
Learning an Overlap-based Observation Model

for 3D LiDAR Localization

Xieyuanli Chen Thomas Läbe Lorenzo Nardi Jens Behley Cyrill Stachniss

Abstract— Localization is a crucial capability for mobile
robots and autonomous cars. In this paper, we address learn-
ing an observation model for Monte-Carlo localization using
3D LiDAR data. We propose a novel, neural network-based
observation model that computes the expected overlap of two
3D LiDAR scans. The model predicts the overlap and yaw
angle offset between the current sensor reading and virtual
frames generated from a pre-built map. We integrate this
observation model into a Monte-Carlo localization framework
and tested it on urban datasets collected with a car in different
seasons. The experiments presented in this paper illustrate that
our method can reliably localize a vehicle in typical urban
environments. We furthermore provide comparisons to a beam-
endpoint and a histogram-based method indicating a superior
global localization performance of our method with fewer
particles.

I. INTRODUCTION

All mobile systems that navigate autonomously in a goal-

directed manner need to know their position and orientation

in the environment, typically with respect to a map. This task

is often referred to as localization and can be challenging

especially at the city-scale and in the presence of a lot of

dynamic objects, e.g., vehicles and humans. Over the last

decades, a wide range of localization systems have been

developed relying on different sensors. Frequently used sen-

sors are GPS receivers, inertial measurement units, cameras,

and laser range scanners. All sensing modalities have their

advantages and disadvantages. For example, GPS does not

work indoors, cameras do not work well at night or under

strong appearance changes, and LiDARs are active sensors

and are still rather expensive.

Most autonomous robots as well as cars have a 3D

LiDAR sensor onboard to perceive the scene and directly

provide 3D data. In this paper, we consider the problem of

vehicle localization only based on a 3D LiDAR sensor. For

localization, probabilistic state estimation techniques such

as extended Kalman filters (EKF) [8], particle filters [12],

or incremental factor graph optimization approaches [24]

can be found in most localization systems today. Whereas

EKFs and most optimization-based approaches track only a

single mode, particle filters inherently support multi-modal

distributions. Furthermore, PFs do not restrict the motion

or observation model to follow a specific distribution such

as a Gaussian. The motion model can often be defined

All authors are with the University of Bonn, Germany.
This work has been funded by the Deutsche Forschungsgemeinschaft

(DFG, German Research Foundation) under Germany’s Excellence Strategy,
EXC-2070 - 390732324 - PhenoRob as well as under grant number BE
5996/1-1 and by the Chinese Scholarship Committee.

Query scan Map scan

Fig. 1. The image in the lower part shows the trajectories of the dataset used
in this paper, overlayed on OpenStreetMap. The blue trajectory represents
the sequence used to generate a map for localization. The green and the
orange trajectories represent two different test sequences. The 3D point
clouds shown in the upper part show LiDAR scans of the same place, once
during mapping and once during localization. Since the LiDAR data was
collected in different seasons, the appearance of the environment changed
quite significantly due to changes in the vegetation but also due to parked
vehicles at different places.

quite easily based on the physics of vehicle motion. The

observation model, however, is trickier to define. Often, these

hand-designed models are used and they strongly impact the

performance of the resulting localization system. Frequently

used observation models for LiDARs are the beam-end point

model, also called the likelihood field [27], the ray-casting

model [9], or models based on handcrafted features [26],

[35]. Recently, researchers also focused on learning such

models completely from data [15], [30].

In this paper, we address the problem of learning obser-

vation models for 3D LiDARs and propose a deep neural

network-based approach for that. We explore the possibil-

ities of learning an observation model based on Overlap-

Net [3] that predicts the overlap between two LiDAR scans,

see Fig. 1, where the overlap is defined as the ratio of points

that can be seen from both LIDAR scans. In this work, we

investigate this concept for 3D LiDAR-based observation

models.

The main contribution of this paper is a novel observa-

tion model for 3D LiDAR-based localization. Our model

is learned from range data using a deep neural network.

It estimates the overlap and yaw angle offset between a

query frame and map data. We use this information as the

observation model in Monte-Carlo localization (MCL) for

updating the importance weights of the particles. Based on

our novel observation model, our approach achieves online

localization using 3D LiDAR scans over extended periods of

time with a comparably small number of particles.

The source code of our approach is available at:

https://github.com/PRBonn/overlap_localization

II. RELATED WORK

Localization is a classical topic in robotics [27]. For

localization given a map, one often distinguishes between

pose tracking and global localization. In pose tracking, the

vehicle starts from a known pose and the pose is updated

over time. In global localization, no pose prior is available.

In this work, we address global localization using 3D laser

scanners without assuming any pose prior from GPS or other

sensors. Thus, we focus mainly on LiDAR-based approaches

in this section.

Traditional approaches to robot localization rely on prob-

abilistic state estimation techniques. These approaches can

still be found today in several localization systems [19], [6].

A popular framework is Monte-Carlo localization [9], [28],

[11], which uses a particle filter to estimate the pose of the

robot.

In the context of autonomous cars, there are many ap-

proaches building and using high-definition (HD) maps

for localization, i.e., tackling the simultaneous localization

and mapping problem [25] and additionally adding relevant

information for the driving domain. Levinson et al. [17]

utilize GPS, IMU, and LiDAR data to build HD maps for

localization. They generate a 2D surface image of ground

reflectivity in the infrared spectrum and define an observation

model that uses these intensities. The uncertainty in intensity

values has been handled by building a prior map [18], [32].

Barsan et al. [15] use a fully convolutional neural net-

work (CNN) to perform online-to-map matching for improv-

ing the robustness to dynamic objects and eliminating the

need for LiDAR intensity calibration. Their approach shows

a strong performance but requires a good GPS prior for

operation. Based on this approach, Wei et al. [30] proposed

a learning-based compression method for HD maps. Merfels

and Stachniss [20] present an efficient chain graph-like pose-

graph for vehicle localization exploiting graph optimization

techniques and different sensing modalities. Based on this

work, Wilbers et al. [31] propose a LiDAR-based localization

system performing a combination of local data association

between laser scans and HD map features, temporal data

association smoothing, and a map matching approach for

robustification.

Other approaches aim at performing LiDAR-based place

recognition to initialize localization. For example, Kim et

al. [16] transform point clouds into scan context images

and train a CNN based on such images. They generate

scan context images for both the current frame and all grid

cells of the map and compare them to estimate the current

location as the cell presenting the largest score. Yin et al. [34]

propose a Siamese network to first generate fingerprints

for LiDAR-based place recognition and then use iterative

closest points to estimate the metric poses. Cop et al. [7]

propose a descriptor for LiDAR scans based on intensity

information. Using this descriptor, they first perform place

recognition to find a coarse location of the robot, eliminate

inconsistent matches using RANSAC, and then refine the

estimated transformation using iterative closest points. In

contrast to approaches that perform place recognition first,

our approach integrates a neural network-based observation

model into an MCL framework to estimate the robot pose.

Recently, several approaches exploiting semantic infor-

mation for 3D LiDAR localization have been proposed. In

our earlier work [5], we used a camera and a LiDAR to

detect victims and localize the robot in an urban search

and rescue environment. Ma et al. [19] combine semantic

information such as lanes and traffic signs in a Bayesian fil-

tering framework to achieve accurate and robust localization

within sparse HD maps. Yan et al. [33] exploit buildings

and intersections information from a LiDAR-based semantic

segmentation system [21] to localize on OpenStreetMap.

Schaefer et al. [23] detect and extract pole landmarks from

3D LiDAR scans for long-term urban vehicle localization.

Tinchev et al. [29] propose a learning-based method to

match segments of trees and localize in both urban and

natural environments. Dubé et al. [10] propose to perform

localization by extracting segments from 3D point clouds

and matching them to accumulated data. Whereas, Zhang et

al. [35] utilize both ground reflectivity features and vertical

features for localizing autonomous car in rainy conditions.

In our previous work [4], we also exploit semantic informa-

tion [21], [1] to improve the localization and mapping results

by detecting and removing dynamic objects.

Different to the above discussed methods [15], [19], [30],

which use GPS as prior for localization, our method only

exploits LiDAR information to achieve global localization

without using any GPS information. Moreover, our approach

uses range scans without explicitly exploiting semantics or

extracting landmarks. Instead, we rely on CNNs to predict

the overlap between range scans and their yaw angle offset

and use this information as an observation model for Monte-

Carlo localization. The localization approach proposed in this

paper is based on our previous work called OverlapNet [3],

which focuses on loop-closing for 3D LiDAR-based SLAM.

III. OUR APPROACH

The key idea of our approach is to exploit the neural

network, OverlapNet [3] that can estimate the overlap and

yaw angle offset of two scans for building an observation

model for localization in a given map. To this end, we first

generate virtual scans at 2D locations on a grid rendered

from the aggregated point cloud of the map. We train the

network completely self-supervised on the map used for

localization (see Sec. III-A). We compute features using our

pre-trained network that allows us to compute the overlap and

yaw angles between a query and virtual scans (see Sec. III-

B). Finally, we integrate an observation model using the

overlap (see Sec. III-D) and a separate observation model

for the yaw angle estimates (see Sec. III-E) in a particle

filter to perform localization (see Sec. III-C).

A. OverlapNet

We proposed the so-called OverlapNet to detect loop

closures candidates for a 3D LiDAR-based SLAM. The

idea of overlap has its origin in the photogrammetry and

computer vision community [14]. The intuition is that to

successfully match two images and calculate their relative

pose, the images must overlap. This can be quantified by

defining the overlap percentage as the percentage of pixels

in the first image, which can successfully be projected back

into the second image.

In OverlapNet, we use the idea of overlap for range

images generated from 3D LiDAR scans exploiting the

range information explicitly. First, we generate from the

LiDAR scans a range-image like input tensor I ∈ R
H×W×4,

where each pixel (i, j) in the range-image like representation

corresponds to the depth and the corresponding normal, i.e.,

I(i, j) = (r,nx,ny,nz), where r = ||p||2. The indices for

inserting points and estimated normals are computed using

a spherical projection that maps points p ∈ R
3 to two-

dimensional coordinates (i, j), also see [3], [4].

OverlapNet uses a siamese network structure and takes the

tensors I1 and I2 of two scans as input for the legs to generate

feature volumes, F1 and F2. These two feature volumes are

then used as inputs for two heads. One head Hoverlap(F1,F2)
estimates the overlap percentage of the scans and the other

head Hyaw(F1,F2) estimates the relative yaw angle.

For training, we determine ground truth overlap and yaw

angle values using known poses estimated by a SLAM

approach [2]. Given these poses, we can train OverlapNet

completely self-supervised. For more details on the network

structure and the training procedure, we are referring to our

prior work [3].

B. Map of Virtual Scans

OverlapNet requires two LiDAR scans as input. One is

the current scan and the second one has to be generated

from the map. Thus, we build a map of virtual LiDAR scans

given an aggregated point cloud by using a grid of locations

with grid resolution γ, where we generate virtual LiDAR

scans for each location. The grid resolution is a trade-off

between the accuracy and storage size of the map. Instead

of storing these virtual scans, we just need to use one leg

of the OverlapNet to obtain a feature volume F using the

input tensor I of this virtual scan. Storing the feature volume

instead of the complete scan has two key advantages: (1) it

uses more than an order less space than the original point

cloud (ours: 0.1Gb/km, raw scans: 1.7Gb/km) and (2) we

do not need to compute the F during localization on the

map. The features volumes of the virtual scans are then used

Fig. 2. Overlap observation model. Local heatmap of the scan at the car’s
position with respect to the map. Darker blue shades correspond to higher
probabilities.

to compute overlap and yaw angle estimates with a query

scan that is the currently observed LiDAR point cloud in

our localization framework.

C. Monte-Carlo Localization

Monte-Carlo localization (MCL) is a localization algo-

rithm based on the particle filter proposed by Dellaert et

al. [9]. Each particle represents a hypothesis for the robot’s

or autonomous vehicle’s 2D pose xt = (x, y, θ)t at time

t. When the robot moves, the pose of each particle is

updated with a prediction based on a motion model with

the control input ut. The expected observation from the

predicted pose of each particle is then compared to the

actual observation zt acquired by the robot to update the

particle’s weight based on an observation model. Particles

are resampled according to their weight distribution and

resampling is triggered whenever the effective number of

particles, see for example [13], drops below 50% of the

sample size. After several iterations of this procedure, the

particles will converge around the true pose.

MCL realizes a recursive Bayesian filtering scheme. The

key idea of this approach is to maintain a probability

density p(xt | z1:t,u1:t) of the pose xt at time t given all

observations z1:t up to time t and motion control inputs u1:t

up to time t. This posterior is updated as follows:

p(xt | z1:t,u1:t) = η p(zt | xt)·
∫

p(xt | ut,xt−1) p(xt−1 | z1:t−1,u1:t−1) dxt−1, (1)

where η is a normalization constant, p(xt | ut,xt−1) is the

motion model, and p(zt | xt) is the observation model.

This paper focuses on the observation model. For the

motion model, we follow a standard odometry model for

vehicles [27].

We split the observation model into two parts:

p(zt | xt) = pL (zt | xt) pO (zt | xt) , (2)

where zt is the LiDAR observation at time t, pL (zt | xt)
is the probability encoding the location (x, y) agreement

between the current query LiDAR scan and the virtual scan

at the grid where the particle locate and pO (zt | xt) is the

probability encoding the yaw angle θ agreement between the

same pairs of scans.

D. Overlap Observation Model

Given a particle i with the state vector (xi, yi, θi), the

overlap estimates encode the location agreement between the

query LiDAR scan and virtual scans of the grid cells where

particles locate. It can be directly used as the probability:

pL (zt | xt) ∝ f (zt, zi;w) , (3)

where f corresponds to the neural network providing the

overlap estimation between the input scans zt, zi and w

is the pre-trained weights of the network. zt and zi are

the current query scan and a virtual scan of one (x, y)
location respectively. Note that no additional hyperparameter

is needed to formulate our observation model for localization.

For illustration purposes, Fig. 2 shows the probabilities

of all grid cells in a local area calculated by the overlap

observation model. The blue car in the figure shows the

current location of the car. The probabilities calculated by the

overlap observation model can represent well the hypotheses

of the current location of the car.

Typically, a large number of particles are used, especially

when the environment is large. However, a large amount of

particles will increase the computation time linearly. When

applying the overlap observation model, particles could still

obtain relatively large weights as long as they are close to

the actual pose, even if not in the exact same position. This

allows us to use fewer particles to achieve a high success

rate of global localization.

Furthermore, the overlap estimation only encodes the

location hypotheses. Therefore, if multiple particles locate

in the same grid area, only a single inference against the

nearest virtual scan of the map needs to be done, which can

further reduce the computation time.

E. Yaw Angle Observation Model

Given a particle i with the state vector (xi, yi, θi), the yaw

angle estimates encode the orientation agreement between

the query LiDAR scan and virtual scans of the corresponding

grids where particles locate. We formulate the orientation

probability as follows:

pO (zt | xt) ∝ exp

−
1

2

(

g (zt, zi;w)− θi

)2

σ2

θ

, (4)

where g corresponds to the neural network providing the yaw

angle estimation between the input scans zt, zi and w is the

pre-trained weights of the network. zt and zi are the current

query scan and a virtual scan of one particle respectively.

When generating the virtual scans of the grid map, all

virtual scans will be set facing the absolute 0◦ yaw angle

direction. By doing this, the estimated relative yaw angle

between the query scan and the virtual scan indicates the

absolute yaw angle of the current query scan. Eq. (4) assumes

a Gaussian measurement error in the heading.

By combining overlap and yaw angle estimation, the pro-

posed observation model will correct the weights of particles

considering agreements between the query scan and the map

with the full pose (x, y, θ).

Emilid Reach RS2 GPS

Ouster OS1-64 LiDAR

Fig. 3. Sensor setup used for data recording: Ouster OS1-64 LiDAR sensor
plus GNSS information from a Emilid Reach RS2.

IV. EXPERIMENTAL EVALUATION

In this paper, we use a grid representation and generate

virtual 360◦ scans for each grid point. The resolution of the

grid is γ = 20 cm. When generating the virtual scans, we set

the yaw angle to 0◦. Therefore, when estimating the relative

yaw angle between the query frame and the virtual frames,

the result will indicate the absolute yaw of the query frame.

For the yaw angle observation model in Eq. (4), we set σθ =
5◦. To achieve global localization, we train a new model only

based on the map scans and the generated virtual scans.

The main focus of this work is a new observation model

for LiDAR-based localization. Therefore, when comparing

different methods, we only change the observation model

p(zt|xt) of the MCL framework and keep the particle filter-

based localization the same. The motion model is the typical

odometry model [27].

A. Car Dataset

The dataset used in this paper was collected using a

self-developed sensor platform illustrated in Fig. 3. To test

LiDAR-based global localization, a large-scale dataset has

been collected in different seasons with multiple sequences

repeatedly exploring the same crowded urban area. For our

car dataset, we performed a 3D LiDAR SLAM [2] combined

with GPS information to create near ground truth poses.

During localization, we only use LiDAR scans for global

localization without using GPS.

The dataset has three sequences that were collected at

different times of the year, sequence 00 in September 2019,

sequence 01 in November 2019, and sequence 02 in

February 2020. The whole dataset covers a distance of over

10 km. We use LiDAR scans from sequence 02 to build the

virtual scans and use sequence 00 and 01 for localization. As

can be seen from Fig. 1, the appearance of the environment

changes quite significantly since the dataset was collected

in different seasons and in crowded urban environments,

including changes in vegetation, but also cars at different

locations and moving people.

B. Different Observation Models

In the following experiments, we use the same MCL

framework and only exchange the observation models. We

compare our observation model with two baseline obser-

vation models: the typical beam-end model [27] and a

(a) Corresponding submap (b) Overlap-based p(z|x)

(c) Histogram-based p(z|x) (d) Beam-end p(z|x)

Fig. 4. Heatmaps of different observation models used in the experiments
generated for the same query scan and map.

histogram-based model derived from the work of Röhling

et al. [22].

The beam-end observation model is often used for 2D

LiDAR data. For 3D LiDAR scans, it needs much more

particles to make sure that it converges to the correct pose,

which causes the computation time to increase substantially.

In this paper, we implement the beam-end model with a

down-sampled point cloud map using voxelization with a

resolution of 10 cm.

Our second baseline for comparison is inspired by Röhling

et al. [22], which proposed a fast method to detect loop

closures through the use of similarity measures on histograms

extracted from 3D LiDAR data. The histogram contains the

range information. We use a similar idea, but integrate it

into the MCL framework as a baseline observation model.

We employ the same grid map and virtual frames as used

for our method with the histogram-based observation model.

When updating the weights of particles, we will first generate

the histograms of the current query scan and the virtual scans

of grids where the particles locate. Then, we use the same

Wasserstein distance to measure the similarity between them

and update the weights of particles as follows:

p(zt|xt) ∝ d (h(zt), h(zi)), (5)

where d represents the Wasserstein distance between his-

tograms h(zt), h(zi) of LiDAR scan zt, zi.

Fig. 4 shows the 2D heatmaps in x and y calculated

for the different observation models. As can be seen, the

proposed observation model tends to give higher weights

to the positions along the road, which leads to a higher

success rate when the vehicle aims to localize in an urban

−300 −200 −100 0 100 200

x [m]

−300

−200

−100

0

100

y
[m

]

ground truth

Ours

(a) Trajectory from sequence 00

−400 −300 −200 −100 0

x [m]

0

100

200

300

y
[m

]

(b) Trajectory from sequence 01

Fig. 5. Localization results of our method with 10, 000 particles on two
sequences recorded with the setup depicted in Fig. 3. Shown are the ground
truth trajectory (black) and our estimated trajectory using our observation
model (red).

environment. We will show the numerical results which

verify that our method can achieve a high success rate with

much fewer particles in the next sections.

C. Localization Performance

The experiment presented in this section is designed to

show the performance of our approach and to support the

claim that it is well suited for global localization.

First of all, we show the general localization results tested

with two sequences in Fig. 5. The qualitative results show

that, after applying our sensor-model, the proposed method

can well localize in the map with only LiDAR data collected

in highly dynamic environments at different times.

For quantitative results, we calculate the success rate for

different methods with different particle numbers comparing

our approach to different methods, as shown in Fig. 6.

The x-axis represents the number of particles used during

localization, while the y-axis is the success rate of different

setups. The success rate for a specific setup of one method

is calculated using the number of success cases divided by

the total numbers of the tests. To decide whether one test

is successful or not, we check the location error by every

100 frames after converging. If the location error is smaller

than a certain threshold, we count this run as a success case.

TABLE I

LOCATION RESULTS

Sequence Location error [meter]

Beam-end Histogram-based Ours

0 0.92 ± 0.27 1.85 ± 0.34 0.81 ± 0.13

1 0.67 ± 0.11 1.86 ± 0.34 0.88 ± 0.07

TABLE II

YAW ANGLE RESULTS

Sequence Yaw angle error [degree]

Beam-end Histogram-based Ours

0 1.87 ± 0.47 3.10 ± 3.07 1.74 ± 0.11

1 2.10 ± 0.59 3.11 ± 3.08 1.88 ± 0.09

We test our method together with two baselines using five

different numbers of particles N = {1, 000 ; 5, 000 ; 10, 000 ;

50, 000 ; 100, 000}. For each setup, we sample 10 trajectories

and perform global localization.

Quantitative results of localization accuracy are shown

in Tab. I and Tab. II. Tab. I shows the location error of

all methods tested with both sequences. The location error

is defined as the root mean square error (RMSE) of each

test in terms of (x, y) Euclidean error with respect to the

ground truth poses. Tab. I shows the mean and the standard

deviation of the error for each observation model. Note that

the location error is only calculated for success cases.

Tab. II shows the yaw angle error. It is the RMSE of each

test in terms of yaw angle error with respect to the ground

truth poses. The table shows the mean and the standard

deviation of the error for each observation model. As before,

the yaw angle error is also only calculated for cases in which

the global localization converged.

As can be seen from the results, our method achieves

higher success rates with a smaller number of particles

compared to the baseline methods, which also makes the

proposed method faster than baseline methods. Furthermore,

our method converges already with 100, 000 particles in all

cases, whereas the other observation models still need more

particles to sufficiently cover the state space. Moreover, the

proposed method gets similar performance in location error

comparing to the baseline methods but it achieves better

results in yaw angle estimation. This is because the proposed

method decouples the location and yaw angle estimation

and, therefore, can exploit more constraint in yaw angle

corrections.

To sum up, the proposed method outperforms the baselines

method in terms of success rate, while getting similar results

in terms of location error. Moreover, our method outperforms

baseline methods in yaw angle estimation, because of the

proposed de-coupled observation model. Furthermore, our

method is faster than the baseline method. The runtime

details will be shown in the next experiment.

10
3

10
4

10
5

Number of particles

0.0

0.2

0.4

0.6

0.8

1.0

S
u
cc
es
s
ra
te

Ours

Histogram-based

Beam-end

(a) sequence 00

10
3

10
4

10
5

Number of particles

0.0

0.2

0.4

0.6

0.8

1.0

S
u
cc
es
s
ra
te

(b) sequence 01

Fig. 6. Success rate of the different observation models for 10 runs
with N = {1, 000 ; 5, 000 ; 10, 000 ; 50, 000 ; 100, 000} particles. Here,
we use sequence 00 and sequence 01 to localize in sequence 02. We count
runs as success if they converge to the ground truth location within 5m.

Fig. 7. Number of observation model evaluations for updating the weights
at each timestep with 100, 000 particles. The beam end model needs to
be evaluated for each and every particle individually. The histogram-based
method is more computationally efficient, while our proposed method still
needs the fewest evaluations.

D. Runtime

In this experiment, we show the number of observation

model evaluations necessary for updating the weights at each

time step in Fig. 7. This is a fairer way to compare the

computational cost of different methods, since our neural

network-based method uses GPU to concurrently updating

the weights of particles, while the other methods only use

CPU. As can be seen, our method needs a smaller number

of observation model evaluations to update the weights for

all particles. This is because we only need to perform the

network inference for all particles which are localized in the

same grid cell once. For one incoming frame and the virtual

frame of that grid cell, the inputs of the network and thus

the outputs are the same for all particles in that cell.

We tested our method on a system equipped with an Intel

i7-8700 with 3.2 GHz and an Nvidia GeForce GTX 1080

Ti with 11 GB of memory. For initializing in the large-

scale map, the worst case will take around 43 s to process

one frame. However, after converging, the proposed method

takes only 1 s on average to process one frame with 10, 000
particles.

V. CONCLUSION

In this paper, we presented a novel observation model and

integrated it into an MCL framework to solve the global

localization problem. Our method exploits OverlapNet to

estimate the overlap and yaw angle between the current

frame and the virtual frames generated at each particle using

the pre-built map. This allows us to successfully update the

weights of particles with agreements of both location and

orientation. We implemented and evaluated our approach on

an urban dataset collected with a car in different seasons

and provided comparisons to other existing techniques. The

experiments suggest that our approach can achieve a similar

performance as other approaches in global localization while

obtaining a higher success rate and lower computational time.

In future work, we will test our method on more datasets

with different types of LiDAR sensors. We also plan to test

our method with high definition maps and want to exploit

semantic information.

REFERENCES

[1] J. Behley, M. Garbade, A. Milioto, J. Quenzel, S. Behnke, C. Stach-
niss, and J. Gall. SemanticKITTI: A Dataset for Semantic Scene
Understanding of LiDAR Sequences. In Proc. of the IEEE/CVF

International Conf. on Computer Vision (ICCV), 2019.

[2] J. Behley and C. Stachniss. Efficient Surfel-Based SLAM using 3D
Laser Range Data in Urban Environments. In Proc. of Robotics:

Science and Systems (RSS), 2018.

[3] X. Chen, T. Läbe, A. Milioto, T. Röhling, O. Vysotska, A. Haag,
J. Behley, and C. Stachniss. OverlapNet: Loop Closing for LiDAR-
based SLAM. In Proc. of Robotics: Science and Systems (RSS), 2020.

[4] X. Chen, A. Milioto, E. Palazzolo, P. Gigure, J. Behley, and C. Stach-
niss. SuMa++: Efficient LiDAR-based Semantic SLAM. In Proc. of

the IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS),
2019.

[5] X. Chen, H. Zhang, H. Lu, J. Xiao, Q. Qiu, and Y. Li. Robust SLAM
system based on monocular vision and LiDAR for robotic urban search
and rescue. In Proc. of the IEEE Intl. Sym. on Safety, Security, and

Rescue Robotics (SSRR), pages 41–47, 2017.

[6] Z.J. Chong, B. Qin, T. Bandyopadhyay, M. Ang, E. Frazzoli, and
D. Rus. Synthetic 2D Lidar for Precise Vehicle Localization in 3D
Urban Environment. In Proc. of the IEEE Intl. Conf. on Robotics &

Automation (ICRA), 2013.

[7] K.P. Cop, P.V.K. Borges, and R. Dub. Delight: An efficient descriptor
for global localisation using lidar intensities. In Proc. of the IEEE

Intl. Conf. on Robotics & Automation (ICRA), 2018.

[8] I.J Cox. Blanche-an experiment in guidance and navigation of an
autonomous robot vehicle. IEEE Trans. on Robotics and Automation,
7(2):193–204, 1991.

[9] F. Dellaert, D. Fox, W. Burgard, and S. Thrun. Monte carlo localization
for mobile robots. In IEEE International Conference on Robotics and

Automation (ICRA), May 1999.

[10] R. Dube, M.G. Gollub, H. Sommer, I. Gilitschenski, R. Siegwart, C.C.
Lerma, and J. Nieto. Incremental segment-based localization in 3d
point clouds. IEEE Robotics and Automation Letters (RA-L), 2018.

[11] D. Fox, W. Burgard, F. Dellaert, and S. Thrun. Monte Carlo
Localization: Efficient Position Estimation for Mobile Robots. Proc. of

the Conference on Advancements of Artificial Intelligence (AAAI),
1999(343-349), 1999.

[12] D. Fox, S. Thrun, W. Burgard, and F. Dellaert. Particle filters for
mobile robot localization. In Sequential Monte Carlo methods in

practice, pages 401–428. 2001.

[13] G. Grisetti, C. Stachniss, and W. Burgard. Improved Techniques for
Grid Mapping with Rao-Blackwellized Particle Filters. IEEE Trans. on

Robotics (TRO), 23(1):34–46, 2007.

[14] M. Hussain and J. Bethel. Project and mission planning. In
C. McGlone, E. Mikhail, J. Bethel, and R. Mullen, editors, Manual of

Photogrammetry, chapter 15.1.2.6, pages 1109–1111. 2004.

[15] I. Andrei I.A. Barsan, S. Wang, A. Pokrovsky, and R. Urtasun.
Learning to Localize Using a LiDAR Intensity Map. In Proc. of the

Second Conference on Robot Learning (CoRL), pages 605–616, 2018.
[16] G. Kim, B. Park, and A. Kim. 1-day learning, 1-year localization:

Long-term LiDAR localization using scan context image. IEEE

Robotics and Automation Letters (RA-L), 4(2):1948–1955, 2019.
[17] J. Levinson, M. Montemerlo, and S. Thrun. Map-Based Precision

Vehicle Localization in Urban Environments. In Proc. of Robotics:

Science and Systems (RSS), 2007.
[18] J. Levinson and S. Thrun. Robust Vehicle Localization in Urban

Environments Using Probabilistic Maps. In Proc. of the IEEE

Intl. Conf. on Robotics & Automation (ICRA), pages 4372–4378, 2010.
[19] W. Ma, I. Tartavull, I. A. Bârsan, S. Wang, M. Bai, G. Mattyus,

N. Homayounfar, S. K. Lakshmikanth, A. Pokrovsky, and R. Urta-
sun. Exploiting Sparse Semantic HD Maps for Self-Driving Vehicle
Localization. In Proc. of the IEEE/RSJ Intl. Conf. on Intelligent Robots

and Systems (IROS), 2019.
[20] Ch. Merfels and C. Stachniss. Pose fusion with chain pose graphs for

automated driving. In Proc. of the IEEE/RSJ Intl. Conf. on Intelligent

Robots and Systems (IROS), 2016.
[21] A. Milioto, I. Vizzo, J. Behley, and C. Stachniss. RangeNet++: Fast

and Accurate LiDAR Semantic Segmentation. In Proceedings of the

IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), 2019.
[22] T. Röhling, J. Mack, and D. Schulz. A Fast Histogram-Based

Similarity Measure for Detecting Loop Closures in 3-D LIDAR Data.
In Proc. of the IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems

(IROS), pages 736–741, 2015.
[23] A. Schaefer, D. Büscher, J. Vertens, L. Luft, and W. Burgard. Long-

term urban vehicle localization using pole landmarks extracted from
3-D lidar scans. In Proc. of the Europ. Conf. on Mobile Robotics

(ECMR), pages 1–7, 2019.
[24] R.C. Smith and P. Cheeseman. On the representation and estimation of

spatial uncertainty. Intl. Journal of Robotics Research (IJRR), 5(4):56–
68, 1986.

[25] C. Stachniss, J. Leonard, and S. Thrun. Springer Handbook of

Robotics, 2nd edition, chapter Chapt. 46: Simultaneous Localization
and Mapping. Springer Verlag, 2016.

[26] B. Steder, M. Ruhnke, S. Grzonka, and W. Burgard. Place Recognition
in 3D Scans Using a Combination of Bag of Words and Point
Feature Based Relative Pose Estimation. In Proc. of the IEEE/RSJ

Intl. Conf. on Intelligent Robots and Systems (IROS), 2011.
[27] S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics. MIT Press,

2005.
[28] S. Thrun, D. Fox, W. Burgard, and F. Dellaert. Robust Monte Carlo

Localization for Mobile Robots. Artificial Intelligence, 128(1-2), 2001.
[29] G. Tinchev, A. Penate-Sanchez, and M. Fallon. Learning to see

the wood for the trees: Deep laser localization in urban and natural
environments on a CPU. IEEE Robotics and Automation Letters (RA-

L), 4(2):1327–1334, 2019.
[30] X. Wei, I. A. Bârsan, S. Wang, J. Martinez, and R. Urtasun. Learning

to Localize Through Compressed Binary Maps. In Proc. of the IEEE

Conf. on Computer Vision and Pattern Recognition (CVPR), pages
10316–10324, 2019.

[31] D. Wilbers, Ch. Merfels, and C. Stachniss. Localization with Sliding
Window Factor Graphs on Third-Party Maps for Automated Driving.
In Proc. of the IEEE Intl. Conf. on Robotics & Automation (ICRA),
2019.

[32] R.W. Wolcott and R.M. Eustice. Fast lidar localization using multires-
olution gaussian mixture maps. In Proc. of the IEEE Intl. Conf. on

Robotics & Automation (ICRA), pages 2814–2821, 2015.
[33] F. Yan, O. Vysotska, and C. Stachniss. Global Localization on

OpenStreetMap Using 4-bit Semantic Descriptors. In Proc. of the

Europ. Conf. on Mobile Robotics (ECMR), 2019.
[34] H. Yin, Y. Wang, X. Ding, L. Tang, S. Huang, and R. Xiong. 3D

LiDAR-Based Global Localization Using Siamese Neural Network.
IEEE Trans. on Intelligent Transportation Systems (ITS), 2019.

[35] C. Zhang, M. H. Ang, and D. Rus. Robust lidar localization for
autonomous driving in rain. In Proc. of the IEEE/RSJ Intl. Conf. on

Intelligent Robots and Systems (IROS), pages 3409–3415, 2018.

	Introduction
	Related Work
	Our Approach
	OverlapNet
	Map of Virtual Scans
	Monte-Carlo Localization
	Overlap Observation Model
	Yaw Angle Observation Model

	Experimental Evaluation
	Car Dataset
	Different Observation Models
	Localization Performance
	Runtime

	Conclusion
	References

