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ABSTRACT 
In the presented study the performance of support vector machines (SVM) for classifying seg-
mented multi-temporal SAR data is investigated. Results show that multi-temporal SAR data 
from an area dominated by agriculture can be successfully classified using SVM. Classi-
fication accuracy (78.2%) and degree of differentiation between land cover types is similar or 
better than results achieved with a decision tree classifier. A positive influence of image seg-
mentation on classification results can be reported which varies with object size. A compari-
son of classification results derived on different aggregation levels shows, that a medium 
segment size should be preferred. It is better to work with segments that are smaller than the 
natural features of interest and segments that are greater than natural features should be 
avoided.  

INTRODUCTION 
Land cover classifications are one of the widest used applications in the field of remote sens-
ing. Supervised classification techniques are often used in this context. Besides the chosen 
classification algorithm, the set of training samples as well as the input images or input fea-
tures are dominating factors for the accuracy and performance of a supervised classifier (i,ii). 
The availability of both ground truth data and remote sensing imagery are often limited and 
can not be influenced by the user. In addition neither the training samples nor the selected 
features can be assumed to be ideal for a representative training. Against this background, 
the choice of an adequate classification approach is an important step in data analysis.  

Regions with agricultural land use are investigated in many remote sensing based land cover 
studies. Mono-temporal approaches can be inefficient due to great temporal variability of indi-
vidual plots. In several studies the classification accuracy is increased by multi-temporal data 
sets (iii,iv). Thus multi-temporal applications seem more appropriate for land cover classifica-
tions. However, the availability of optical data is often limited by solar illumination and cloud 
cover. This is a drawback, particularly for operational monitoring systems. Hence SAR data, 
which are independent from these factors, are better suited for multi-temporal applications. In 
regard to upcoming missions with high revisit times and better spatial resolutions like Ter-
raSAR-X, multi-temporal approaches become even more interesting. Considering such future 
datasets with high spatial and temporal resolution adequate classifiers are needed.  

Statistical methods like the maximum likelihood classification are widely known. They can 
achieve good results, if an adequate data distribution model is known (v). In the context of 
many remote sensing applications a Gaussian distribution of the data is assumed; admittedly 
such an assumption is not necessarily met and the approach might in many cases be ineffi-
cient. Hence non-parametric approaches, like self-learning decision trees (DT) or support 
vector machines (SVM) have been introduced (ii,vi,vii,viii). The concept of SVMs is well 
known in pattern recognition and has lead to good results in several remote sensing studies 
for the classification of optical data (vii,viii). In contrast to other non-parametric methods only 
a few studies are known that use the approach for classifying SAR data (ix,x). In several stud-
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ies segment based classifications outperform per-pixel approaches (xi,xii). This seems par-
ticularly interesting in regard to the SAR typical noise. In addition, image segmentation can 
reduce the physical size of the data set and hence processing times (xiv) – a relevant issue in 
regard to high resolution time series. In the presented study the applicability of SVM for the 
classification of multi-temporal SAR data is investigated. Different levels of image segmenta-
tion are generated and classified without using any segment specific features like segment 
size, shape etc., to investigate the impact of generalization as conducted during the segmen-
tation process on the SVM performance and classification accuracy. The results of the SVMs 
are compared to classification results achieved by self-learning decision trees. 

DATA SET AND PREPROCESSING 
The nearly flat study site is located near Bonn, in the German state North Rhine-Westphalia. 
The area is dominated by agriculture and characterized by typical spatial patterns and tempo-
ral variation caused by differences in the crop phenology. The field plot size varies between 
approximately 3 and 5 ha, with cereals and sugar beets being the main crops. A dataset of 14 
images from 9 acquisition dates, containing 5 Envisat ASAR alternating polarization and 4 
ERS-2 precision images was used (Table 1). Thus, the data set comprised information from 
varying phenological stages and different polarizations. In addition, a Landsat 5 TM image 
was available, which was used for the image segmentation. A map from a detailed field sur-
vey was used for generating the training and validation sample sets.  

An orthorectification of the Landsat image was performed, using a digital elevation model. 
The SAR imagery was calibrated to backscatter intensity following a common procedure. 
Subsequently all data sets were co-registered and an enhanced Frost filter was applied to 
reduce the speckle. Finally the SAR images were orthorectified using a digital elevation 
model, orbit parameters and the corrected Landsat image as reference data set.  

Table 1: Multi-temporal SAR Data set 

Sensor Date Track / Swath Polarization Orbit 
ASAR 12-Apr-05 6208 HH / HV asc 
ERS-2 21-Apr-05 337 VV des 
ERS-2 26-May-05 337 VV des 
ERS-2 30-Jun-05 337 VV des 
ASAR 13-Jul-05 3029 HH / HV asc 
ASAR 22-Jul-05 7158 HH / HV asc 
ERS-2 4-Aug-05 337 VV des 
ASAR 14-Aug-05 2487 HH / HV asc 
ASAR 18-Sep-05 2487 HH / HV asc 

 

Although several segmentation methods have been developed for SAR data, segmentation is 
still difficult due to the speckle. Outlines derived from optical data seem more appropriate 
(xv). Hence a segmentation of the Landsat image was performed. Afterwards the segment 
outlines were transferred onto the SAR data set. Several techniques for image segmentation 
of optical data sets exist (xvi,xvii,xviii). Region-growing methods assume that pixels of the 
same natural feature have a certain spectral homogeneity. In this study the commonly avail-
able region-growing approach by Baatz and Schäpe (xvii) was used. 

In the initial phase of the process, pixels are handled as individual segments, which are itera-
tively merged into larger segments. Candidate pairs of adjacent segments are found by local 
mutual best fitting. The difference between the heterogeneity of a possible new segment 
compared to that of its two constituent segments is used as a stopping criterion for the re-
gion-growing. If it exceeds a user defined value, the growing process stops. In the presented 



Proceedings of the 2nd Workshop of the EARSeL SIG on Land Use and Land Cover 

50 

study only the spectral information was used to estimate the segments’ heterogeneity. In do-
ing so the segments were not constrained to any pre-defined shape. To investigate the im-
pact of the segmentation on classification accuracy three different image segmentations were 
generated. By computing each of the three aggregation levels (scale 1-3) separately, all seg-
mentations were independent from the prior result. The average segment size of scale 1 was 
10 pixels (~0.9 ha), of scale 2 25(~2.2 ha) and 65 of scale 3 (~5.8 ha).  

 
Figure 1: Landsat 5 TM (4,3,2) and multi-temporal SAR images with segment outlines from 
TM data. Average segment size 10 pixels, 25 pixels and 65 pixels (from left to right).  

METHODS 
SVM delineate two classes by fitting an optimal separating hyperplane to the multi-
dimensional feature space. This optimization bases on structural risk minimization and tries to 
maximize the margin between the hyperplane and the closest training data points, the so-
called support vectors. Thus, SVM only consider training samples close to the class boundary 
and might work well with small sample sets (xix). For linearly not separable classes the input 
data are mapped into a high dimensional space wherein the newly spread data point distribu-
tion enables the fitting of a linear hyperplane. A detailed description on the general concept of 
SVM is given in Vapnik (xx) and Burges (xxi). Comprehensive introductions in a remote sens-
ing context are given by Huang et al. (vii) or Foody & Mathur (viii). 

The binary nature of the SVM requires a useful strategy to solve a multi-class problem (viii). 
Two main approaches exist: the one-against-one strategy (OAO) and the one-against-all 
strategy (OAA). OAO applies a set of individual classifiers to all possible pairs of classes and 
performs a majority vote to assign the winning class. In the case of OAA, a set of binary clas-
sifiers is trained to separate each class from the rest. The maximum decision value deter-
mines the final class label. In this work, the OAO strategy was performed. A Gauss kernel 
was used for the training of the SVM. The training parameters were set following the leave-
one-out cross validation approach Looms by Lee & Lin (xxii). 

For the generation of training and validation data sets an extensive ground truth campaign 
was conducted in summer 2005. A training data set can be generated in different ways: e.g. 
simple random sampling, systematic sampling or stratified random sampling. Using the first 
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method, each sample has an equal chance to be selected, the systematic approach selects 
samples with an equal interval over the study area. Stratified random sampling combines a 
priori knowledge about a study area – like land cover information – with the simple random 
sampling approach (xxiii). Using land cover classes as a priori knowledge, the stratified ran-
dom sampling guarantees, that all classes are included in the sample set. In the presented 
study two sample sets for 6 classes are generated with an equalized random sampling (cere-
als, forest, grassland, orchard and root crops). In doing so each class has the same sample 
size, containing 50 or 100 samples per class, respectively. Using the same methodology as 
before, an independent validation set was generated, containing 1560 samples, 260 of each 
class. Using this independent sample set, the total accuracy and the kappa coefficient are 
calculated for the accuracy assessment. 

The results of the SVM approach are compared to the outputs of a self-learning decision tree. 
The handling of DTs is relatively simple and they are not constrained to assumptions like 
normal distribution of input data. Unlike SVM the training time is relatively low and no complex 
parameter fitting is necessary. In the presented study the decision tree algorithm see5 (xxiv) 
is used. This approach was used successfully in several studies for classifying optical and 
SAR data (ii,vi,xxv). 

RESULTS & DISCUSSION 
The accuracy assessment shows the positive effect of image segmentation on the classifica-
tion accuracy of the SAR data (Table 2). Using an adequate aggregation scale the classifica-
tion accuracy is increased. With the smaller sample set, for example the accuracy of 50% on 
pixel level is increased up to 76% at scale 1. A further improvement up to 78% is achieved by 
scale 2. Indeed the scale of aggregation is crucial and a coarse segmentation is leading to 
reduced classification accuracy. Using scale 3 the classification accuracy drops below the 
accuracy achieved by the smallest aggregation size. A larger sample set can slightly improve 
the classification accuracy.  

The accuracy assessment shows that in case of segmented data support vector machines 
lead to better results than simple decision trees (Table 2). The best accuracy of a decision 
tree is 75.5%, the corresponding SVM achieves an accuracy of 78.2% (training set 100 – 
scale 2). But the decision tree outperforms the support vector machines on pixel data. Maybe 
the decision tree can handle the noisy data more effective than the SVM approach does. The 
impact of image segmentation on the accuracy achieved by the decision tree is comparable 
to the findings for SVM. 

Table 2: Total accuracy and kappa of the support vector machine and decision tree classifica-
tion or pixel image and segmented data 

Averaged SVM DT 
 segment size training set 50 training set 100 training set 50 training set 100 

Pixel 50.3 / 0.40 54.6 / 0.45 55.0 / 0.46 59.7 / 0.52 
~10 pixels 75.9 / 0.71 76.9 / 0.72 72.1 / 0.67 71.7 / 0.66 
~25 pixels 77.8 / 0.73 78.2 / 0.74 70.8 / 0.65 75.5 / 0.71 
~65 pixels 71.7 / 0.66 73.5 / 0.68 70.8 / 0.65 67.9 / 0.62 

 

The visual inspection of classification outputs is in accordance with the statistical evaluation. 
The quality of the derived maps is significantly increased by the segmentation of the data 
(Figure 2). This can be explained by the removal of data inherent noise and outliers. Within 
the classified pixel image only large regions can be clearly distinguished. The differentiation 
between smaller natural structures like field plots seems difficult. Comparing the maps from 
different aggregation levels, the one with the largest segments is easiest to perceive and ap-
pears most homogeneous. However the statistical evaluation showed that scale 3 was worse 
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than scale 2 and scale 1. A comparison to the reference map shows that a possible false as-
signment of an individual segment leads to the misclassification of a large area. This typical 
drawback of segment-based analysis is particularly obvious for scale 3, where several seg-
ments include more than one filed plot. 

 
Figure 2: Land cover map, multi-temporal SAR data, pixel-based SVM classification (upper 
row) and classification results based on three different scales. 

SUMMARY & CONCLUSIONS 

SVM have been successfully used for the classification of segmented multi-temporal SAR 
data. Results are slightly better than those from a DT. A significant positive influence of image 
segmentation on the overall accuracy could be observed for all classification levels. In regard 
to the decreasing accuracy when segments become too large, the use of segments that are 
slightly smaller than natural objects seems appropriate, instead of trying to match original 
outlines. In the presented study a mean segment size of 25 pixels is appropriated.  

ACKNOWLEDGEMENTS 
The authors would like to thank Andreas Janz (Humboldt-Universität zu Berlin) for program-
ming the IDL environment for the SVM classification of image data. For the training of the 
SVM the LOOMS algorithm by Lee and Lin was used. 

They also wish to thank the European Space Agency for providing remote sensing data 
through a CAT 1 proposal (C1.3115). The images were acquired within the ENVILAND re-
search project (FKZ 50EE0404), funded by the German Aerospace Center (DLR) and the 
Federal Ministry of Education and Research (BMBF). S. Schiefer is funded by the German 
Federal Environmental Foundation (DBU). 

 

 



Center for Remote Sensing of Land Surfaces, Bonn, 28-30 September 2006 

53 

REFERENCES 
 

i. Foody G M & M K Arora, 1997. An evaluation of some factors affecting the accuracy 
of classification by an artificial neural network. International Journal of Remote Sens-
ing, 18: 799-810 

ii. Pal M & P M Mather, 2003. An assessment of the effectiveness of decision tree meth-
ods for land cover classification. Remote Sensing of Environment, 86: 554-565 

iii. Del Frate F, G Schiavon, D Solimini, M Borgeaud, D H Hoekman & M A M Vissers, 
2003. Crop classification using multiconfiguration C-band SAR data. IEEE Transac-
tions on Geoscience and Remote Sensing, 41: 1611-1619 

iv. Chust G, D Ducrot & J L Pretus, 2004. Land cover discrimination potential of radar 
multitemporal series and optical multispecral images in a Mediteranean cultural land-
scape. International Journal of Remote Sensing, 25 : 3513-3528 

v. Benediktsson J A, P H Swain & O K Ersoy, 1990. Neural Network Approaches Versus 
Statistical Methods In Classification Of Multisource Remote Sensing Data. IEEE 
Transactions on Geoscience and Remote Sensing, 28: 540-552 

vi. Friedl M A & C E Brodley, 1997. Decision Tree Classification of Land Cover from Re-
motely Sensed Data. Remote Sensing of Environment, 61: 399-409 

vii. Huang C, L S Davis J R G Townshend, 2002. An assessment of support vector ma-
chines for land cover classification. International Journal of Remote Sensing, 23: 725-
749 

viii. Foody G M & A Mathur. 2004. A Relative Evaluation of Mulitclass Image Classification 
of Support Vector Machines. IEEE Transactions on Geosciences and Remote Sens-
ing, 42: 1335-1343 

ix. Lardeux C, P L Frison, J P Rudant, J C Souyris, C Tison, B Stoll, 2006. Use of the 
SVM classification with polarimetric SAR data for Land use carthography. In: Geo-
science and Remote Sensing Symposium 2006 (IGARSS ’06, Denver), in print. 

x. Fukuda S & H Hirosawa, 2001. Support Vector Machine Classification of Land cover: 
Application to Polarimetric SARdata. In: Geoscience and Remote Sensing Symposium 
2001 (IGARSS ’01 WO), 187-189 

xi. Tso B & RM Mather, 1999. Crop discrimination using multi-temporal SAR imagery. 
International Journal of Remote Sensing, 20: 2443-2460 

xii. Shackelford A K  & C H & Davis, 2003. A Combined Fuzzy Pixel-Based and Object-
Based Approach for Classification of High-Resolution Multispectral Data Over Urban 
Areas. IEEE Transactions on Geosciences and Remote Sensing, 41: 2354-2363 

xiii. Song M, D L Civco & J D Hurd, 2005. A competitive pixel-object approach for land 
cover classification. International Journal of Remote Sensing, 26: 4982-4997 

xiv. Schiefer S, P Hostert, E Diermayer & A Damm, 2005. Compression and object-
oriented processing of segmented hyperspectral images in ENVI. In: Proc. 4th 
EARSeL Workshop on Imaging Spectroscopy, Warsaw, edited by B. Zagajewski & M. 
Sobczak, 609-616. 

xv. Lombardo P, C J Oliver, T M Pellizzeri & M Meloni, 2003. A New Maximum-Likelihood 
Joint Segmentation Technique for Multitemporal SAR and Multi Optical Images. IEEE 
Transactions on Geoscience and Remote Sensing, 41: 2500-2518 

xvi. Le Moigne J & J C Tilton, 1995. Refining image segmentation by integration of edge 
and region data. IEEE Transactions on Geoscience and Remote Sensing, 33: 605-
615 



Proceedings of the 2nd Workshop of the EARSeL SIG on Land Use and Land Cover 

54 

xvii. Baatz M & A Schäpe, 2000. Multiresolution Segmentation - an optimization approach 
for high quality multi-scale segmentation. In: Angewandte Geogr. 
Informationsverarbeitung XII, edited by J Strobel et al. (Beiträge zum AGIT-
Symposium Salzburg) 

xviii. Evans C, R Jones, I Svalbe & M Berman, 2002. Segmenting Multispectral Landsat TM 
Images Into Field Units. IEEE Transactions on Geoscience and Remote Sensing, 40: 
1054-1064 

xix. Foody G M  & A Mathur, 2006. The use of small training sets containing mixed pixels 
for accurate hard image classification: Training on mixed spectral responses for clas-
sification by a SVM. Remote Sensing of Environment, 103: 179-189 

xx. Vapnik V N, 1995. The Nature of Statistical Learning Theory. (Springer Verlag, New 
York) 

xxi. Burges C J C 1998: A Tutorial on Support Vector Machines for Pattern Recognition. 
Data Mining and Knowledge Discovery, 2: 121-167 

xxii. Lee J H  & C J Lin, 2000. Automatic model selection for support vector machines, 
Technical report, Dept. of Computer Science and Information Engineering, National 
Taiwan University, http://www.csie.ntu.edu.tw/~cjlin/looms/ 

xxiii. Congalton R G & K Green, 1999. Assessing the Accuracy of Remote Sensed Data: 
Principles and Practices, (Lewis Publishers) 

xxiv. Quinlan J R, 1993. Programs for Machine Learning, (San Fransisco, CA: Morgan 
Kaufmann) 

xxv. Simard M, G de Grandi, S Saatchi & P Mayaux, 2002. Mapping tropical coastal vege-
tation using JERS-1 and ERS-1 radar data with a dwcision tree classifier. International 
Journal of Remote Sensing, 23: 1461-1474 

 


