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Abstract

The paper describes calibration and epipolar rectification for stereo with fish-eye
optics. While stereo processing of classical cameras is state of the art for many ap-
plications, stereo with fish-eye cameras have been much less discussed in literature.
This paper discusses the geometric calibration and the epipolar rectification as pre-
requisite for stereo processing with fish-eyes. First, it surveys mathematical models
to describe the projection. Then the paper presents a method of generating epipolar
images which are suitable for stereo-processing with a field of view larger than 180
degrees in vertical and horizontal viewing directions. One example with 3D-point
measuring from real fish-eye images demonstrates the feasibility of the calibration
and rectification procedure.
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1 Introduction

Computer vision with a large field of view, with panoramic images and omni-
directional vision has received increasing attention (ECCV, 2002) especially
for surveillance and navigation applications.

Different types of sensors are available for obtaining a large field of view:
mirrors, rotating or moving cameras. A classical tool for acquiring images with
a large field of view, common in surveillance applications, are fish-eye-optics.
They provide images with a large field of view (1) with a single camera (2)
from one view-point (3) at a single moment. Fish-eye-optics can be mounted on
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standard CCD- or CMOS-cameras without high technical effort. No external
mirrors or rotating devices are required. Therefore the optics have a small
dimension and do not need any maintenance.

Our paper deals with fish-eye-stereo. A stereo camera system equipped with
two fish-eye optics can recover 3D-information in a large field of view around
the cameras. These 3D-measurements are useful for obstacle detection in nav-
igation or object recognition in surveillance applications.

The geometry of classical cameras can be well approximated by the pin-hole
camera. This does not hold for cameras with a very large field of view. While
stereo processing of classical cameras is state of the art for many applications,
stereo processing with fish-eye cameras has been much less discussed in the
literature.

Stereo processing usually requires two preparatory steps: (1) calibration of
the stereo system including the determination of the interior and the relative
orientation of the two cameras involved and (2) rectification of the image pair
to obtain epipolar images, thus simplifying the correspondence problem. This
paper discusses both problems in the context of fish-eye-stereo.

Geometric calibration of the fish-eye-stereo system requires a mathematical
model to describe projection from 3D onto the 2D image plane.

One way is to extend the perspective projection equations for the pinhole
camera with additional terms, e. g. polynomials, to compensate the fish-eye
effect in the image plane. An example can be found in (Shah & Aggarwal,
1996). This type of model, however, is limited to a field of view much less
than 180 degrees because the measurements in the image are corrected to a
pinhole model with a planar image. Furthermore these models can lead to
numerical instabilities in the calibration step due to inhomogeneous coverage
of the virtual image plane.

A better way is to use a special fish-eye projection model consisting of two
steps (1) an ideal map of the imaging sphere to a plane and (2) a subsequent
correction.

In Section 2 we present a review of known fish-eye projection models. They can
be derived from the optical design (Ray, 1994). The different models presented
here have one projection centre (pinhole) in 3D, where all projection rays meet.
Such models are proposed for calibration among others in (Fleck, 1995), (Xiong
& Turkowski, 1997), (Bakstein & Pajdla, 2002). Our main goal is to integrate
the fish-eye projection models into a framework for binocular vision with fish-
eyes lenses.
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In Section 3 we propose rectification models for fish-eye-stereo. Automatic
stereo is simplified if epipolar lines of the two images are equal. Epipolar
rectification can be seen as establishing a virtual camera system with ideal
projection properties, namely the image planes being identical and parallel to
the base line. With a perspective rectification the field of view is below 180
degrees, usually much lower, because of large distortions at the boundaries of
the image.

Other proposals for rectification, found in the context of panoramic viewing
e. g. (Ishiguro et al. , 1992) or omnivergent stereo e.g. (Shum et al. , 1999)
refer to cylinders as projection surface. Binocular cylindrical panoramic images
(Ishiguro et al. , 1992) limit the vertical field of view and do not lead to epipolar
images. Multi-perspective panoramas or omnivergent stereo according (Shum
et al. , 1999) do not have one projection centre for each camera and therefore
cannot be used for our purpose. Our proposal can be seen as special case of
the general rectification model given in (Pollefeys et al. , 1999).

Section 3 describes our concept for a virtual stereo fish-eye camera based on
the fish-eye projection models from Section 2 and shows how epipolar stereo
images for a large horizontal and vertical field of view can be obtained. The
rectification models lead to omnidirectional binocular stereo images, which
can be well adapted to the fish-eye projection geometry and which prevent
too large image distortions during rectification. We give two examples in de-
tail, one derived from the equi-distance projection model, the other from the
stereographic projection model.

Section 4 presents a short survey of our calibration procedure. We show that
calibration of a fish-eye stereo-system can be performed in a similar way as
the well known calibration for perspective camera projections.

The system has been realized. The last Section 3.2.2 gives an example for
deriving a point cloud from a fish-eye stereo system.

2 Mathematical models for fish-eye projection

2.1 Exterior and relative orientation

The first step of modelling fish-eye lenses is to establish a mapping from the
viewing sphere to the image plane. The fish-eye projection with a field of view
larger than 180 degrees requires non-linear transformations in addition to the
projective or perspective geometry. As usual the projection of a 3D-point with
world coordinates XW = (XW , YW , ZW )T into an image or sensor coordinate
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x′
j = (x′j, y

′
j) is modelled as a sequence of coordinate transformations which

contain the extrinsic and intrinsic camera parameters. We mainly follow the
work of (Ray, 1994), (Fleck, 1995), (Xiong & Turkowski, 1997) and (Bakstein
& Pajdla, 2002).
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Fig. 1. Coordinate systems and subsequent transformations in the mathematical
model for fish-eye stereo

The exterior orientation of the stereo system describes the coordinate trans-
formation of the 3D-world coordinate XW into the camera coordinate XCL

of the left camera using the rotation matrix RW,CL and the translation vector
tW,CL as extrinsic parameters (cf. figure 1).

XCL = RW,CL(XW − tW,CL) (1)

The relative orientation describes the coordinate transformation from the left
to the right camera-coordinate system using the rotation RCL,CR and the
translation vector tCL,CR

XCR = RCL,CR(XCL − tCL,CR) (2)

2.2 Interior Orientation

The transformation of 3D-camera coordinates XC into image coordinates x′

is separated into a projection and a distortion model. The projection model
describes the ideal and error free projection.The distortion model describes
deviations from the projection model, e. g. caused by lens distortions. Both
models together contain the intrinsic parameters.

The fish-eye projection models in general are projections from a sphere onto a
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Fig. 2. Fish-eye projection, relation between coordinates (X, Y , Z) in the camera
coordinate system, angles φ, α, radius r′ and image coordinates (x′, y′)

plane, cf. Figure 2. The projection models are radial symmetric in relation to
the optical axis. All models therefore refer to point (x′H , y′H) of best symmetry,
being the intersection of the optical axis and the image plane. The distance r∗

of an image point x′ from the principal point then only depends on the angle
φ between the optical ray from point to camera and the optical axis.

The angle α between the XC-axis of the camera system and the projection of
the ray onto the XC and YC plane is transformed directly into the image. All
intrinsic models x′ = T (X) therefore have the form:

x′ = cx cos[α] r∗[φ] + x′H + ∆x′

y′ = cy sin[α] r∗[φ] + y′H + ∆y′
(3)

The radial projection function r∗[φ] = r∗[arctan(
√
X2 + Y 2/Z)], the principal

distances cx and cy
1 and the coordinates (x′H , y′H) of the principal point

set up the projection model. The distortions from the projection model are
encoded in the distortion model, ∆x′ and ∆y′, similar to perspective cameras.
All parameters together form the interior orientation of the camera.

Normalizing the image coordinates in relation to the distortion parameters, the
principal distance and the principal point coordinates give normalized image

coordinates:

x∗ =
x′ − x′H − ∆x′

cx
; y∗ =

y′ − y′H − ∆y′

cy
(4)

1 The principal distance is encoded here with 2 parameters cx and cy for a simpler
description of video-cameras with non-square pixels
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Table 1
Review of fish-eye projection models (cf. (Ray, 1994))

projection from camera inverse from normalized

model to normalized image coordinates image to camera coordinates

(X,Y, Z) → (x∗, y∗) (x∗, y∗) → (X,Y, Z)

perspective

r′ = c tan[φ]

x∗ = X
Z

y∗ = Y
Z

X = x∗

Y = y∗

Z = 1

stereo-graphic

r′ = c tan[φ/2]

x∗ = X√
X2+Y 2+Z2+Z

y∗ = Y√
X2+Y 2+Z2+Z

X = 2x∗

1+x∗2+y∗2

Y = 2y∗

1+x∗2+y∗2

Z = 1−(x∗2+y∗2)
1+x∗2+y∗2

equi-distant

r′ = cφ

x∗ = X√
X2+Y 2

arctan
[√

X2+Y 2

Z

]

y∗ = Y√
X2+Y 2

arctan
[√

X2+X2

Z

]

X = x∗

√
x∗2+y∗2

sin[
√
x∗2 + y∗2]

Y = y∗

√
x∗2+y∗2

sin[
√
x∗2 + y∗2]

Z = cos[
√
x∗2 + y∗2]

orthogonal

r′ = c sin[φ]

x∗ = X√
X2+Y 2+Z2

y∗ = Y√
X2+Y 2+Z2

(Z > 0)

X = x∗

Y = y∗

Z =
√

1 − (x∗2 + y∗2)

equi-solid-angle

r′ = c sin[φ/2]

x∗ = X√
2(X2+Y 2)

√
1 − Z√

X2+Y 2+Z2

y∗ = Y√
2(X2+Y 2)

√
1 − Z√

X2+Y 2+Z2

X = 2x∗
√

1 − (x∗2 + y∗2)

Y = 2y∗
√

1 − (x∗2 + y∗2)

Z =
√

1 − (x∗2 + y∗2)

therefore r∗ =
√
x∗2 + y∗2. The entries in Table 1 refer to normalized image

coordinates.

The standard perspective projection with r∗ = tan[φ] =
√
X2 + Y 2/Z is only

a special case of the general model.

Table 1 collects the fish-eye projection models that can be found in the lit-
erature for technical optics (Ray, 1994), and in a few papers from computer
vision (Fleck, 1995), (Xiong & Turkowski, 1997), (Bakstein & Pajdla, 2002).
The table describes the transformations from camera into normalized image
coordinates and the inverse transformations with an adequate normalization.
To simplify the notation the 3D-camera-coordinates in Table 1 are used with-
out suffix, thus XC = X = (X,Y, Z)T .

The distortion model ∆x′(x′, y′), ∆y′(x′, y′) can be set up with polynomials,
describing radial symmetric, asymmetric or tangential distortion or can be
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set up with orthogonal polynomials. Distortion polynomials are not subject of
this paper. Proposals can be found in the literature e. g. (Fraser, 2001).

The mathematical models of this section are basis for the geometric cali-
bration of a fish-eye camera system. For calibration one or combinations of
these models (Bakstein & Pajdla, 2002) have to be selected depending on the
characteristics of the camera. The determination of the parameters can be
performed best with a self-calibrating bundle adjustment. Section 4 describes
our procedure for calibration.

We are now prepared to discuss the epipolar rectification for fish-eye stereo.

3 Epipolar rectification for fish-eye stereo

3.1 Principle of epipolar rectification

Epipolar image rectification can be defined as geometric transformation of
an image pair to an image pair which has the special property, that every
scene point X i is projected in both images into the same row (y′Li = y′Ri).
i. e. such that the vertical parallax vanishes. This way the search for stereo
correspondences can be reduced to a one-dimensional search along the image
rows.

The image rectification process can be considered as a reprojection of the 3D-
world into a virtual stereo camera. The virtual camera has ideal properties:
parallel optical axes, identical interior orientation and no distortion. The pro-
jection centre of the real stereo and the virtual camera are kept at the same
location. Figure 3 shows the geometry.

The concept of a virtual camera has some advantages. The rectified images
are independent from the real projection system. The virtual camera can be
designed for parallel epipolar lines. The image processing software does not
need to know anything about the real camera and can be well adapted to the
projection model of the virtual camera.

Following one of the models from Table 1 a virtual camera with the non-
linear fish-eye projection onto the image plane, despite ideal properties like
parallel optical axes, does not lead to epipolar images: epipolar lines are curves.
Correspondence search in the images is complicated. Figures 4 and 5 show the
projection of a simple 3D-object into a fish-eye stereo camera.
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real stereo camera

virtual stereo camera

b

projection centres

Fig. 3. Real and virtual stereo camera, rectification is identical to the projection of
the world into the virtual stereo camera
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Fig. 4. Stereo camera system with fish-eyes, synthetic example, the fish-eyes are
symbolized by the spheres looking into the rectangular object.

Going back to the basic properties of the epipolar geometry allows to define
a rectification scheme useful for cameras with fish-eye lenses.

In a stereo camera system with two projection centres all epipolar planes form
a pencil of planes in 3D-object space. The epipolar planes intersect in the
baseline of the stereo system, cf. Figure 6. The orientations of the epipolar
planes are characterized by the pitch angle β.

To get parallel epipolar lines in the rectified image pair every image row must
correspond to an epipolar plane. To design a rectification model for fish-eyes
one needs to setup an projection function y∗ = ry∗(β) with β = arctan(YV /ZV )
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Fig. 5. Synthetic example from figure 4, projection into a fish-eye with the equi-dis-
tance projection model, left and right camera image with x′ and y′ image coordinate
axis corresponding to β and ψ, unitless.
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Fig. 6. Projection and epipolar planes
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Fig. 7. The rectified image (β, ψ; cf. figure 6)

that defines the projection of the epipolar planes onto the rows of the rectified

image. The projection function x∗ = rx∗(ψ) with ψ = arctan(XV /
√
Y 2

V + Z2
V )

defines the projection inside the epipolar planes, the projection inside the rows,
cf. Figure 7. The two projection functions rx∗ and ry∗ for the virtual camera
define the rectification model x′

V = T V (xV ). The rectification model T V is a
non-linear function that transforms a coordinate xV = (Xv, Yv, Zv) from the
camera coordinate system into image coordinates x′

V = (x′V , y
′
V ) of the virtual

camera. The index V stands for the virtual camera. The rectification models
are designed such that one obtains epipolar rectified images.

x′V = cxV · rx∗(ψ) + xHV ; y′V = cyV · ry∗(β) + yHV (5)
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Examples for projection models are given in Table 1. The functions rx∗ and ry∗

can be of different types. For example, the combination rx∗ = tan[ψ], ry∗ = β
can be found in (Roy et al. , 1997) as cylindrical rectification to minimize
distortion effects. The projection function rx∗ can be identical or different for
every image row. For practical reasons one would set the projection function
rx∗ identically for all image rows.

The coordinate transformations for rectification can now be done according
to the functional modelling in Section 2 by three transformation steps.

Rectification is a mapping of the real images into the virtual camera. Therefore
for every pixel position of the virtual camera the gray value has to be taken
from the image in the real camera. This means a transformation from virtual
image coordinates into real image coordinates is required.

With the calibration model of the real camera (3) and the rectification model
of the virtual camera (5) this coordinate transformation can be written in
general as:

x′ = T
(
RC,V T−1

V (x′
V )

)
(6)

The rotation matrix RC,V defines the rotation between the camera coordinate
systems of the real and the virtual camera (cf. Figure 3). The matrix RC,V

depends on the relative orientation of the stereo camera system (Fusiello et al.

, 2000).

The concept of the virtual camera in conjunction with the different projection
functions for the rectification process makes it possible to rectify images for
stereo processing with a field of view larger than 180 degrees in vertical and
horizontal directions. The rectification model can be selected according to
the requirements. In most cases the projection model of the real camera and
rectification model of the virtual camera should not differ too much in order
to avoid large image deformations in the rectification process. This will be
shown in two examples below.

3.2 Two rectification models for fish-eye-stereo

3.2.1 Epipolar equi-distance rectification model

First a modified equi-distance model with parallel epipolar lines is introduced.
From the geometric relations depicted in the Figure 6 and the equi-distance-
projection model in Table 1 the transformation of camera coordinates XC
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into image coordinates x′ can be derived:

x′ = cxψ + x′H y′ = cyβ + y′H

ψ = arctan
[

X√
Y 2 + Z2

]
β = arctan

[
Y
Z

] (7)

Image points with y′ = const. represent the epipolar plane where the object
point can be found. The coordinate y′ only depends on the angle β (cf. figure
6). The image coordinate x′ depends on the location of the point in the epipolar
plane. The angles β and ψ are projected in equidistant steps into the image
y′ ∼ cy · β, x′ ∼ cx · ψ. The inverse transformation from an image coordinate
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Fig. 8. Synthetic example from Figure 4, projection of the rectangular object with
the derived epipolar equi-distance rectification model, left and right camera image
with x′ and y′ image coordinate axis

x′ into one camera coordinate X is given by:




X

Y

Z




=




sin x∗

cos x∗ sin y∗

cos x∗ cos y∗




(8)

with x∗ and y∗ as normalized image coordinates from (4). Figure 8 shows the
rectification with the epipolar-equi-distant rectification model for the synthetic
’object’ in Figure 4. An example of a real image pair can be found in Figure
11.

3.2.2 Epipolar stereographic rectification

As can be seen in Eqns. (7) and (8) the coordinate transformations always
require the calculation of trigonometric functions (arctan(), sin(), cos()). For
real-time processing this can be time consuming. Taking other fish-eye projec-
tion models from Table 1 into account trigonometric functions can be avoided.
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For the epipolar stereographic rectification the set of transformation equations
are from camera into image coordinates:

x′ = c · X√
X2+Y 2+Z2+

√
Y 2+Z2

+ x′H

y′ = c · Y√
Y 2+Z2+Z

+ y′H

(9)

and from normalized image into camera coordinates:



X

Y

Z




=




2x∗

1+x∗2

1−x∗2

1+x∗2

2y∗2

1+y∗2

1−x∗2

1+x∗2

1−y∗′2

1+y∗2




(10)

Figure 11 shows an example applying the rectification model to a real image
pair.

By rectifying images with the presented epipolar equi-distant or the epipolar
stereographic rectification model, analogously to traditional epipolar rectifi-
cation with the perspective model, a fast stereo correspondence search along
lines can be performed. Except at the ’poles’ where no stereo information is
available a view of more than 180 degrees in horizontal and vertical direc-
tion can be processed. Fast rectification can be performed by pre-calculated
look-up-tables.

4 Calibration

This section gives a short view inside our calibration procedure. We applied
traditional algorithms from the field of photogrammetry and computer vision
for calibration of fish-eye stereo. Our algorithm and most of the calibration
algorithms generally consist of 3 steps: collecting images and performing auto-
matic measurements, calculating approximate values with direct solutions and
finally improving the start values with a non-linear optimization procedure.

Our calibration system performs self-calibration using a calibration board.
Our calibration board here consists of three planes (not an requirement). The
targeted points on the board are approximately known. The points are printed
on paper by a laser printer, the papers have been attached to the planes. The
board is imaged several times by the stereo-system and the imaged point
patterns are measured. The parameters of the projection model and the 3D
point coordinates are estimated simultaneously in a self-calibrating bundle
adjustment.
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Fig. 9. Example fish-eye-stereo: Original image pair and perspective epipolar recti-
fication

The image processing software performs the point numbering and measure-
ment automatically. Therefore, groups of four points are built twice on each
plane allowing an automatic decoding (cf. figure 10). For each image approxi-

Fig. 10. Calibration target with point pattern

mate values of the exterior and interior orientation for the bundle adjustment
are estimated by applying a modified Direct Linear Transformation algorithm
that has integrated the equi-distant projection model. The approximately
known 3D-target point coordinates are used as input in this calibration step.

After collecting measurements x′
Lij

, x′
Rij

from all images j for the points i the
intrinsic parameters p̂CL, p̂CR of the left and the right camera, the relative
or stereo parameters (R̂, t̂)CL,CR, the extrinsic parameters (R̂, t̂)W,CLj

and

the point coordinates X̂Wi
are estimated simultaneously in the non-linear
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iterative self-calibrating bundle adjustment. The adjustment minimizes the re-
projection error Ω between the projection model and the real measurements:

Ω =
∑

i

∑
j

[
x′

Lij
− f

(
p̂CL, (R̂, t̂)W,CLj

, X̂Wi

)]2
+

[
x′

Rij
− f

(
p̂CR, (R̂, t̂)W,CLj

, (R̂, t̂)CL,CR, X̂Wi

)]2

In order to obtain best results, a selection of the fish-eye projection models
from Table 1 is required. We select the one which fit the measurement data

best based on the estimated mean reprojection errors σ̂x′ =
√

Ω/r with the
redundancy r of the system.

Neglecting the fish-eye projection model the calibration procedure is equal
to standard bundle adjustment self-calibrations. The calibration procedure
can also be performed as test-field calibration with exactly known point field
coordinates.

As final step we set up a rectification model and calculate Look-Up-Tables for
image rectification.

5 Example

An example demonstrates the calibration, the rectification and the 3D-recon-
struction for a stereo camera with fish-eye-lenses. Figures 9 and 11 show the
original image pair and rectified images with different rectification models.

The calibration of the camera system was performed according Section 4. The
radial projection function r′ = sin[φ/2] was selected for the stereo system.
Table 2 gives the estimated calibration parameters with their standard devi-
ations. The estimated mean reprojection error was σ̂x′ = 0.13 [pel].

Figure 9 shows the traditional perspective epipolar rectification on image
planes. The image is obviously distorted strongly. With a larger field of view
the performance of searching for stereo correspondences will be low.

Figure 11 shows epipolar rectifications with the epipolar equi-distance and
the epipolar stereographic model. The rectified images are much less distorted
than after the rectification with the perspective model shown in Figure 9. So
for stereo-matching a much better performance could be reached than using
the perspective rectification.

Comparing the epipolar equi distant and the stereographic rectification in
Figure 11, the resulting images differ only slightly. In experiments both rec-
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Table 2
Estimated calibration parameters with standard deviations, projection model
sin[φ/2]

intrinsic parameters

left right

cx [pel] 308.8 (0.5) 311.0 (0.6)

cy [pel] 308.3(0.5) 310.7 (0.5)

x′H [pel] 245.78 (0.03) 251.67 (0.02)

y′H [pel] 129.20 (0.03) 125.56 (0.02)

relative orientation

tx [mm] 78.64 (0.05) rx 0.17o (0.01o)

ty [mm] 0.42 (0.03) ry 1.56o (0.02o)

tz [mm] 0.62 (0.06) rz 0.15o (0.01)

Fig. 11. Example fish-eye-stereo: Epipolar rectification with the epipolar-equi-dis-
tance (r′ = c · φ) (top row) and the epipolar stereo-graphic r′ = c · tan[0.5 · φ]
rectification model (bottom row)

tifications show nearly identical performance for stereo matching and both
models are well suited for the investigated fish-eye optics.

The result of a 3D-reconstruction from the example image pair can be seen in
Figure 12. The figure shows a horizontal ’slide’ of the point-cloud. The slide is
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Fig. 12. Horizontal ’slide’ of the 3D-point-cloud from fish-eye-stereo image pair in
Figure 11,

indicated in Figure 11 bottom row with the white lines. In the point cloud the
bookcase and the helmet can be clearly seen. The field of view is approximately
150 degrees. The field of view here is only limited by the optics not by the
rectification model. The rectification model can also deal with fish-eye-optics
with a larger field of view.

6 Conclusions

This paper has presented procedures for geometric calibration and epipolar
rectification for stereo with fish-eye optics. Mathematical models for describ-
ing the projection by a fish-eye optics can be used to perform a geometric
calibration of the stereo system. The rectification to epipolar stereo images
has been considered as reprojection into a virtual camera. The virtual camera
gives parallel epipolar lines, so a fast stereo processing with standard stereo
matching algorithms is possible.

The rectification models for fish-eye images make it possible to handle a very
large field of view with more than 180 degrees in vertical and horizontal di-
rections from which 3D-measurements can be derived by classical matching
algorithms. Since the projection properties of the rectification are similar to
the real projection in the optics, the image deformations during rectification
are small compared to traditional perspective rectification onto planes. This
makes correspondence analysis with fish-eye lenses easier.
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