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Abstract

Semantic scene interpretation as a collection of mean-
ingful regions in images is a fundamental problem in both
photogrammetry and computer vision. Images of man-made
scenes exhibit strong contextual dependencies in the form of
spatial and hierarchical structures. In this paper, we intro-
duce a hierarchical conditional random field to deal with
the problem of image classification by modeling spatial and
hierarchical structures. The probability outputs of an effi-
cient randomized decision forest classifier are used as unary
potentials. The spatial and hierarchical structures of the re-
gions are integrated into pairwise potentials. The model is
built on multi-scale image analysis in order to aggregate ev-
idence from local to global level. Experimental results are
provided to demonstrate the performance of the proposed
method using images from eTRIMS dataset, where our fo-
cus is the object classes building, car, door, pavement, road,
sky, vegetation, and window.

1. Introduction

The problem of scene interpretation in terms of classi-
fying various image components (pixels, regions, and ob-
jects) in images is a challenging task due to ambiguities in
the appearance of the image data (19). These ambiguities
may arise either due to the physical conditions such as il-
lumination and pose of the scene components with respect
to the camera, or due to the intrinsic nature of the data it-
self. Images of man-made scenes, e.g. building facade im-
ages, exhibit strong contextual dependencies in the form of
spatial interactions among components. Neighboring pix-
els tend to have similar class labels, and different regions
appear in restricted spatial configurations. Modeling these
spatial structures is crucial to achieve good classification ac-
curacy, and help alleviate ambiguities. Attempts were made
to exploit the spatial structure for semantic image interpre-

tation by using random fields. Early since nineties, Markov
random fields (MRFs) have been used for image interpreta-
tion (25); the limiting factor that MRFs only allow for local
features has been overcome by conditional random fields
(CRFs) (21; 19), where arbitrary features can be used for
classification, at the expense of a purely discriminative ap-
proach. The key idea for integrating spatial structural in-
formation into the interpretation process is to combine it
with low-level object-class region probabilities in a special
classification process performed by CRFs. However, stan-
dard CRFs still work on a very local level and long range
dependencies are not addressed explicitly in such models.
Therefore, the key idea is to integrate hierarchical structural
information into the interpretation process by constructing
hierarchical CRFs on image regions on multiple scales.

In this paper, we propose a novel hierarchical conditional
random field model. The major contribution is that a hier-
archical CRF is constructed by extending the standard CRF
to integrate hierarchical structure of the regions into pair-
wise potentials. Using multi-scale mean shift segmentation,
the hierarchical CRF model aggregates evidence from local
to global level. Hierarchical CRF model only exploit up
to second-order cliques, which makes learning and infer-
ence much easier. We show that hierarchical CRF classifi-
cation results give average performance of 69.0% compared
to standard CRF 65.8% on eTRIMS 8-class dataset (18).

The complete proposed workflow for interpreting images
of man-made scenes is sketched in Figure 1. The illustration
shows that graphical model can provide a consistent model
representation including spatial and hierarchical structures,
and therefore outperforms the classical local classification
approach. The following sections are organized as follows.
The related works are discussed in Section 2. In Section 3,
the standard CRF is introduced. In Section 4, a hierarchi-
cal conditional random field is presented as an extension of
CRF by explicitly modeling spatial and hierarchical struc-
tures. In Section 5, experimental results are presented. Fi-

1



Figure 1. The workflow of our hierarchical CRF model. Given a
test image, we run the segmentation and feature extraction, then
we label the test image using the hierarchical CRF model learned
by training images.

nally, this work is concluded and future direction is dis-
cussed in Section 6.

2. Related work

There are many previous works on contextual models
that exploit spatial dependencies between objects. For this,
several authors explore Markov random fields (MRFs) and
conditional random fields (CRFs) for probabilistic model-
ing of local dependencies, e.g., (3; 25; 19; 14; 31).

(19) present a discriminative conditional random field
framework for the classification of image regions by incor-
porating neighborhood interactions in the labels as well as
the observed data. The model allows to relax the strong as-
sumption of conditional independence of the observed data
generally used in the MRF framework for tractability. (31)
propose an approach for learning a discriminative model
of object classes, incorporating texture, layout, and con-
text information. Unary classification and feature selection
is achieved using a boosting scheme. Image segmentation
is achieved by incorporating the unary classifier in a CRF,
which captures the spatial interactions between class labels
of neighboring pixels. (23) propose an approach that learns
a CRF to combine bottom-up and top-down cues for class
specific object segmentation.

By exploiting both spatial and hierarchical structures, a
number of CRF models for image interpretation address the
combination of global and local features (13; 34; 27; 12;
32; 26; 28). They showed promising results and specifically
improved performance compared with making use of only
one type of feature - either local or global.

(13) propose a multi-layer CRF to account for global
consistency, which shows improved performance. The au-
thors introduce a global scene potential to assert consistency
of local regions. Thereby, they were able to benefit from
integrating the context of a given scene. (34) propose a
model that combines appearance over large contiguous re-
gions with spatial information and a global shape prior. The

shape prior provides local context for certain types of ob-
jects (e.g., cars and airplanes), but not for regions represent-
ing general objects (e.g., animals, buildings, sky and grass).
(32) present a proposal of a general framework that explic-
itly models local and global information in a CRF. Their
method resolves local ambiguities from a global perspec-
tive using global image information. It enables locally and
globally consistent image recognition.

Besides the above approaches, there are more popular
methods to solve multi-class classification problems using
higher order conditional random fields (15; 16; 20). (15)
introduce a class of higher order clique potentials called Pn

Potts model. Higher order clique potentials have the capa-
bility to model complex interactions of random variables,
enabling them to better capture the rich statistics of natu-
ral scenes. The higher order potential functions proposed in
(16) take the form of the Robust Pn model, which is more
general than the Pn Potts model. (20) generalize Robust
Pn model to Pn based hierarchical CRF model. Inference
in these models can be performed efficiently using graph
cut based move making algorithms. (9) propose the use of
a soft cost over the number of labels present in an image for
clustering.

Recent work by (26) comprises two aspects for cou-
pling local and global evidences both by constructing a tree-
structured CRF on image regions on multiple scales, which
largely follows the approach of (27), and using global im-
age classification information. Thereby, (26) neglect direct
local neighbourhood dependencies. The work of (29) ex-
plicitly attempts to combine the power of global feature-
based approaches with the flexibility of local feature-based
methods in one consistent framework. Briefly, (29) extend
classical one-layer CRF to multi-layer CRF by restricting
pairwise potentials to regular 4-neighborhood model and
introducing higher-order potentials between different lay-
ers. (28) propose a hierarchical multi-feature represen-
tation and automatically learn flexible hierarchical object
models. Their work combines structure learning in condi-
tional random fields and discriminative parameter learning
of classifiers using hierarchical features. In (36), the authors
present a concept of hierarchical CRF that models region
adjacency graph and region hierarchy graph structure of an
image. (35) present an approach for regionwise classifica-
tion of building facade images using a conditional random
field model. (1) propose an efficient large margin piecewise
learning method for CRF model, which reduces to an equiv-
alent convex problem with a small number of constraints.

3. Image labeling using standard CRF

Given a random field X defined over a graph H =
(V, E), the standard CRF model for determining the opti-
mal labeling x = {xi}, based on the image data d, has a



distribution of the Gibbs form

P (x | d) = 1

Z
exp (−E(x | d)) (1)

with the energy function defined as (35)

E(x | d) =
∑
i∈V

E1(xi) + α
∑

{i,j}∈N

E2(xi, xj) (2)

where α is the weighting coefficient in the model, and Z is
the normalization factor. The set V is the set of nodes in
the complete graph. The set N is the set of pairs collecting
neighboring. E1 is the unary potentials, which represent
relationships between variables and the observed data. E2

is the pairwise potentials, which represent relationships be-
tween variables of neighboring nodes. In the remainder of
this section, we will discuss the unary and pairwise poten-
tials in details.

3.1. Unary potentials

The local unary potentials E1 independently predict the
label xi based on the image d

E1(xi) = − logP (xi | d) (3)

The label distribution P (xi | d) is usually calculated by
using a classifier. Same as in (30), we take randomized
decision forest (RDF) (6) as the classifier which operates
on the regions defined by some unsupervised segmentation
methods. A RDF is an ensemble classifier that consists of
T decision trees (30). In order to train the classifier, each
region is assigned the most frequent class label it contains.
Then a RDF is trained on the labeled data for each of the
object classes. The label distribution is defined directly by
the probability outputs provided by RDF for each region.

Based on the fact that RDF classifier does not take class
label location information explicitly, we incorporate loca-
tion potentials (similar to 31; 35) in unary potentials. The
location potential − logQ(xi | d) is the negative logarithm
of the probability function of class labels xi given image
coordinates zi as the center of the region i, and takes the
form of a look-up table with an entry for each class xi and
region center location zi, where

Q(xi | d) =
(
Nxi,ẑi

+ 1

Nẑi
+ 1

)2

The index ẑi is the normalized version of the region center
zi, where the normalization allows for images of different
sizes: the image is mapped onto a canonical square and ẑi

indicates the pixel position within this square. Nxi,ẑi
is

the number of regions of class xi at normalized location in
ẑi, and Nẑi

is the total number of regions at location in
ẑi. The location potentials capture the dependence of the

class label on the rough location of the region in the image.
For example, in our experiment, we use part of annotation
images in 8-class eTRIMS dataset (18) to learn the loca-
tion potential, but ensure no overlap between these images
and testing images in the experimental part. Some learned
location potentials are illustrated in Figure 2. From Fig-
ure 2, we see sky tends to occur at the top part of images,
while road tends to occur at the bottom part of images, and
building tends to occur in the middle part of images. Here,
the dark blue area indicates the most likely locations of one
class, while the dark red area indicates the most unlikely
locations. Therefore, the unary potentials E1 are written as

(a) building (b) road

(c) sky (d) vegetation

Figure 2. Example location potentials. Part of annotation images
in 8-class eTRIMS dataset (18) is used to learn the location poten-
tials. The annotation images are mapped onto a canonical square.
The size of each image is 100×100 here. Here, the dark blue area
indicates the most likely locations of one class, while the dark red
area indicates the most unlikely locations.

E1(xi) = − logP (xi | d)− logQ(xi | d) (4)

We now describe how the features for RDF classifier are
constructed from low-level descriptors. For each region, we
compute an 178-dimensional feature vector, first incorpo-
rating region area and perimeter, its compactness and its
aspect ratio. For representing spectral information of the
region, we use nine color features as (2): the mean and the
standard deviation of the RGB and the HSV color spaces.
Texture features derived from the Walsh transform (22) are
also used. Additionally we use mean SIFT descriptors (24)
of the image region. SIFT descriptors are extracted for each
pixel of the region at a fixed scale and orientation, which
is practically the same as the HOG descriptor (8), using the
fast SIFT framework in (33). The extracted descriptors are



then averaged into one l1-normalized descriptor vector for
each region. Other features are derived from generalization
of the region’s border and represent parallelity or orthog-
onality of the border segments. We select the four points
of the boundary which are farthest away from each other.
From this polygon region with four corners, we derive three
central moments, and eigenvalues in direction of major and
minor axis, aspect ratio of eigenvalues, orientation of poly-
gon region, coverage of polygon region, and four angles of
polygon region boundary points.

3.2. Pairwise potentials

The pairwise potentials E2 describe category compati-
bility between neighboring labels xi and xj given the image
d, which take the form

E2(xi, xj) =
1 + 4 exp(−2cij)
0.5(Ni +Nj)

δ(xi 6= xj) (5)

where cij is the l2 norm of the color difference between
regions in the HSV color space. Ni is the number of regions
neighbored to region i, and Nj is the number of regions
neighbored to j. The potentials E2 are scaled by Ni and
Nj to compensate for the irregularity of the graph H. We
refer the reader to (31; 12) for more details about designing
pairwise potentials.

4. Image labeling using hierarchical CRF
As seen from last section, standard CRF acts on a local

level and represents a single view on the image data typ-
ically represented with unary and pairwise potentials. To
overcome those local restrictions, we analyze the image at
multiple scales to enhance the model by evidence aggre-
gation on a local to global level. Furthermore, we integrate
pairwise potentials to regard the hierarchical structure of the
regions.

4.1. The Hierarchical CRF model

Given a random field X defined over a graph H =
(V, E), the goal is to determine a label xi for each region
i based on the image data d. The complete model for de-
termining the optimal labeling x = {xi} has a distribution
of the Gibbs form as Equation 1 with the energy function
defined as

E(x | d) =
∑
i∈V

E1(xi) + α
∑

{i,j}∈N

E2(xi, xj)

+ β
∑

{i,k}∈H

E3(xi, xk) (6)

where α and β are the weighting coefficients in the model,
and Z is the normalization factor. The set V is the set of
nodes in the complete graph. The set N is the set of pairs

collecting neighboring nodes within each scale, and H is
the set of pairs collecting parent-child relations between re-
gions with neighboring scales. E1 is the unary potential,
and E2 is the local pairwise potential representing rela-
tionships between variables of neighboring regions within
each scale. E3 is the hierarchical pairwise potential, which
represents relationships between regions with neighboring
scales.

The full graphical model is illustrated in Figure 3. Three
layers are connected via region hierarchy. The develop-
ment of the regions over several scales is used to model
the region hierarchy. (10) defined a region hierarchy with
directed edges between regions of successive scales. Fur-
thermore, the relation is defined over the maximal overlap
of the regions. If the edges would be undirected, the region
hierarchy would only consist of trees. Nodes connection
and numbers correspond to multi-scale segmentation of a
building facade image. The blue edges between the nodes
represent the neighborhoods at one scale, and the red edges
represent the hierarchical relation between regions. Note
that this model only exploits up to second-order cliques,
and combines different views on the data by the hierarchical
structure accounting for longer range dependencies.

The formulation of unary potentials E1 and local pair-
wise potentialE2 is same in Section 3.2, except that regions
in multi-scale are taken into account instead of regions in
only one scale. The hierarchical pairwise potentials E3 de-
scribe category compatibility between hierarchically neigh-
boring labels xi and xk given the image d, which take the
form of a data-dependent model

E3(xi, xk) = (1 + 4 exp(−2cik)) δ(xi 6= xk) (7)

where cik is the l2 norm of the color difference between
regions in the HSV color space. Hierarchical pairwise po-
tentials act as a link across scale, facilitating propagation of
information in the model.

4.2. Learning and inference

In our formulation, we have two weights α and β which
represent the trade-off among hierarchical, local pairwise
regularization and the confidence in unary potentials. We
estimate α and β by cross validation on the training data.
Once the model has been learned, inference is carried out
with the multi-label graph optimization library of (5; 17; 4)
using α-expansion. Since the hierarchical CRF is defined
on the graph of regions, inference is very efficient, taking
less than half a second per image.

5. Experimental results
We conduct experiments to evaluate the performance of

the hierarchical CRF model on the 8-class eTRIMS dataset
(18). The dataset consists of 60 building facade images, la-
beled with 8 classes: building, car, door, pavement, road,



(a) Original building
facade image

(b) Multi-scale segmentation (from left to right: top, middle
and bottom scale)

(c) The graphical model

Figure 3. Illustration of the hierarchical CRF model architecture. Three layers are connected via region hierarchy. Nodes connection and
numbers correspond to multi-scale segmentation of a building facade image. The blue edges between the nodes represent the neighborhoods
at one scale, the red edges represent the hierarchical relation between regions.

sky, vegetation, window. These classes are typical objects
which can appear in images of building facades. In the ex-
periments, we take the ground-truth label of a region to be
the majority vote of the ground-truth pixel labels. We ran-
domly divide the images into a training set with 40 images
and a testing set with 20 images.

We segment the images using mean shift algorithm (7).
Our approach uses the Gaussian scale-space for obtaining
regions at several scales. For each scale, we convolve each
image channel with a Gaussian filter and apply mean shift
algorithm to segment the smoothed image. As a result of
the mean shift algorithm, we obtain a complete partitioning
of the image for each scale, where every image pixel be-
longs to exactly one region. In all 60 images, we extract
around 61 000 regions. We use three layers in the scale
space, resulting the ground layer often contains around 500
regions, and the number decrease down to 200 in the highest
layer. For the example image, Figure 4 shows one example
result from multi-scale mean shift segmentation, where the
color of each region is assigned randomly that neighboring
regions are likely to have different colors.

Figure 5 shows the classification results from hierarchi-

Figure 4. One example region images of the mean shift segmen-
tation (7) result at scale 1, 2, 3, respectively. The color of each
region is assigned randomly that neighboring regions are likely to
have different colors.

cal CRF with multi-scale mean shift. We run the experi-
ment five times, and get the overall classification accuracy
69.0%. For comparison, we also run the the experiments on
RDF and standard CRF. The number T of decision tree for
RDF is 250. RDF classifier alone gives an overall accuracy
of 58.8%, and standard CRF gives an overall accuracy of
65.8%. Therefore, the hierarchical potentials increase the
accuracy by 3.2%. Table 1 and Table 2 show two confu-



Figure 5. Classification results using hierarchical CRF from 3-
scale mean shift segmentation in Figure 4. From left to right:
classification result at scale 1, 2, 3, respectively.

HH
HHHPr

Tr
b c d p r s v w

b 71 2 1 1 1 2 10 12
c 12 35 0 12 11 0 30 0
d 42 0 16 1 6 0 8 27
p 11 15 0 22 36 0 14 2
r 4 8 0 44 35 0 9 0
s 13 0 0 0 0 78 8 1
v 18 5 2 1 1 0 66 7
w 19 1 1 0 0 1 3 75

Table 1. Pixelwise accuracy of image classification using stan-
dard CRF on the eTRIMS 8-class dataset. The confusion matrix
shows the classification accuracy for each class (rows) and is row-
normalized to sum to 100%. Row labels indicate the true class
(Tr), and column labels the predicted class (Pr). (b = building, c =
car, d = door, p = pavement, r = road, s = sky, v = vegetation, w =
window.)

sion matrices obtained by applying standard CRF and hier-
archical CRF to the whole test set, respectively. Accuracy
values in the table are computed as the percentage of im-
age pixels assigned to the correct class label, ignoring pix-
els labeled as void in the ground truth. Compared to the
confusion matrix showing standard CRF in Table 1, hierar-
chical CRF performs significantly better on pavement, veg-
etation, road, and window classes, slightly better on car and
sky classes, and slightly worse on building and door classes.
The weighting parameter settings, learned by cross valida-
tion on the training data, are α = 0.1, β = 0.65.

Qualitative results of hierarchical CRF with multi-scale
mean shift on the eTRIMS dataset are presented in Figure 6.
The quality inspection of the results in these images shows
that hierarchical CRF yields significant improvement. By
visual inspection of classification results for a challenging
test image in Figure 6, we have demonstrated that hierar-
chical CRF outperform the method either with only spatial
information or without context information.

The best accuracies are for classes which have low vi-
sual variability and many training examples (such as win-
dow, vegetation, building, and sky) whilst the lowest ac-
curacies are for classes with high visual variability or few

HHH
HHPr
Tr

b c d p r s v w

b 67 3 1 4 5 1 8 11
c 17 36 0 11 9 0 26 1
d 50 5 14 8 0 0 7 16
p 6 4 0 85 1 0 4 0
r 0 11 0 21 53 0 15 0
s 11 0 0 0 0 80 8 1
v 9 5 1 0 1 0 78 6
w 15 0 1 0 0 2 2 80

Table 2. Pixelwise accuracy of image classification using hierar-
chical CRF with multi-scale mean shift on the eTRIMS 8-class
dataset. The confusion matrix shows the classification accuracy
for each class (rows) and is row-normalized to sum to 100%. Row
labels indicate the true class (Tr), and column labels the predicted
class (Pr). (b = building, c = car, d = door, p = pavement, r = road,
s = sky, v = vegetation, w = window.)

training examples (for example door and car). We expect
more training data will improve the classification accuracy.
Objects such as car, door, and window are sometimes incor-
rectly classified as building, due to the dominant presence
of building in the image.

With the current settings for the local and hierarchical
pairwise potential functions, our methods tend to produce
rather low classification rate for object classes with minor
instances (e.g., car and door). An investigation into more
sophisticated potential functions might resolve this prob-
lem. In computer vision, the pairwise potentials are usu-
ally represented by a weighted summation of many fea-
tures functions (e.g., (31)), and the parameters with the size
as same as feature number are learned from the training
data. By maximizing the conditional log-likelihood, bet-
ter accuracy usually obtained. But this kind of parameter
learning remains a difficult problem and also is most time-
consuming part (1). While in our proposed graphical model
formulations, we simply have at most two weighting pa-
rameters (similar to (12; 11; 20)). So this is the trade-off
between efficiency and accuracy.

6. Conclusion

In this paper, we have addressed the problem of incorpo-
rating two different types of context information, i.e., spatial
structure and hierarchical structure for image interpretation
of man-made scenes. We present an approach to classify
images into regions of building, car, door, pavement, road,
sky, vegetation, and window. To exploit different levels of
contextual information in images, a hierarchical conditional
random field is described as an extension of standard CRF.
The hierarchical structure of the regions is integrated into
pairwise potentials. The model is built on multi-scale mean
shift segmentation in order to aggregate evidence from local
to global level. We have evaluated our approach on bench-



Figure 6. Qualitative classification results on testing images from the eTRIMS dataset. The hierarchical CRF model yields more accurate
and cleaner results than the standard CRF and RDF. (1st-row) Testing images. (2nd-row to 5th-row) Classification results using the RDF
classifier, the CRF model, the hierarchical CRF model (HCRF), and the ground truth (GT), respectively. (6th-row) Legend.

mark dataset. The results show that hierarchical CRF out-
performs both the standard CRF and local RDF classifier.

The proposed hierarchical CRF operates on region level
resulting from mean shift segmentation algorithm, which al-
lows for fast inference. However, one disadvantage of such
an approach is that mistakes in the initial unsupervised seg-
mentation, in which regions span multiple object classes,
cannot be recovered from. For each region from segmen-
tation, a class label is commonly assigned to the region ac-
cording to the majority vote of the ground-truth pixel labels.
At the starting point, ambiguity is introduced in the region
ground-truth labeling. As a future work, we will try to re-
solve this problem by assigning a class probability vector to
the region, not assigning most probable label to the region.
We could result in a probability estimation model of image
segmentation regions. One could also eliminate inconsis-
tent regions by employing another hierarchical CRFs (20),

which allow for the integration of region-based CRFs with
a low-level pixel based CRF.
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