The source
code is well documented with multiple demos to show the
functionalities including a loop closing example and can be
easily integrated into any other framework. Besides the net-
work, we also released the implementation of the proposed
OverlapNet-based global localization method.2

For SLAM and loop closing, we train and evaluate our
approach on the KITTI odometry benchmark (Geiger et al.
2012). It provides LiDAR scans recorded with a Velodyne
HDL-64E showing urban areas around Karlsruhe in Ger-
many. It provides 11 sequences (00–10) with ground truth
poses covering different types of environment, e.g., urban,
country, and highway. We follow the experimental setup

1 https://github.com/PRBonn/OverlapNet.
2 https://github.com/PRBonn/overlap_localization.
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Fig. 6 Upper: sensor setup used for data recording. Middle: trajecto-
ries of the dataset used in this paper, overlayed on OpenStreetMap.
The orange trajectory represents the sequence used to generate a map
for localization. The yellow and purple trajectories represent two dif-
ferent test sequences. Bottom: LiDAR scans of the same place, once
during mapping and once during localization. Since the LiDAR data
was collected in different seasons, the appearance of the environment
changed quite significantly due to changes in the vegetation but also
due to parked vehicles at different places (Color figure online)

proposed by Schaupp et al. (2019) and use sequence 00
for evaluation. Sequences 03–10 are used for training and
sequence 02 is used for validation.

To evaluate the generalization capabilities of our method,
we also test it on the Ford campus dataset (Pandey et al.
2011), which was recorded on the Ford research campus in
downtown Dearborn in Michigan using a different version
of the Velodyne HDL-64E. In the case of the Ford campus
dataset, we test our method on sequence 00, which contains
several large loops. Note that we never trained our approach
on the Ford campus dataset, only on the KITTI dataset.

For global localization, we use our own IPB-Car dataset,
collected with our self-developed sensor platform illustrated
in Fig. 6. The KITTI dataset and Ford Campus dataset
do not perfectly fulfill our needs for evaluating a localiza-
tion system, because there are no sequences of the same
place but from different seasons available. We therefore col-

lected a large-scale dataset in different seasons with multiple
sequences repeatedly exploring the same crowded urban area
of Bonn city inGermany using anOuster OS1-64. For our car
dataset, we performed a 3D LiDAR SLAM, SuMa (Behley
and Stachniss 2018), combined with a high-precision and
SAPOS correction GPS information to create near ground
truth poses. During localization, we only use LiDAR scans
for global localization without using any GPS.

The dataset has three sequences that were collected at
different times of the year, sequence 00 in September 2019,
sequence 01 inNovember 2019, and sequence 02 in February
2020. The whole dataset covers a distance of over 10km.We
use LiDAR scans from sequence 02 to build the virtual scans
and use sequence 00 and 01 for localization. As can be seen
from Fig. 6, the appearance of the environment changes sig-
nificantly since the dataset was collected in different seasons
and in a crowded urban environment, including changes in
vegetation, but also parking cars at different locations, mov-
ing people, and other objects. The link to the dataset can be
found in our open-source code repository.2

Besides the open source implementation, we also provide
the parameters used in the proposedmethod in Tables 1 and 2
for the purpose of reproducibility to the experimental results.
Table 1 shows the configuration of the network architecture
and Table 2 shows hyper parameters used in the proposed
method. As shown in Table 2, for generating the range image
following SuMa setup (Behley and Stachniss 2018), we only
use pointswithin a distance of 75m to the sensor and generate
range images with height h = 64 and width w = 900. For
overlap computation, see Eq. (3), we use ε = 1m. We use a
learning rate of 10−3 with a decay of 0.99 every epoch and
train at most 100 epochs. For the combined loss, Eq. (6), we
setα = 5. For the overlap loss, Eq. (7), we use a = 0.25, b =
12, and scale factor s = 24. For the calculation of yaw angle

Table 2 Hyper parameters of our approach

Parameter Description Value

h Height of range image 64

w Width of range image 900

dmax Maximum range 75m

ε Threshold to count overlap pixels 1m

a Constant offset of sigmoid 0.25

b Constant offset of sigmoid 12

s Scaling factor of sigmoid 24

σθ Sigma for orientation probability 10deg

dconverge Threshold to success converge 5m

Network training Learning rate 10−3

Decay of every epoch 0.99

Number of epochs 100

Overlap loss weight α 5
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probability, Eq. (20), we set σθ = 10. We use the a threshold
of dconverge = 5m to decide whether the global localization
converges or not.

6.2 Overlap and yaw angle evaluation

In this section, we show the experiments that support the
claim that our approach is able to estimate the overlap and
yaw angle offset between pairs of LiDAR scans, which is
well-suited for solving the general similarity estimation. We
also provide an ablation study of using different input modal-
ities and the analysis of the relationship between the overlap
and yaw angle estimations.

In the case of general LiDAR scans similarity estima-
tion, we assume that we have no prior information about the
robot pose. We compare our method with the state-of-the-art
learning-based methods LocNet (Yin et al. 2019), LocNet++
and OREOS (Schaupp et al. 2019), and also the traditional
hand-crafted feature-based method FPFH+RANSAC. We
follow the experimental setup of OREOS, where the KITTI
sequence 00 is used for the evaluation. The LiDAR scans
from the first 170s of sequence 00 are used to generate the
database, as the vehicle starts to revisit previously traversed
areas after 170s. The remaining LiDAR scans are used for
place recognition queries. The query point clouds are sam-
pled to be at least 3m apart. Two point clouds are considered
in the same place, if their ground-truth poses arewithin 1.5m.
The baseline results are those produced by the authors of
OREOS (Schaupp et al. 2019).

6.2.1 Overlap estimation for Similarity measurement

In a general place recognition application, multiple can-
didates may be retrieved according to the similarity mea-
surements with respect to the current query LiDAR scan.
The respective place recognition candidates recall results are
shown in Fig. 7. Our method outperforms all baseline meth-
ods when using a small number of candidates and attains
similar performance as baseline methods for higher values
of numbers of candidates. However, OREOS and LocNet++
attain a slightly higher recall if more candidates are consid-
ered.

Fig. 7 Place recognition performance on KITTI sequence 00

Table 3 Yaw estimation errors

Approach Mean (deg) Std (deg) Recall (%)

FPFH+RANSAC∗ 13.28 32.19 97

OREOS∗ 12.67 15.23 100

Ours 1.13 3.34 100

Bold numbers indicate best performance ∗The results are those pro-
duced by the authors of OREOS

Fig. 8 Overlap and yaw estimation relationship

6.2.2 Yaw angle estimation

Table 3 summarizes theyawangle errors onKITTI sequence00.
We can see that our method outperforms the other methods
in terms of mean error and standard deviations. In terms of
recall, OverlapNet and OREOS always provide a yaw angle
estimate, since both approaches are designed to estimate the
relative yaw angle for any pairs of scans in contrast to the
RANSAC-based method that sometimes fails.

The superior performance can be mainly attributed to the
correlation head exploiting the fact that the orientation in
LiDAR scans can bewell represented by the shift in the range
projection. Therefore, it is easier to train the correlation head
to accurately predict the relative yaw angles rather than a
multilayer perceptron used in OREOS. Furthermore, there is
also a strong relationship between overlap and yaw angle,
which also improves the results when trained together.

6.2.3 Relationship between overlap and yaw estimations

Figure 8 shows the relationship between real overlap and yaw
angle estimation error. As expected, the yaw angle estimate
gets better with increasing overlap. Based on these plots,
our method not only finds candidates but also measures the
quality, i.e., when the overlap of two scans is larger than 90%,
our method can accurately estimate the relative yaw angle
with an average error of about only 1◦.
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Table 4 Ablation study on usage of input modalities

R N I S Overlap Yaw (degree)
AUC F1 Mean Std

� 0.86 0.87 11.67 25.32

� � 0.86 0.85 2.97 14.28

� � � 0.87 0.87 2.53 14.56

� � � � 0.87 0.88 1.13 3.34

R, range depth;N , normal;I, intensity;S, semantic information. AUC,
area under the curve, F1, balanced F-score

6.2.4 Ablation study on input modalities

An ablation study on the usage of different inputs is shown
in Table 4. As can be seen, when employing more input
modalities, the proposedmethod gets more robust.We notice
that exploiting only depth information with OverlapNet can
already perform reasonably in terms of overlap prediction,
while it does not performwell in yaw angle estimation.When
combining this with normal information, the OverlapNet can
performwell on both tasks. Another interesting finding is the
drastic reduction of yaw angle mean error and standard devi-
ation when using semantic information. One reason could
be that adding semantic information will make the input
data more distinguishable when the car drives in symmet-
rical environments.

6.3 OverlapNet-based loop closing

In the following experiments, we investigate the loop clos-
ing performance of our approach and compare it to existing
methods. Different from the general place recognition, loop
closure detection typically assumes that robots revisit places
during the mapping while moving with uncertain odometry.
Therefore, the prior information about robot poses extracted
from the pose graph is available for the loop closure detec-
tion. The following criteria are used in these experiments:

• To avoid detecting a loop closure in themost recent scans,
we do not search candidates in the latest 100 scans.

• For each query scan, only the best candidate is considered
throughout this evaluation.

• Most SLAM systems search for potential loop closures
only within the 3σ area around the current pose estimate.
We do the same, either using the Euclidean or the Maha-
lanobis distance, depending on the approach.

• We aim to find more loops even in some challenging sit-
uations with low overlaps, e.g., when the car drives back
to an intersection from the opposite direction as shown
in Fig. 1. We use the overlap value to decide if a candi-
date is a true positive rather than distance. Furthermore,

(a)

(b)

Fig. 9 Precision–Recall curves of different approaches

ICP can find correct poses if the overlap between pairs
of scans is around 30%, as illustrated in Sect. 6.3.2.

We evaluateOverlapNet on both theKITTI dataset and the
Ford campus dataset to showcase the generalization capabil-
ities of the approach.

6.3.1 Quantitative analysis

Figure 9 shows the precision–recall curves of different loop
closure detection methods. We compare our method, trained
with two heads and all cues labeled as Ours (AllChannel,
TwoHeads), with three state-of-the-art approaches: a histo-
gram-based approach (Histogram) by Röhling et al. (2015),
M2DP byHe et al. (2016), and the original heuristic approach
of SuMabyBehley andStachniss (2018). Since SuMaalways
uses the nearest frame as the candidate for loop closure
detection, we can only get one pair of precision and recall
value resulting in a single point. We also show the result of
our method using prior information, Ours-Cov, which uses
covariance propagation (Sect. 4.2) to define the search space
with the Mahalanobis distance and use the nearest in Maha-
lanobis distance of the top 10 predictions of OverlapNet as
the loop closure candidates. For a fair comparison, we also
show the results that can be obtained by enhancing the base-
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lines with the proposed covariance-based method. These are
labeled as Histogram-Cov and M2DP-Cov respectively.

Table 5 shows the comparison between our approach and
the state of the art using the F1 score and the area under the
curve (AUC) on both, KITTI and Ford campus dataset. For
the KITTI dataset, our approach uses the model trained with
all cues, including depth, normals, intensity, and a probabil-
ity distribution over semantic classes. For the Ford campus
dataset, our approach uses the model trained on KITTI with
geometric information only, namely Ours (GO), since other
cues are not available in this dataset. We can see that our
method outperforms the other methods on the KITTI dataset
and attains a similar performance on the Ford campus dataset.
There are two reasons to explain the worse performance on
the Ford campus dataset. First, we never trained our network
on the Ford campus dataset or even US roads, and secondly,
there is only geometric information available on the Ford
campus dataset. However, our method outperforms all base-
line methods in both, KITTI and Ford campus dataset, if we
integrate prior information.

We also show the performance in comparison to variants
of our method in Table 6. We compare our best model AC-

Table 5 Comparison with state of the art

Dataset Approach AUC F1 score

KITTI SuMa – 0.85

Histogram 0.83 0.83

Histogram-Cov 0.95 0.92

M2DP 0.83 0.87

M2DP-Cov 0.89 0.88

Ours (AC-TH) 0.87 0.88

Ours-Cov (AC-TH) 0.96 0.96

Ford Campus SuMa – 0.33

Histogram 0.84 0.83

Histogram-Cov 0.85 0.85

M2DP 0.84 0.85

M2DP-Cov 0.85 0.86

Ours (GO) 0.85 0.84

Ours-Cov (GO) 0.85 0.88

Table 6 Comparison with our variants

Dataset Variant AUC F1 score

KITTI MLPOnly 0.58 0.65

DeltaOnly 0.85 0.88

Ours (AC-TH) 0.87 0.88

Ours-Cov (AC-TH) 0.96 0.96

Ford Campus Ours (GO) 0.85 0.84

Ours-Cov (GO) 0.85 0.88

TH using all available cues and two heads to a variant which
only uses a basic multilayer perceptron as the head named
MLPOnly which consists of two hidden fully connected lay-
ers and a final fully connected layer with two neurons (one
for overlap, one for yaw angle). The substantial difference
of the AUC and F1 scores shows that such a simple network
structure is not sufficient to get a good result. Training the
network with only one head (only the delta head for overlap
estimation, named DeltaOnly), has not a significant influ-
ence on the performance. A huge gain can be observed when
regarding the nearest frame in Mahalanobis distance of the
top 10 candidates in overlap percentage (Ours-Cov).

6.3.2 Using OverlapNet predictions as an initial guess for
ICP registration

We aim at supporting the claim that our network provides
good initializations for 3D LiDAR-based ICP registration in
the context of autonomous driving. Figure 10 shows the rela-
tions between the overlap and ICP registration error with and
without using OverlapNet predictions as initial guesses. The
error of the ICP registration is here the Euclidean distance
between the estimated relative translation and the ground

(a)

(b)

Fig. 10 ICP usingOverlapNet predictions as the initial guess. The error
of ICP registration here is the Euclidean distance between the estimated
translation and the ground-truth translation
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Fig. 11 Statistics on relative 6 degree of freedom pose
(x, y, z, roll, pitch, yaw) between pairs of scans with overlap
larger than 30%. Results on KITTI and Ford campus datasets are
shown

truth translation. As can be seen, the yaw angle prediction of
the OverlapNet increases the chance to get a good result from
the ICP even when two frames are relatively far away from
each other, i.e., have only a low overlap. Therefore in some
challenging cases, e.g., the car drives back into an intersec-
tion from a different street, our approach can still find loop
closures. The results also show that the overlap estimates
measure the quality of the found loop closure: larger overlap
values result in better registration results of the involved ICP.

To analyze the correlation between the overlap and the 6
degree of freedom pose (x, y, z, roll, pitch, yaw), we show
the statisticswith all sequences of bothKITTI and FordCam-
pus datasets in Fig. 11. As can be seen, with overlap values
larger than 30%, the relative differences in roll, pitch are
much smaller than that in yaw. This means that our method
is likely to filter out such cases where there are large differ-
ences in roll and pitch corresponding to lowoverlaps between
pairs of scans and therefore are not good to be used for loop
closing. Furthermore, these experiments also show the moti-
vation that it is more important to estimate the yaw angle
rather than roll and pitch, since even when two scans have a
large overlap, the yaw angle offset could be very large. For
example, when the car drives in both directions on a road
or a slope, the yaw angle offset is around 180 degrees. Note
that, our method is not influenced by such cases, because
it can estimate the yaw angle offset between pairs of scans.
After rotating in yaw, the offset of other orientation angles
are small and can typically be handled by the following ICP
that is used in general loop closing.

6.3.3 Improving SLAM results

This experiment supports our claim that our method is able
to improve the overall SLAM result. Figure 12 shows the
odometry results on KITTI sequence 02. The color in Fig. 12
shows the 3D translation error (including height). The top
figure shows the SuMa method and the bottom figure shows
Ours-Cov using the proposed OverlapNet to detect loop clo-
sures.Wecan see that after integratingourmethod, the overall
odometry is much more accurate since we can provide more
loop closure candidates with higher accuracy in terms of
overlap. The colors represent the translation error of the esti-
mated poses with respect to the ground truth. Furthermore,
after integrating the proposedOverlapNet, the SLAMsystem
can findmore loops even in some challenging situations, e.g.,
when the car drives back to an intersection from the opposite
direction as shown in Fig. 1.

6.4 OverlapNet-based global localization

In the following experiments, we test our proposed local-
ization method by integrating the OverlapNet based sensor
model into the MCL framework. The MCL frameworks are
the same for all baselines and we only exchange the observa-
tionmodels. Note that in generalmaps of the environment are
built using previously recorded data. Thus the task is more
difficult than loop closing because of larger environmental
changes between the map and the new scans. We will show
in the following experiments that our method is nevertheless
able to perform global localization.

6.4.1 Baselines

We compare our observation model with two baseline obser-
vation models: the typical beam-end model as described by
Thrun et al. (2005) and a histogram-based model derived
from the work of Röhling et al. (2015).

The beam-end observation model is often used for 2D
LiDAR data. For 3D LiDAR scans, it needs much more par-
ticles tomake sure that it converges to the correct pose, which
causes the computation time to increase substantially. In this
paper, we implement the beam-end model with a down-
sampled point cloudmap using voxelizationwith a resolution
of 10cm.

Our second baseline for comparison uses the model by
Röhling et al. (2015), which proposed a fast method to
detect loop closures through the use of similarity measures
on histograms extracted from3DLiDARdata. The histogram
contains the range information, and use it in the MCL frame-
work as a baseline observation model. We employ the same
grid map and virtual frames as used for our method with
the histogram-based observation model. When updating the
weights of particles, we first generate the histograms of the
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(a)

(b)

Fig. 12 Qualitative result on KITTI sequence 02 comparing SuMa to
our approach

current query scan and the virtual scans of grids where the
particles locate. Then, we use the same Wasserstein distance
(Dobrushin 1970) to measure the similarity between them
and update the weights of particles as follows:

p(zt |xt ) ∝ d (h(zt ), h(zi )), (21)

where d represents the Wasserstein distance between his-
tograms h(zt ), h(zi ) of LiDAR scan zt , zi .

6.4.2 Localization performance

The experiment presented in this section is designed to show
the performance of our approach and to support the claim
that it is well suited for global localization.

First of all, we show the general localization results tested
with two sequences of the IPB-Car dataset in Fig. 13. For the
overlap network, we used only geometric information (range
and normal images) as input. The qualitative results show
that, after applying our sensor-model, the proposed method
can well localize in the map with only LiDAR data collected
in highly dynamic environments at different times.

For quantitative results, we calculate the success rate for
different methods with different numbers of particles, as
shown in Fig. 14. The x-axis represents the number of parti-
cles used during localization, while the y-axis is the success
rate of different setups. The success rate for a specific setup of
one method is calculated using the number of success cases
divided by the total number of the tests. To decide whether
one test is successful or not, we check the location error by
every 100 frames after converging. If the location error is
smaller than a certain threshold, we count this run as a suc-
cess case.

We test our method together with two baselines using five
different numbers of particles N = {1000; 5000; 10,000;
50,000; 100,000}. For each setup, we sample 10 trajectories
and perform global localization.

Quantitative results of localization accuracy are shown
in Table 7. The upper part shows the location error of all
methods tested with both sequences. The location error is
defined as the root mean square error (RMSE) of each test in
terms of the Euclidean error computed in (x, y)with respect
to the ground truth poses. It shows the mean and the standard
deviation of the error for each observation model. Note that
the location error is only calculated for success cases.

The lower part shows the yaw angle error. It is the RMSE
of each test in terms of yaw angle error with respect to the
ground truth poses. The table shows the mean and the stan-
dard deviation of the error for each observation model. As
before, the yaw angle error is also only calculated for cases
in which the global localization converged.

As can be seen from the results, our method achieves
higher success rates with a smaller number of particles
compared to the baseline methods, which also makes the
proposed method faster than baseline methods. Furthermore,
our method converges already with 100,000 particles in all
cases, whereas the other observation models still need more
particles to sufficiently cover the state space. Moreover, the
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(a)

(b)

Fig. 13 Localization results of our method with 10,000 particles on
two sequences recorded with the setup depicted in Fig. 6. Shown are
the ground truth trajectory (black) and our estimated trajectory using
our observation model (red) (Color figure online)

proposed method gets similar performance in location error
compared to the baseline methods but it achieves better
results in yaw angle estimation. This is because the proposed
method decouples the location and yaw angle estimation and,
therefore, can exploit more constraints in yaw angle correc-
tions.

(a)

(b)

Fig. 14 Success rate of the different observation models for 10 global-
ization runs. Here, we use sequence 00 and sequence 01 to localize in
the map of the IPB-Car dataset. We count runs as success if converge
to the ground truth location within 5m

Table 7 Localization results

Sequence Location error (meter)

Beam-end Histogram Ours

0 0.92 ± 0.27 1.85 ± 0.34 0.81 ± 0.13

1 0.67 ± 0.11 1.86 ± 0.34 0.88 ± 0.07

Sequence Yaw angle error (degree)

Beam-end Histogram Ours

0 1.87 ± 0.47 3.10 ± 3.07 1.74 ± 0.11

1 2.10 ± 0.59 3.11 ± 3.08 1.88 ± 0.09

To sum up, for global localization the proposed method
outperforms the baseline methods in terms of success rate,
while getting similar results in terms of location error. More-
over, our method outperforms baseline methods in yaw angle
estimation, because of the proposed de-coupled observation
model. Furthermore, our method is faster than the baseline
methods.
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Fig. 15 Number of observation model evaluations for updating the
weights at each timestep with 100,000 particles. The beam end model
needs to be evaluated for each and every particle individually. The
histogram-based method is more computationally efficient, while our
proposed method still needs the fewest evaluations

6.5 Runtime

We tested our method on a system equipped with an Intel
i7-8700 with 3.2 GHz and an Nvidia GeForce GTX 1080 Ti
with 11 GB memory. When we use only geometric informa-
tion, our method takes on average per frame 2ms for feature
extraction and 5ms for head comparison. It takes additional
75ms to perform semantic segmentation using RangeNet++.

In a real SLAMimplementation,most systems only search
loop closure candidates inside a certain search space given
by pose uncertainty using the Mahalanobis distance (see
Sect. 4.2). Once we generated a feature volume for a scan,
it will be stored in memory. During the search process, we
need only to generate the feature volume for the current scan
and compare it to the feature volumes in memory. Therefore,
our method can achieve online operation in long-term tasks,
since we usually have to compare only a small number of
candidate poses.

For global localization, we show the number of observa-
tion model evaluations necessary for updating the weights at
each time step in Fig. 15. This is a fairer way to compare
the computational cost of different methods, since our neural
network-based method uses a GPU to concurrently updating
the weights of particles, while the other methods only use a
CPU. As can be seen, our method needs a smaller number
of observation model evaluations to update the weights for
all particles. This is because we only need to perform the
network inference for all particles which are localized in the
same grid cell once. For an incoming frame and the virtual
frame of that grid cell, the inputs of the network and thus the
outputs are the same for all particles in that grid cell.

For initializing in the large-scale map, the worst case will
take around 43 s to process one frame. After convergence,
the proposed method takes only 1 s on average to process
one frame with 10,000 particles.

7 Conclusion

This paper addressed loop closing and localization for a vehi-
cle using 3D LiDAR data. We proposed a modified Siamese
network to estimate the similarity between pairs of scans
using an image overlap generalized to range images and
that provides a relative yaw angle estimate. For loop clo-
sure detection, we integrated our approach into an existing
SLAM system to improve its mapping and odometry results.
For global localization, we proposed a novel observation
model using the concept of overlap and integrated this obser-
vation model into a Monte-Carlo localization framework to
achieve good localization results. The experiments suggest
that our method is able to estimate the overlap and yaw angle
estimates between pairs of LiDAR scans, which can be suc-
cessfully used for both, loop closing and global localization.
Moreover, our method generalizes well to different environ-
ments at different times.
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