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ABSTRACT:

This paper addresses the challenge of a real-time capable vision system in the task of trajectory and surface reconstruction by aerial
image sequences. The goal is to present the design, methods and strategies of a real-time capable vision system solving the mapping
task for secure navigation of small UAVs with a single camera. This includes the estimation process, map representation, initialization
processes, loop closing detection and exploration strategies. The estimation process is based on the Kalman-Filter and a landmark
based map representation. We introduce a new initialization method for new observed landmarks. We will show that the initialization
process and the exploration strategy has a significant effect on the accuracy of the estimated camera trajectory and of the map.

1 INTRODUCTION

Unmanned Aerial Vehicles (UAVs) as low cost and flexible plat-
forms for image acquisition become more and more important.
Monitoring changes in agriculture, inspection of buildings, the
wide field of surveillance and documentation in archeology are
only a few civil applications using UAVs.

We can distinguish between high-altitude systems such as pre-
sented in the PEGASUS Project (Everaerts et al., 2004) and low-
altitude systems conducted by small helicopters or quad-copters.
Compared to high-altitude systems, low-altitude systems have the
disadvantage of a small range and a small payload capacity. Both
systems require position and orientation information for the pur-
pose of navigation.

The position of the UAV is usually determined by a combination
of GPS and INS (Inertial Navigation Systems) measurements, in
which GPS will account for the long term instability of the inertial
sensors. Moreover, GPS is not available in indoor environments
and cannot measure directly the orientation of the UAV or can be
even jammed. Considering the small payload capacity of small
UAV systems and the fact that GPS and INS measurements might
not be available, the use of localization techniques from image
sequences can be very beneficial.

This paper addresses the problem of the localization and mapping
for navigation purposes using monocular vision only. There is no
focus on a dense reconstruction of an elevation map in this paper.
This can be performed by a post processing step of the image data
as we will show at the end of this paper. The described techniques
are designed for real time processing.

The technical part of the paper addresses the problem of initial-
ization of new points within the Kalman-Filter: The classical
method of initializing a point based on a measured ray and an
approximate distance has shown to give poor results. We propose
a new solution based on the condition of the achieved triangula-
tion accuracy.

The paper is organized as follows: First we will give a short
overview about our available UAV hardware and the meaning of
real-time capability in our sense. We will discuss the state of the
art estimation approaches for localization and mapping and their
commonly used map representation. In the next section we will
briefly describe our Kalman-Filter based model. Furthermore we

will explain our stable initialization solution of new landmark co-
ordinates. Regarding the exploration strategy a spiral path is pre-
sented as well as an idea for an efficient loop closing detection.
In an experimental section we discuss the influence of a bad ini-
tialization and the benefit of our solution. We also present results
based on simulated data for long strips and for a spiral path explo-
ration. Finally we will show first results for trajectory determina-
tion and surface reconstruction based on real data. An outlook to
future works will conclude this paper.

2 OVERVIEW

In this section we present a short overview about our available
UAV and vision based localization and mapping methods in the
context of real time possibility.

2.1 UAV Hardware

The real data experiment shown below is based on image se-
quences taken with the UAV from Microdrones GmbH. The drone
shown in fig. 1 is an electric powered quad-copter, which is man-
ually controlled. It can carry up to approximately 200 g of pay-
load. This drone is equipped with a Panasonic Lumix camera
with a resolution of 848 x 480 pixels, a viewing angle of appr.
90° and a frame rate of 30 Hz in video mode. The camera can be
tilted from 0° to 90° nadir angle. The battery allows a flying time
up to appr. 30 minutes. The image sequence is stored on a flash
card and compressed as a quick time movie.
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Figure 1: Used hardware. Drone MD 4-200 from Microdrones
(© equipped with a Panasonic Lumix video camera

2.2 On the Notion of Real Time

In our perception, real time means the capability to react in a
required time on sensor data. The results of the computation of
the sensor data should be available within a reasonable time. In



our task this is the time for secure navigation and for instance a
surveillance function.

But not all parts of the calculations need the same time. For ex-
ample, secure navigation demands a local accurate map with an
update of 1 Hz. The absolute position can be used for path plan-
ing and close loop detection and is not necessary for every sec-
ond.

2.3 Vision based Navigation

Vision based navigation or simultaneous localization and map-
ping becomes a very important research field in robotics for the
last years. These techniques can be used almost anywhere, for
instance on ground vehicles, in a subsea environment or in the
air. Depending on the carrier platform and the navigation require-
ments different vision hardware systems are applied.

Conceptional we distinguish between monocular (Davison, 2003)
and stereo or multi-stereo vision concepts (Agrawal et al., 2007).
In the case of monocular vision there is no direct depth estima-
tion possible. Assuming a motion of the camera in a static world,
depth information can be achieved. In the case of stereo vision
we can estimate the object coordinates at any point of time. Fur-
thermore a time based detection of motion in the object space is
also possible (Franke et al., 2005).

Furthermore, we have to decide whether a local or a global map
should be obtained. Local maps do not require advanced map
building techniques (Estrada et al., 2005), but they are only useful
for safe navigation in small environments, not for navigation in
the context of path finding. The representation and the update of
global maps is a challenge depending on the real time capability
of the estimation processes and an intelligent memory storage.

Commonly used techniques to estimate the exterior camera ori-
entation are based on the identification of landmarks and the es-
timation of their coordinates. They presume an exact data as-
sociation between measurements at different viewpoints. This
is done by interest points used as landmarks which are usually
tracked through the image sequence by a KLT-Tracker (Tomasi
and Kanade, 1991) or by descriptor matching (Lowe, 2003). The
map is represented by the landmark coordinates and their uncer-
tainties, as well as their correlations between different landmarks.

Various techniques are available to estimate the trajectory and
the map. The well known bundle adjustment is one of the tradi-
tional algorithms. In the past years, bundle adjustment has be-
come famous in the robotic research community often referred
as information filter (Thrun et al., 2005). By using the sparse-
ness and solving the linear normal equation system according to
a factorization technique (Griin, 1982), (Triggs et al., 2000), the
complexity is nearly equivalent to the well known Kalman-Filter
based approaches. But, the elimination of needless parameters
from the equation system using schur complement is time con-
suming with respect to computation.

The Kalman-Filter (Kalman, 1960) updates the unknown param-
eters, stored in the so called state vector, in an iterative manner at
every time step. The complete information about the map and the
trajectory is stored in the state vector and their covariance matrix.
Needless parameters can be eliminated by discarding them from
the covariance matrix and from the state vector. The accuracy
of the Kalman-Filter depends on the accurate parameter initial-
ization. This effect can be reduced by using an inverse depth
representation for object points (Montiel et al., 2006), but is very
difficult to handle. We will introduce an alternative solution on
this problem later in this paper.

Both, the Kalman-Filter approach and the bundle adjustment tech-
nique take into account that the map and trajectory parameters
are linked together. The FastSLAM (Montemerlo et al., 2002)

approach factorizes the full localization and mapping problem
exactly into a product of a robot path posterior, and landmark
posteriors conditioned on the robot path estimate. This factored
posterior can be approximated efficiently using a particle filter.
The landmark positions can be estimated independently by a set
of small Kalman-Filters for every path hypothesis. This tech-
nique has a high memory consumption, but can deal with up to
100.000 landmarks.

3 ALGORITHMS AND STRATEGIES

3.1 Pose estimation with a Kalman Filter

As described in section 2.3 the parameter estimation for the posi-
tion and the orientation as well as the object coordinates is a core
module for navigation. We use a Kalman-Filter based approach
for this task. The interior camera parameters are assumed to be
known.

We use the modeling according to (Davison, 2003). The state
vector p’ contains the camera parameters, their velocities and the
3D-points:

- qt

The uncertainty is coded in the covariance matrix Eﬁ,p. The cam-
era trajectory is represented by its actual position r?, its orienta-
tion quaternion q°, its velocity vector v* and its angular velocity
vector w’. The 3d point coordinates are represented by their Ny
Euclidean points X ¢. The list of points will vary over time, re-
quiring elimination and inclusion of points at possibly every time
step.

At the moment, our approach uses the same camera and structure
representation. We assume a linear time update model, which can
easily be computed by

pttt rt +ovlAt
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with Aq® = (1,w"At) and o representing the quaternion mul-
tiplication. Velocity, angular velocity and Euclidean points are
assumed not to change over time.

The measurement equations are based on the co-linearity equa-
tions, which can be written as homogeneous equations

x; = NP'X;  with  P'=KR(q") [5]—r"] (3
indicating, that we assume the calibration of the camera not to
change over time.

3.2 Initialization Procedure

Each Kalman-Filter needs to be initialized. In the context of
simultaneous localization and mapping at each time step new
points may be included into the state vector and therefore then
need to be initialized.

Initial values for the camera position and orientation and their
velocities have to be introduced. The complete orientation of the
object coordinate system can be derived from a small set of avail-
able control points. These points need to be introduced into the
Kalman-Filter in order to define the scale of the complete recon-
struction.



Initial values for new points have to be provided continuously.
This turns out to be a problem, as bad initializations of 3D-points
may prevent the system from convergence.

One way for the initialization of points is to calculate the Eu-
clidean coordinates on the first visible projection ray presum-
ing an a priori distance with a large covariance matrix and from
thereon update the point in the Kalman-Filter. But already the in-
tersection with the next ray, which due to the small parallax, leads
to an uncertainty which cannot really be modeled using a normal
distribution as shown in (Montiel et al., 2006) and therefore lead
to biases in the estimation.

This problem can be circumvented by representing the 3D-point
using the inverse depth, which intuitively corresponds to the par-
allax and therefore is well represented by a normal distribution.
This inverse representation usually requires six parameters as the
3D-point needs to be linked to the first camera the points is visi-
ble. After a stabilization of the estimated coordinate it is neces-
sary to transform the inverse representation to an Euclidean rep-
resentation, in order to keep the number of parameters in the state
vector small. This procedure turns out to be cumbersome.

We here propose, to solve the problem of biased estimation in a
different manner. We suggest postponing the initialization until
the geometry guarantees the 3D-point is stable. This requires to
store for each 3D-point X ,,, which is observed in frame ¢ for
the first time, the orientation parameters r*, q* and the measured
image coordinate x’,. As the initialization need not to be perfect
in terms of accuracy, we do not need to introduce these data into
the Kalman-Filter at later stages > t.

Each new point is tracked leading to a sequence of points {:cf; =

t + 1,...} in the following frames. At each time T we select
that pair of frames (¢', 7) for determining the 3D-point where the

length of the basis |[r7 — rt/| is largest, as we expect the de-
termination of the 3D-point to be most stable. If the covariance
matrix of the 3d-point is round enough, we initialize the 3D-point
and include into the Kalman-Filter. The roundness R of the co-
variance matrix X'x, x,, is determined from the eigenvalues us-
ing /A3 /A1, indicating the maximum ratio of uncertainty at that
point, c. f. (Beder and Steffen, 2006). We use as threshold of
Tr = 0.1 for this ratio, i. e. new points are guaranteed to fulfill
R > Tkg.

The covariance matrix can be determined assuming the orienta-
tion parameters to be error free. In our experiments the triangu-
lation and the error propagation is performed using the unscented
transformation (Julier and Uhlmann, 1997). Therefore the preci-
sion is over estimated and, what is even more severe, the correla-
tions between the new point and the state of the system are zero.
Thus a blind inclusion of the point together with its covariance
matrix, derived this way, would make this new point acting like a
control point. For this reason we need to couple the uncertainty
of the parameters of the state vector and the uncertainty of the
new point. The idea is to determine the new point X ,, via a point
X, which is close to the new point via:

Xn=X,+AX, 4

and perform error propagation assuming the given covariance
matrix of X, and its correlation with all parameters of the state
vector. However, the coordinate difference AX, = X, — X,
has covariance matrix which in the worst case is

YAxp,ax, =2Xx,x,

and is assumed to be independent of X , with. This is a realistic
assumption, as the reference point would probably have a simi-
lar accuracy in case of triangulated from the same two images.

Thus we obtain the extension of the state vector in the following
manner

. p_ / p_
M= | X, | = Is X, )
Xn /3 13 AXn
A g

where p_ is the state vector without point X ,. The generating
vector has the covariance matrix

2o o Xp_» 0
Egg = E’rp7 er 0 (6)
0 0 YAXpAX,

The new covariance matrix of the state vector including the new
landmark can now be calculated as follows

Zpp Lp_r Xp_r
Eg’;t = AEQQAT = Z?”pf ET‘T‘ Err
Z’rp_ 27‘7‘ Er'r + EAX”AXn

)
This covariance matrix is guaranteed to be positive semidefinite
and reflects the new situation realistically. Obviously, the linear
transformation is sparse and except for the addition of the co-
variance matrices of the reference and the point difference only
copies need to be realized, which is extremely efficient.

The algorithm for initialization of new points thus can be sum-
marized as follows:

1. Detecting that a new point ‘, is observed in image .
2. Sett =t+ 1.

3. Determine whether this frame 7 leads to a stable triangula-
tion:

(a) Determine the frame k& with the longest base length

k = argmax, ¢, - 4y <|TT - ril|>-

(b) Determine X ,, and its covariance matrix using frame
pair (k, 7) and its roundness Ry, = /A3/A1.

(c) If R+ > Tr then stop, else increase 7 by one and go
to 3.

4. Search for the point X, closest to X ,.

5. Include the new point into the state vector using (5) and (7).

The proposed algorithm is able to initialize new points in a stable
manner considering the correlation structure. In section 4 we will
show the feasibility of this approach.

3.3 Exploration Strategy

A common application using UAVs is the exploration of inacces-
sible or hazardous areas. In the classical aerial photogrammetry
overlapping strips are flown. This is satisfactory to estimate the
trajectory and the surface, usually done by a global optimal bun-
dle adjustment. As we know, the standard deviations o, (k) in
position of a long strip with k images is growing with (Acker-
mann, 1965)

or(k) o< V3. (8)

However, the estimation process using a Kalman-Filter based ap-
proach accumulates errors from image to image. Therefore, it is
necessary that the actual observations are connected to already
stable estimated landmarks.
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Figure 2: Left: classical area exploration by overlapping strips.

Right: overlapping images using Archimedic spiral exploration
strategy.

On the right side of figure 2 we show the top view of the camera
path following the Archimedic spiral. In case of the Archimedic
spiral the footprint of the images are overlapped depending on
the distance of the arms of the spiral. The major advantage of
this trajectory is that a connection of stable estimated landmarks
is ensured every time.

3.4 Search Loop Closing Strategy

The identification of already observed landmarks is an important
task. This is usually called as the loop closing problem. The re-
identification of landmarks is often performed by image descrip-

tor based matching, such as SIFT descriptors (Lowe, 2003),(Miko-

lajczyk and Schmid, 2005). For large maps the one by one match-
ing computation is expensive and similar structures might result
in wrong matches. Our key idea is to scale down the search space
by using the actual reconstruction result. For new observed land-
marks, SIFT descriptors in different scales can be computed by
using the actual image data. The landmark can be referenced by
its coordinate in an oc-tree, which divides the 3d space in small
pieces. In order to detect a loop closing we have to match the de-
scriptor for a new landmark with the referenced descriptors in the
oc-tree buckets of the corresponding landmark coordinate with
respect to the reconstruction accuracy. To improve the reliabil-
ity we have to check the correct matching with the reconstructed
neighbor landmarks for consistency.

4 EXPERIMENTAL RESULTS

To evaluate our approaches and strategies we have implemented
them into a simulation environment. Furthermore we compare
the Kalman-Filter approach with a bundle adjustment on a small
image sequence based on real data.

4.1 Simulation Environment

Our simulation scenario has the following setup. The camera has
a resolution of 640 x 480 pixel and a principle distance c of 640
pixel, which results in a field of view of app. 53°. The altitude
over a plane surface is 50 m, the flight velocity is 5 [m/s] and
the image sequence is acquired with 25 [fps]. We evaluate our
algorithm with a 300 m strip and a 900 m spiral path. True point
coordinates X ; are computed by a randomized sampler. The ob-
servations ! are determined with the camera parameters and ad-
ditive white noise of 0.5 [pel]. To compare our results with true
camera orientations, the initialization of the camera orientations
and the initial landmark coordinates for the first frame are set to
the true value with variance zero. The system noise in the time
update is set to 2 [m/s?] for accelerations and 20 [°/s?] for angu-
lar accelerations.

Variance structure of the strip. In a first experiment we will
investigate, whether the general rule (8) can be confirmed by our
implementation. Any deviation from (8) indicates systematic er-
rors in the data or the implementation, e.g. in case the prior in-
formation is too strong. This can be done by initializing the new
landmarks based on ground truth data with a large covariance
matrix and the observations of the landmarks are considered to
be error free. Figure 3 illustrates that the graphs satisfy (8).
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Figure 3: Theoretical precision of the positions =% determined
from the Kalman-Filter. The small roughness of the curves re-
sult from the randomness of the number of points in the different
frames.

Comparison of the initialization procedures. The second ex-
periment proves the benefit of our initialization method. Figure 4
shows the estimated camera projection centers by initializing new
points on the first visible projection ray with 20 m distance. The
estimated camera projection center quickly shows a huge drift of
the flying height as shown in the Z component and a resulting
drift in the Y component along the flight path. An initialization
using the true distances shows similar effects.

The results of our new initialization method, c. f. figure 5, is
much more stable. Again, we have a drift in the Z and Y compo-
nent, but only 1 % of the strip length.
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Figure 4: Estimated projection centers for a long strip by a
Kalman-Filter with initialization of new observed points on the
first projection ray, 20 m distance and large covariance matrix.

Comparing figure 6 with 3 we observe a decay of the estimated
variances of the camera trajectory. We assume that this results
from the approximation of the new introduced point correlation
structure.

Evaluation of the exploration strategy. In a third experiment
we calculate the camera trajectory based on the mentioned spiral
path strategy, c. f. figure 2, with an overlapping of 30%. There
are no systematic errors in the estimated projection centers of the
camera as shown in figures 7 and 8. In addition, the trajectory is
3 times longer than the strip path.
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Figure 5: Estimated projection centers for a long strip by a
Kalman-Filter and initialization of new observed points with our
proposed stable initialization method.
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Figure 6: Standard deviation of the estimated projection centers
for a long strip by a Kalman-Filter and initialization of new ob-
served points with our proposed stable initialization method.

4.2 Real Environment

The real data experiment were performed near a vineyard. With
the support of Microdrones GmbH we acquired an image se-
quence of a small area using our drone . The average flying height
was approx. 30 m. The image sequence consists of vertical views.
It contains a building and vineyards in their typical in-line form.
Fig. 2 shows every 100th image to give an impression on the
roughness of the flight path. The camera was calibrated offline.

To compare our results of the Kalman-Filter with a fully auto-
mated bundle adjustment, we use the same observations for both
approaches, derived from a KLT-Tracker of the image sequence.
The bundle adjustment solution is performed with every 10th
frame of the image sequences. Appr. 2500 object points were
determined. The datum is defined automatically by choosing that
frame which yields an optimum accuracy for the coordinate sys-
tem, see (Ldbe and Forstner, 2005). The scale is fixed using a
known distance between two object points. The estimated oo
was 0.5, indicating that the tracker yields a standard deviation of
0.5 pixels. The Kalman-Filter approach uses a subset of around
1000 object points. In this case the datum is typically defined
by the first camera position and orientation. All frames are used.
The initialization of the Kalman-Filter is performed according to
our initialization method, c.f. 3.2. In order to be able to compare
the two results we transformed the Kalman-Filter results into the
same coordinate system as the bundle adjustment results. As it
can be seen in figure 10 and 11 the trajectories are nearly sim-
ilar; up to now we did not perform a statistical analysis of the
differences. The bundle adjustment results for camera position
and orientation can be used as the input for a dense surface re-
construction, here performed with a new version of MATCH-T,
which can handle multiple images. We use all 70 key frames to
derive a dense 3D point cloud with 120546 points. This corre-
sponds to app. 10 points per m?. We computed a grid repre-
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Figure 7: Estimated projection centers for the spiral path exam-
ple.
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Figure 8: Standard deviation of the estimated projection centers
for the spiral path example.

sentation, in which holes in the point cloud were interpolated in
a hierarchical way. The shaded 3D surface in figure 12 demon-
strates the high resolution achievable with low resolution images,
even the rows of the vineyards can be identified.

5 CONCLUSION AND FUTURE WORK

In this paper we discussed the benefit of UAVs as a platform for
image acquisition under the condition of real time computation
of trajectory and surface information. We presented methods for
an effective exploration strategy and for the efficient detection of
the loop closing problem using SIFT descriptors under the knowl-
edge of the location and scale of a landmark. An adaptation of an
approach for camera motion detection was developed for a stable
initialization of new landmarks in the Kalman-Filter by consider-
ing the structure of accuracy. In an experimental section we pre-
sented results of the influence of this strategies to the estimated
camera projection centers in a simulated environment as well as
for a real image sequence. The differences between the results of
a bundle adjustment and the Kalman-Filter based approach were
marginal with respect to a navigational task. Our conclusion is
that the real-time computation of a camera trajectory and land-
mark coordinates from an UAV without GPS is still a complex
challenge. As we have shown, the accuracy is suitable.

In the future we will apply a so called sliding-window representa-
tion of the camera trajectory for a better approximation of motion
in the prediction step of the Kalman-Filter instead of the linear
prediction model represented by actual camera orientations and
their velocities. This could also stabilize the estimation process
with outliers in the observations. Besides a detection of non sta-
tionary objects is highly recommended.
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Figure 9: Every 100th image of the sequence, observe rotations
and scale differences
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Figure 10: Results of a Kalman-Filter of a real image sequence
for the estimated camera projection centers.
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